智能变电站过程层交换机设计及实现

智能变电站过程层交换机设计及实现
智能变电站过程层交换机设计及实现

电力工趕技术

128 2017 年 9 月Electric Power Engineering Technology第 36 卷第 5 期

智能变电站过程层交换机设计及实现

杨贵\高红亮2,彭安\张喜铭2,李莉\潘磊1

(1.南京南瑞继保电气有限公司,江苏南京211102;

2.中国南方电网电力调度控制中心,广东广州510663)

摘要:从智能变电站过程层网络传输报文的特点出发,对交换机的传输带宽、存储转发延时、强电磁干扰下的零丢包、采样同步、流量控制、配置管理等方面进行需求分析,提出了一种适用于智能变电站过程层网络交换机的整体研制方案,并对交换机的测试情况和试点运行情况进行了分析介绍。

关键词:过程层;交换机;延时累加;离线配置;流量控制

中图分类号:TM769;TP393 文献标志码:A 文章编号=2096-3203(2017)05-0128-08

〇引言

目前,智能变电站中的继电保护普遍采用“直 采直跳”方式[1],即保护装置与合并单元采用点到 点的方式,这种方式较为可靠,但接线较复杂且信 息不能共享,存在智能电子设备(IE D)光口数量多 导致发热量大等问题。智能变电站要求全站信息 数字化、通信平台网络化、信息平台共享化。因此,采用网络传输方式实现智能变电站过程层组网是 发展的必然趋势[2]。

现有智能变电站采用两层网络通信架构,即过 程层网络和站控层网络。过程层网络连接间隔层 设备和过程层设备,站控层网络连接站控层设备和 间隔层设备。继电保护的网络化,即“网采网跳”,可以实现网络信息的共享,简化光纤接线,提高调 试效率,节约建设成本[3]。但要实现继电保护的网 采网跳,对网络数据传输的实时性、采样同步可靠 性、数据传输时延确定性、通信网络的可靠性和网 络设备配置管理方便性等方面提出新的要求。因此研制符合智能变电站过程层应用的交换机,适应 智能变电站过程层网络的应用需求十分必要。

1智能变电站的网络架构

目前,国家电网和南方电网分别进行了智能变 电站的网络化三层两网[]、三网合一[5]的试点建 设。在三层两网情况下,过程层网络逐步由原来的 面向通用对象的变电站事件(G O OSE)、取样值(S V)分廳网[],向G00SE、S V共网传输方向发 展;三网合一实现了 G00SE、S V和制造报文规范

收稿曰期:2017-04-29;修回曰期:2017-05-28

基金项目:中国南方电网公司重点科技项目(ZDKJQQ- 00000016)(M M S)报文的共网传输,大大节省了网络设备的 投人。

但是网络化在推广过程中发现如下问题尚待 解决:

⑴未统一建模。由于交换机在IEC 61850规 范中未进行建模工作,无法实现对交换机运行状态 的有效监管[]。

()配置工作量大。由于G00SE、S V为组播 传输报文,过程层网络为了实现GOOSE、S V报文的 传输路径管理,防止网络报文发送到不需要的IE D 设备中,需要进行虚拟局域网(V L A N)、静态组播等 配置工作[],该工作由于缺乏IEC 61850建模和离 线配置工具,必须通过手工方式进行逐台配置,配 置工作量大且易反复。

()传输可靠性难以保证。过程层网络的每路 G00SE、S V报文均采用组播的方式进行传输,目前 采用V L A N或静态组播的方式进行报文传输管理[9],该方式无法解决单路G00S E或S V发生风暴 时过程层网络整体受到影响的问题。

⑷采样同步。为了满足继电保护装置采样同 步的要求,目前智能变电站采用B码对时或精准时 间臓(P T P)对时等方式实现采样同步[10],但当外 部时钟源出现异常而导致假同步等异常现象出现 时,无法保证继电保护高可靠性要求[11]。

2智能变电站过程层网络报文分析

过程层网络传输S V、G00S E报文类型均为二 层组纖文,为了合理规划智能变电站网络需要了 解各种报文的特点。当采用网络P T P对时模式时,P T P报文同样采用二层麵报文方式进行传输。2.1 S V报文分析

S V报文为合并单元发送给保护、测控等装置

数字化变电站过程层网络通信流量计算

过程层网络流量分析 1. 采样值网络流量分析 1.1采样值网络概述 采样值传输采用IEC61850-9-2标准,合并单元和二次设备均连在交换机网络上。220kv线路间隔配置成一个独立的网段,考虑采用独立的交换机。主变三侧作为一个大间隔,配置成一个独立的网段,采用独立的交换机。每一个电压等级配一台公共交换机,连接该电压等级对应的母线保护、PT合并单元,各 间隔对应的交换机也通过级联端口连到该公共交换机。 采用组播过滤技术来解决网络阻塞的问题,接收端口只收到预订的MAC地 址对应的9-2报文,降低了网络的流量。 PT并列考虑在PT合并器实现,PT切换在间隔合并器实现。因此,对于主变保护和线路保护而言,不需要在网路上预订PT合并器的9-2报文,但母线保 护需要预订PT合并器的报文。 1.2IEC61850-9-2帧格式说明 1.2.11SO/IEC 8802-3以太网帧结构 IEC 61850-9-2LE采样值报文在链路层传输都是基于ISO/IEC 8802-3的以太网帧结构。帧结构定义如下图所示:

方法。 (2) 帧起始分隔符字段(Start-of-Frame Delimiter ) 知道导入帧,并且该字段提供了同步化接收物理层帧接收部分和导入比特流的 格式说

帧起始分隔符字段,1字节。字段中1和0交互使用。 (3)以太网mac地址报头 以太网mac地址报头包括目的地址(6个字节)和源地址(6个字节)。目的地址可以是广播或者多播以太网地址。源地址应使用唯一的以太网地址。 IEC 61850-9-2 多点传送采样值,建议目的地址为 01-0C-CD-04-00-00 到 01-0C-CD-04-01-FF。 (4)优先级标记(Priority tagged) 为了区分与保护应用相关的强实时高优先级的总线负载和低优先级的总线 负载,采用了符合IEEE 802.1Q的优先级标记。 优先级标记头的结构: TPID 值:0x8100 User priority :用户优先级,用来区分采样值,实时的保护相关的GOOSE 报文和低优先级的总线负载。高优先级帧应设置其优先级为4?7,低优先 级帧则为1?3,优先级1为未标记的帧,应避免采用优先级 0,因为这会引起正常通信下不可预见的传输时延。 采样值传输优先级设置建议为最高级7。 CFI:若值为1,则表明在ISO/IEC 8802-3标记帧中,Length/Type域后接 着内嵌的路由信息域(RIF),否则应置0。 VID :虚拟局域网标识,VLAN ID。 (5)以太网类型Ethertype 由IEEE著作权注册机构进行注册,可以区分不同应用

变电站课程设计

变电站课程设计

第一章 主变的选择 1、1 设计概念 变电站是电力系统的重要组成部分,是联系发电厂和用户的中间环节。它起着变换和分配电能的作用。 变电站的设计必须从全局利益出发,正确处理安全与经济基本建设与生产运行。近期需要与今后发展等方面的联系,从实际出发,结合国情采用中等适用水平的建设标准,有步骤的推广国内外先进技术并采用经验鉴定合格的新设备、新材料、新结构。根据需要与可能逐步提高自动化水平。 变电站电气主接线指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务,变电所的主接线是电力系统接线组成中的一个重要组成部分。 一次主接线的设计将直接影响各个不同电压侧电气设备的总体布局,并影响各进出线的安装间隔分配,同时还对变电所的供电可靠性和电气设备运行、维护的方便性产生很大的影响。主接线方案一旦确定,各进出线间和电气设备的相对位置便固定下来,所以变电所的一次主接线是电气设计的首要部分。 1.2 初步方案选定 1. 2.1负荷分析计算 根据任务书可知初建变送容量MVA S 35001=,且预测负荷增长率%4=W 每年,所以有如下每年的负荷变化量。 MVA S 3501= MVA S W S 364350%)41(1)1(2=?+=+= 2)1(3W S +==1S 350%)41(2?+56.378=MVA 3 )1(4W S +=350%)41(13?+=S 702.393=MVA MVA S W S 450.409350%)41(1)1(544=?+=+= MVA S W S 829.425350%)41(1)1(655=?+=+= MVA S W S 862.442350%)41(1)1(766=?+=+= 576.460350%)41(1)1(877=?+=+=S W S MVA 1.2.2 主变压器台数、容量的确定 (1)台数的确定 根据变电站主变压器容量一般按5——10年规划负荷来选择。根据城市规划、负荷性质、电网结构等综合考虑确定其容量。对重要变电站,应考虑

过程层网络流量计算

对于智能变电站的过程网络,SMW报文数据量交大、流量稳定;GOOSE信息的特点则是实时性要求高,对带宽占用较少。为了减轻过程层交换机的负载,增加数据交换的安全性和效率,需对交换机按端口划分VLAN。一般来讲,VLAN划分的主要原则:按逻辑功能进行划分,简单可靠。在满足要求的情况下,不宜划分过多的VLAN,以免为现场配置、运行维护以及日后的扩展带来困扰。 一、装置流量分析 (一)装置发送GOOSE报文流量 由于同一种装置发送的GOOSE信号数量可能有差异,取典型报文长度进行网络流量计算。正常无信号变位情况下,GOOSE发送报文时间间隔为5S。假设GOOSE报文的典型长度为200B,则装置发送GOOSE报文流量为(200*8)/5=320(bit/s)。 (二)装置发送SMV报文流量 SMV9—2采样值传输按12通道模拟量计算,发送频率为4K,典型报文长度为160B。装置发送采样值流量为(160*8)*4000=5.12(Mbit/s)。 二、SMV和GOOSE共网方式分析 SMV和GOOSE共网的关键在于流量的划分通常采用VLAN网络划分方式。以某一110KV 智能变电站为例,其整个网络分为9个虚拟以太网VLAN子网,分别为110KV网络、10KV1M 网络1、10KV1M网络2、10KV1M网络3、10KV1M网络4、10KV2M网络1、10KV2M 网络2、10KV2M网络3、10KV2M网络4。 SMV和GOOSE共网方式分析如表4—1所示。

表4—1 SMV和GOOSE共网方式分析 网络装置交换机端口(个) 110KV网络主变压器保护高压侧*4,主变压器高压侧合并单元*8 主变压器本体智能终端*2 110kV线路保护*3,110kV线路合并单元*3 110kV分段保护*1,110kV备自投*1 110kV分段合并单元*1,110kV智能控制装置*6, 110kV母差保护*1 24 10KV1M网络1 主变压器低压侧保护*4,主变压器低压智能终端*1 10kV站用变压器四合一装置*1 10kV电容器四合一装置*1 10kV TV开关柜装置*1 10kV 备自投装置*1 10kV 分段四合一装置*1 10kV 母差保护1*1 11 10KV1M网络2 10kV 线路四合一装置*4 10kV 母差保护1*1 5 10KV1M网络3 10kV 线路四合一装置*4 10kV 母差保护1*1 5 10KV1M网络4 10kV 线路四合一装置*4 10kV 母差保护1*1 5 10KV2M网络1 主变压器低压侧保护*4,主变压器低压智能终端*1 10kV站用变压器四合一装置*1 10kV电容器四合一装置*1 10kV TV开关柜装置*1 10kV 备自投装置*1 10kV 分段四合一装置*1 10kV 母差保护2*1 11 10KV2M网络2 10kV 线路四合一装置*4 10kV 母差保护2*1 5 10KV2M网络3 10kV 线路四合一装置*4 10kV 母差保护2*1 5 10KV2M网络4 10kV 线路四合一装置*4 10kV 母差保护2*1 5 三.网络流量分析 VLAN网络内的流量可以根据装置网络流量分析计算得到(见下表)

智能变电站过程层报文详解

智能变电站过程层报文 1. GOOSE 报文 1.1. GOOSE 传输机制 SendGOOSEMessage 通信服务映射使用一种特殊的重传方案来获得合适级别的可靠性。重传序列中的每个报文都带有允许生存时间参数,用于通知接收方等待下一次重传的最长时间。如在该时间间隔内没有收到新报文,接收方将认为关联丢失。事件传输时间如图1-1所示。从事件发生时刻第一帧报文发出起,经过两次最短传输时间间隔T1重传两帧报文后,重传间隔时间逐渐加长直至最大重传间隔时间T0。标准没有规定逐渐重传时间间隔计算方法。事实上,重传报文机制是网络传输兼顾实时性、可靠性及网络通信流量的最佳方案,而逐渐重传报文已越来越不能满足实时性要求,对重传间隔时间已没有必要规定。 图1-1 GOOSE 事件传输时间 SendGOOSEMessage 服务以主动无须确认的发布者/订阅者组播方式发送变化信息,其发布者和订阅者状态机见图1-2和图1-3。 图1-2 GOOSE 服务发布者状态机 1) GoEna=True (GOOSE 使能),发布者发送数据集当前数据,事件计数器置1(StNum=1), 报文计数器置1(SqNum=1)。 2) 发送数据,SqNum=0,发布者启动根据允许生存时间确定的重发计时器,重发计时器 计时时间比允许生存时间短(通常为一半)。 3) 重发计时器到时触发GOOSE 报文重发,SqNum 加1。 4) 重发后,开始下一个重发间隔,启动重发计时器。重发间隔计算方法和重发之间的 最大允许时间都由发布者确定。最大允许时间应小于60秒。 5) 当数据集成员数据发生变化时,发布者发送数据,StNum 加1,SqNum=0。 5)

35KV变电站继电保护课程设计(同名16366)

35KV变电站继电保护课程设计(同名16366)

广西大学行健文理学院 课程设计 题目:35kV电网的继电保护设计 学院 专业 班级 姓名 学号 指导老师: 设计时间:2015年12月28日-2016年1月8日

摘要 电力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。 电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。电力系统继电保护的基本作用是:全系统范围内,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。 随着电力系统的迅速发展。大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反应、速度快、涉及面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。 本次毕业设计的题目是35kv线路继电保护的设计。主要任务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电网的结构、电压等级、线路长度、运行方式以及负荷性质的要求,给35KV的输电线路设计合适的继电保护。 关键词:35kv继电保护整定计算故障分析短路电流计算

新一代智能变电站概念设计

新一代智能变电站概念设计 发表时间:2018-04-28T16:31:41.250Z 来源:《电力设备》2017年第33期作者:代春凤 [导读] 摘要:随着科学技术的进一步发展,电网技术的得到了飞速发展,随即智能电网的概念被提出,智能变电站为满足日益增长的信息化、自动化、互动化需求应运而生。 (国网新疆奎屯供电公司新疆奎屯市 833200) 摘要:随着科学技术的进一步发展,电网技术的得到了飞速发展,随即智能电网的概念被提出,智能变电站为满足日益增长的信息化、自动化、互动化需求应运而生。智能变电站是加强智能电网的重要基础和支撑,是电网运行数据的采集源头和命令执行单元,是智能电网建设的重要组成部分。为了实现智能电网进一步加强,对智能变电站的要求就进一步加强,因此,在新一代智能变电站的设计上就要做到科学合理,为此,本文针对当前只能变电站的设计问题进行深入的分析探讨,在实际的理念方面做出深入的分析,以期为以后智能变电站的建设提供设计的理论基础。 关键词:智能变电站;顶层设计;技术路线 引言:就目前而言,智能变电站相关的试点工程虽然在设备、建设以及日常的运行维护管理反面取得了较大的进展,但是在其他方面仍然存在着问题,比如系统相对较多并且功能也比较分散,不管是在设计理念上,还是相关技术和管理上都需要进一步加强。 一、当前智能变电站设计存在的问题 (一)设计模式存在问题 目前,大多数的变电站设计采取的都是分专业进行涉及的模式,并且是由供应商为主导进行的,在变电站的整体优化上非常难实现。不管是在设计的理念上,还是设计的方法上都收到了设备技术的限制,在设备的配置、整体布局以及控制上的设计都还有进步提升的空间。因此新一代智能变电站应该将供应商主导进行的分专业设计向整体集成化的设计方向发展,研制设备,优化主接线和总体的平面布局,进一步提高智能变电站的整体设计的水平,确保先进的设计理念实施到位。 (二)一次设备的一体化设计理念实施不到位 就目前而言,现在大部分的变电站在一次设备的一体化上的设计理念实施不到位,不仅在绝缘设计上不到位,并且在机械设计上也配合不当。同时缺少厂内一体化调试,设备现场联调时,出现通信接口、模型配置不统一等问题,影响工程进度。新一代智能变电站将实现一次设备智能化向智能一次设备转变。通过智能组件、传感器与一次设备的一体化设计,实现设备有效集成,功能高度整合,达到安装快捷、运行智能、检修方便。 (三)二次系统的配置独立分散,信息共享度低 智能变电站中各个二次系统的配置独立分散,信息共享度低,采样处理重复,维护工作量大对调控一体化的支撑力度不够,尚不满足电网运维管理体制的转变要求。因此,新一代智能变电站应实现分散独立系统向一体化业务系统的转变。要整合原来各分系统功能,构建一体化业务系统深化高级功能应用,全面支撑“大运行”、“大检修”采用层次化保护控制,实现安全稳定的“三道防线”。 二、新一代智能变电站设计理念 (一)系统高度集成 新一代智能变电站应遵循高度集成的设计理念,要进一步整合系统的功能,通过优化系统的结?布局、并采用一体化机器设备和一体化的通信网络以及一体化的系统,作为最基本的技术?架,能够有效地促进变电站的优化集成设计水平的进一?提升,在高度集成方面,不仅要保证一次与二次设备的高度集成,并且在其他如网络、站域平台、设备空间以及IED装置这几个方面都要保证高度集成。 (二)结构布局要合理 针对新一代智能变电站的设计,要保证电网设备在足够安全的条件下,在对变电站的主接线进行优化,并且针对互感器的数量要适当降低;在位置的选择上要做到科学化合理化,选择适合的位置,可以有效地节约变电站的设备费用以及基础建设的费用;另外,要将一次设备和传感器在整体上进行优化,在电子互感器成熟稳定之后,可以将电子互感器集成于一次设备当中,在设备的高度集成上进一步优化加强。这样不仅可以减少设备的占地面积,还能够利用节约出来的空地将二次设备放到一次设备的附近地区,利用空地进行就地摆放以及安装。同时,在设备的检修方面,可以引进或是采用最新型的检修设备以及安装机械设备,做到在恶劣天气或是较恶劣的自然环境下,能够进行及时且精确地检修以及维修保护等等。 (三)装备先进?用 变电站使用的机械设备要先进适用。现在新一代智能变电站,在设备的选用上,采用的是智能化的一次设备以及集成化的二次系统,但是在这个基础上,应积极地改进现有的设备,积极地研制更加新型化的设备,不管是在技术指标上,还是使用寿命的周期上,还是其他别的方面,都要做到指标现金,性能稳定,安全实用的寿命周期要长。同时,要采用在设计、配置、调试工具方面具有方便高效的变电站设计和调试技术,比如,采用基于图形用户界面的设计、配置成套工具,或是二次虚端子接线设计与变电站配置文件的无缝结合等。才能在提高变电站在设计、安装、调试方面的效率。 (四)支?调控一体 要优化设备告警信息直传和变电站全景远程浏览等功能,在一体化的监控系统的配置方面要做好优化简化,在一键式顺序控制应用发个面要更加的深化,进一?提升在高级功能方面的应用水平,节约人力,做到即使没有人值守,也可以正常?行的管理模式的需求,实现变电站的自动化。 (五)经济节能环保 新一代的智能变电站使用的设备在整体上已经相对都比较节能和环保了,比如在IED、网络交换机、占地面积、建筑面积的使用上以及进行现场安装的工作量上,都相应的?少了30%以上,甚至都?到了40%-50%左右,?大的节约了人力和无力,既经济又环保。但这不能是追求的经济环保的?限,应继续积?的优化变电站设备,集成系统的强度要更加优化,进一?实现智能变电站的集成化、一体化、和标准化。 三、结语 总之,在新一代智能变电站的设计上,要做到高度集成化的系统,做到经济节能环保,减少人力和物理的浪费,实现自动化管理,不

课程设计(变电所)(1)

变电所设计任务书(1) 一、题目220KV区域变电所设计 二、设计原始资料: 1、变电所性质: 系统枢纽变电所,与水火两大电力系统联系 2、地理位置: 本变电所建于机械化工区,直接以110KV线路供地区工业用户负荷为主。 3、自然条件: 所区地势较平坦,海拔800m,交通方便有铁,公路经过本所附近。最高气温十38o C 最低气温-300C 年平均温度十100C 最大风速20m/s 覆冰厚度5mm 地震裂度<6级 土壤电阻率<500Ω.m 雷电日30 周围环境较清洁、化工厂对本所影响不大 冻土深度1.5m 主导风向夏南,冬西北 4、负荷资料: 220KV侧共4回线与电力系统联接 110KV侧共12回架空出线,最大综合负荷

10KV 侧装设TT —30-6型同期调相机两台 5.系统情况 设计学生:________指导教师:____________ 完成设计日期:_______________________ 4╳4╳

变电所设计任务书(2) 一、题目220KV降压变电所设计 二、设计原始资料 1.变电所性质: 本所除与水、火两系统相联外并以110及10KV电压向地方负荷供电2.地理位置: 新建于与矿区火电厂相近地区,并供电给新兴工业城市用电 3.自然条件; 所区地势较平坦,海拔600m,交通方便有铁、公路经过本所附近 最高气温十400C 最低气温—250C 年平均温度十150C 最大风速_20m/s_ 覆冰厚度10mm 地震裂度_6级 土壤电阻率>1000Ω·m 雷电日___40__ 周围环境_空气清洁_建在沿海城市地区,注意台风影响 冻土深度1·0m 主导风向夏东南风、冬西北风 4·负荷资料: 220KV侧共3回线与电力系统联接

智能变电站状态图元的规范与设计

智能变电站状态图元的规范与设计 发表时间:2016-07-19T15:46:42.537Z 来源:《电力设备》2016年第8期作者:杜鹏侯丹贺思亮张亮 [导读] 智能电网建设是全国电网建设的大趋势,最终要实现电网的无人化、智能化是电网建设的最终目的。 杜鹏侯丹贺思亮张亮 (国网冀北电力有限公司唐山供电公司河北唐山 063000) 摘要:按照“调控一体化”建设模式,梳理调控业务需求、更新信号类型、建立新型图元、制定专属监控信号,已经成为当务之急。遵照“异常上光字、变位不告警”技术原则,提出新增空挂断路器、保护图元、状态图元等新概念并根据智能站新需求与主站监控界面新增重合闸状态监视界面,避免因信号告警方式错误,图元制作不规范等原因影响运行及监控人员对故障的准确判断,提高调度、运行人员的日常操作和事故应急处理效率,确保调控一体化系统高效稳定运行。 关键字:智能变电站信息图元分类规范 一、研究背景 智能电网建设是全国电网建设的大趋势,最终要实现电网的无人化、智能化是电网建设的最终目的。智能电网调度技术支持系统建设是智能电网建设的重要组成部分,为保障电网安全、稳定、经济、优质运行和 “大运行”体系改革、电网智能化建设奠定了坚实基础。为了实现电网的智能化建设唐山电网对于新投的110kV以上变电站要求全部按照智能变电站标准建设。新的智能变电站建成投运后,在信号及监控界面方面发现了若干问题,影响了调度、运行人员的日常操作和事故应急处理效率,影响了自动化维护人员对故障的及时排查。对智能站特有的信息及监控界面的优化规范与梳理已成为必要之举。 二、现状调查 随着智能变电站建设步伐的加快,智能变电站与常规站信号的差异日渐突显,由于智能变电站的设备与传统变电站由较大区别,导致主站调控一体化监视系统新增了许多以前没有的信号,例如:重合闸充电指示、重合闸投入软压板、智能终端就地操作、开关机构就地操作等等,而且智能变电站很多信号长期处于触发状态,老的图形绘制原则将导致监控人员监控复杂、操作不变,给调度与监控工作带来的极大不便,从而致使电网事故判断与处理效率下降。 三、存在的问题 1.新信号的图形制作问题 新投智能站把开关取消并加入智能终端,因此需要对相应的远方就地进行划分,同时对于属于保护信号并同时为变位信息的信号图元重新制作。对于新增信号图形制作问题,首先听取监控员意见,由于有些信号长时间为触发状态,小组人员讨论决定变位信息不上光字牌,这样不会触发间隔的光字牌,从而降低了对监控员的干扰。 2.保护信号的遥控问题 智能站中新增重合闸软压板、备自投软压板等压板类保护信号且这些信号需要主站监控员进行遥控,对于着这种情况需要在图形上进行重新制作。 3.重合闸信号是否异常问题 智能站中新增的重合闸充电指示、重合闸压板投入信号,这就为监控员根据充电指示、压板投入情况和开关位置判断信号是否异常增加了难度和工作量,导致监控员需要检查多幅间隔图中信号,并根据计算才能判断信号情况,根据这种情况需要增加新的监控信号并根据三种信号的情况制作公式判定。 四、状态图元的规范与设计 4.1对于智能站新增和改进信号进行系统分类 为便于调度监控人员更简便、准确的掌握信息,将保护信号中的变位信息分为以下几类。 1)仅状态变化的变位信息:主要反映相关设备“二次把手‘远方/就地’”的相关变位信息,仅用于监控员观察其状态以判断其是否属于异常,信号主要包括智能终端就地操作、刀闸及接地刀闸就地操作、开关就地操作、开关机构就地操作、主变有载调压机构就地操作。 2)不可遥控的变位信息:主要反映重合闸设备是否充电开关是否具备重合闸功能的变位信号。信号主要包括重合闸充电指示、备自投充电指示、备自投方式XX充电指示。 3)可遥控的变位信息:主要是智能站独有的相关软压板投入退出的变位信号,该信号可有主站监控员进行远程遥控操作。信号主要包括智能终端置远方压板投入、备自投软压板投入、自投闭锁压板投入、重合闸软压板投入。 4.2规范图元模型对应信息制作不同图元 根据上面对智能站变位信息的分类对每类信息制作专门类型的图元,同时我们为了使图形更整齐划一,我们对所有图元的绘制采用相同的参数。 1)对于“远方/就地”仅状态变化这类信息制作成状态图元。 2)对于充电指示这种不需遥控的变位信息制作成保护图元。 3)对于软压板投入这种需要遥控的变位信息必须使用设备图元代替最终使用空挂断路器来实现。 五、实时效果 通过对上述信息的详细分类,并根据分类采用标准化参数制作对应图元,极大地规范了间隔图内容,防止信息出现混乱从而产生光字时常动作的情况发生,减少了监控员的工作量提高了工作效率。 在今后所有新投变电站的信息分类、图形绘制过程中,均需严格按照对应原则对信息进行分类并使用标准图元模板进行一次图和间隔图的绘制,并在今后的工作中,认真总结工作经验,勇于创新,持续改进不足,保障调控一体化系统高效稳定运行。 参考文献: [1]《调控一体化系统信号与监控界面优化分析》,《电工技术》,2013(1):28-30 作者简介: 杜鹏,男,高级技师,从事调控一体化运维工作,侯丹,女,高级工,从事电力系统营销工作,贺思亮,女,工程师,从事调控一体化运

智能变电站过程层报文详解

智能变电站过程层报文 1.GOOSE报文 1.1.G OOSE传输机制 SendGOOSEMessage通信服务映射使用一种特殊的重传方案来获得合适级别的可靠性。重传序列中的每个报文都带有允许生存时间参数,用于通知接收方等待下一次重传的最长时间。如在该时间间隔没有收到新报文,接收方将认为关联丢失。事件传输时间如图1-1所示。从事件发生时刻第一帧报文发出起,经过两次最短传输时间间隔T1重传两帧报文后,重传间隔时间逐渐加长直至最大重传间隔时间T0。标准没有规定逐渐重传时间间隔计算方法。事实上,重传报文机制是网络传输兼顾实时性、可靠性及网络通信流量的最佳方案,而逐渐重传报文已越来越不能满足实时性要求,对重传间隔时间已没有必要规定。 图1-1 GOOSE事件传输时间 SendGOOSEMessage服务以主动无须确认的发布者/订阅者组播方式发送变化信息,其发布者和订阅者状态机见图1-2和图1-3。

图1-2 GOOSE 服务发布者状态机 1) GoEna=True (GOOSE 使能),发布者发送数据集当前数据,事件计数器置1 (StNum=1),报文计数器置1(SqNum=1)。 2) 发送数据,SqNum=0,发布者启动根据允许生存时间确定的重发计时器,重发计 时器计时时间比允许生存时间短(通常为一半)。 3) 重发计时器到时触发GOOSE 报文重发,SqNum 加1。 4) 重发后,开始下一个重发间隔,启动重发计时器。重发间隔计算方法和重发之 间的最大允许时间都由发布者确定。最大允许时间应小于60秒。 5) 当数据集成员数据发生变化时,发布者发送数据,StNum 加1,SqNum=0。 6) GoEna=False ,所有的GOOSE 变位和重发报文均停止发送。 图1-3 GOOSE 服务订阅者状态机 1) 订阅者收到GOOSE 报文,启动允许生存时间定时器。 2) 允许生存时间定时器到时溢出。 3) 收到有效GOOSE 变位报文或重发报文,重启允许生存时间定时器。 图1-4~8以某距离保护A 相跳闸为例演示了保护跳闸信号从动作到返回过程中SendGOOSEMessage 服务的报文时序。 ) 5)

Kv变电站课程设计报告

目录 一、前言 (2) 1、设计内容:(原始资料16) (2) 2、设计目的 (2) 3、任务要求 (3) 4、设计原则、依据 (3) 原则:. (3) 5、设计基本要求 (3) 二、原始资料分析 (3) 三、主接线方案确定 (4) 1 主接线方案拟定 (4) 2 方案的比较与最终确定 (5) 四、厂用电(所用电)的设计 (5) 五、主变压器的确定 (6) 六、短路电流的计算 (7) 七、电气设备的选择 (8) 八、设计总结 (11) 附录 A 主接线图另附图 (12) 附录 B 短路电流的计算 (12) 附录C :电气校验 (15)

、尸■、■ 前言 1、设计内容:(原始资料16) 1)待设计的变电站为一发电厂升压站 (2)计划安装两台200MW汽轮发电机机组 发电机型号:QFSN-200-2 U e=15750V cos =0.85 X g=14.13% P e=200MW (3)220KV出线五回,预留备用空间间隔,每条线路最大输送容量200MVA T max=200MW (4)当地最高温度41.7 C,最热月平均最高温度32.5 C,最低温度-18.6 C, 最热月地面下0.8米处土壤平均温度25.3 C。 (5)厂用电率为8%厂用电电压为6KV发电机出口电压为15.75KV。 6)本变电站地处8度地震区。 7)在系统最大运行方式下,系统阻抗值为0.054。 (8)设计电厂为一中型电厂,其容量为2X 200 MW=40MW最大机组容量200 MW 向系统送电。 (9)变电站220KV与系统有5回馈线,呈强联系方式。 2、设计目的 发电厂电气部分课程设计是在学习电力系统基础课程后的一次综合性训练,通过课程设计的实践达到: 1)巩固“发电厂电气部分” 、“电力系统分析”等课程的理论知识。 2)熟悉国家能源开发策略和有关的技术规范、规定、导则等。 3)掌握发电厂(或变电所)电气部分设计的基本方法和内容。 4)学习工程设计说明书的撰写。 (5)培养学生独立分析问题、解决问题的工作能力和实际工程设计的基本技能。

kV变电站数据网路由器和交换机通用技术规范

卓越水泥110kV变电站工程110kV变电站调度数据网路由器柜 技术规范 长供勘测设计院 2010年11月

货物需求及供货范围一览表 1 总则 1.1 本技术规范书为国家电网公司110kV变电站调度数据网接入设备中数据网路由器和交换机的技术规范和说明,包括设备的功能、性能、结构、硬件、软件、验收、质量保证措施、技术服务等要求。 1.2 本技术规范书提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,卖方应提供符合本规范书和工业标准的优质产品。 1.3 如果卖方没有以书面形式对本规范书的条文提出异议,则意味着卖方提供的设备完全符合本规范书的要求。如有异议,不管是多么微小,都应在报价书中的技术规范专用部分的“投标人技术偏差表”中加以详细描述。 1.4 本技术规范书所使用的标准如遇与卖方所执行的标准不一致时,按较高标准执行。 1.5 本技术规范书经买、卖双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 1.6 投标厂商应至少设计、制造、安装、调试过10套以上类似或高于本招标书技术规范的设备,并在有相当规模或相同电压等级或更恶劣的运行条件下持续运行1年以上的成功经验,并提供业绩清单,用户证明,联系人地址、电话。 1.7 投标人在中标后必须指定每一标段至少一名有经验的业务代表作为该标段工程项目经理,全权负责和协调整个项目的商务与售后服务。指定一名技术负责人和若干名工程师负责技术工作,技术负责人和工程师均须通过设备原厂商的技术认证。工程师的技术资质材料必须提交用户方认可。只有经买

方认可后,方能进行设备的调试工作。

变电所设计课程设计说明书

青岛理工大学琴岛学院 课程设计说明书 课题名称:工厂供电课程设计 系部:机电工程系 专业班级: 学号: 学生: 指导老师: 青岛理工大学琴岛学院教务处 2017年7 月2 日

目录 1绪论 (1) 2 110kV变电所线路设计 (2) 2.1 变电站在电力系统中的作用 (2) 2.2主接线的选择 (2) 3设计电力变压器 (3) 3.1负荷计算 (4) 3.2变电所变压器的选择 (5) 4主接线图及仿真 (6) 5变电所电气设备选择 (8) 5.1断路器与隔离开关的选择 (8) 5.2互感器的选择 (8) 5.3熔断器的选择 (9) 5.4母线的选择 (9) 结论 (11) 致谢 (13) 参考文献 (14)

1 绪论 本次设计为110kv变电所设计,变电所是发电厂与用电负荷的重要联系,用来升降电压、聚集以及分流电能的作用。变电站的安全性能的运转与人民生产生活密切相关。变压 器与主接线的方案的确定是本次变电所设计规划的核心的一个环节,设计连线体现变电所的应用,建造消耗,是否正常没失误的动作,能够检查处理的目的要求;我对其主要分析跟探讨了110KV变电所线路连线的重点和要求,主要研究110kV变电所要求的目的、看点、设计重点、如何区别工具等。

2 110kV变电所线路设计 2.1 变电站在电力系统中的作用 变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。 本次设计建设一座110KV降压变电站,首先,根据主接线的经济可靠、运行灵活的要求选择各个电压等级的接线方式,在技术方面和经济方面进行比较,选取灵活的最优接线方式。 其次进行短路电流计算,根据各短路点计算出各点短路稳态电流和短路冲击电流,从三相短路计算中得到当短路发生在各电压等级的工作母线时,其短路稳态电流和冲击电流的值。 最后,根据各电压等级的额定电压和最大持续工作电流进行设备选择。 本工程初步设计内容包含变电所电气设计,变电所从110KV侧某变电所受电,其负荷分为35KV和10KV两个电压等级。 2.2主接线的选择 根据本次设计要求,以惜福镇为地点,建一座110KV变电所,调查,研究查资料,35KV的用电要求,基本满足二级供电要求可采用内桥式接线和单母线分段接线。

高电压等级智能变电站过程层组网探讨

龙源期刊网 https://www.360docs.net/doc/844078230.html, 高电压等级智能变电站过程层组网探讨 作者:乔永亮 来源:《华中电力》2013年第04期 摘要:智能站内网络系统的运行状况对智能变电站的可靠、安全运行影响尤为重要。过程层网络作为智能变电站的基础网络,直接关系到全站数据采集和保护运行的可靠性和实时性。在数字化变电站发展过程中,独立组网到全站共网再到直采直跳模式等网络结构在GOOSE组网应用中各存优缺点,文章针对不同电压等级变电站配置情况,利用网络记录分析对网络数据流量及延时等重要因素进行了详细的对比分析,比较了各组网模式下的适用情况。 关键词:智能变电站直采直跳组网模式 一引言 智能变电站由智能化一次设备和网络化二次设备分层构建,一、二次设备的互联、互通是以集成通信技术为基础的,而要实现集成通信,必须使用通用的标准。以IEC61850标准为基础的通信体系,具有突出的技术特点:使用面向对象建模技术,使用分布、分层体系,使用ACSI、SCSM技术,使用MMS技术,具有互操作性,具有面向未来的开放的体系结构,因此能够实现数字化变电站内智能电气设备间信息共享和互操作。 在实际工程应用时,应根据电压等级、网络负载量、网络通信介质、经济性、安全性等因素确定GOOSE 的组网方式[1,2]。 二简介常见组网形式 1.“多网融合”模式 全站三层设备设置一层网络,单网结构,并按照IEC61850协议进行系统建模及信息传输,通信介质采用光纤。站控层设备、智能组件及主变保护测控装置均接入该层网络。采用MMS、GOOSE、SV和IEEE1588四网合一方式。 MMS、GOOSE、SV和1588全部在一个以太网中传输,简化了网络及交换机配置。保护仍然采用直采直跳方式,即保护所需模拟量、开关量和跳闸信息均通过专用光纤直联,通信规约采用IEC61850-9-2。闭锁信息、母线保护所需数据通过网络方式传输。GOOSE是一种突发式的高实时低带宽流量,在间隔内和最大情况下只有10%负载,与采样值交换机共网运行完全不会影响GOOSE的实时性。交换机技术和VLAN技术的不断发展,使得“四网”合一变得可能。 1)网络延时不稳定,对保护快速动作造成不利影响;

模块化智能变电站建设模式研究

模块化智能变电站建设模式研究 发表时间:2017-11-02T12:16:46.597Z 来源:《电力设备》2017年第18期作者:张海文[导读] 摘要:随着全球经济的飞速发展,人们对能源的高效利用日益重视,变电站的作用就显得格外重要,本文就化智能变电站这一课题,探讨其建设背景、模块划分以及典型的设计技术,希望对读者有所助益。 (国网海北供电公司青海 812200)摘要:随着全球经济的飞速发展,人们对能源的高效利用日益重视,变电站的作用就显得格外重要,本文就化智能变电站这一课题,探讨其建设背景、模块划分以及典型的设计技术,希望对读者有所助益。 关键词:模块化智能变电站设计 1智能变电站模块化建设背景 1.1研究背景 随着国际国内能源形势的深刻变化,加快建设智能电网的需求迫在眉睫。变电站是电力网络的节点,它连接线路、输送电能,担负着变换电压等级、汇集电流、分配电能、控制电能流向等功能,变电站的智能化运行是实现智能电网的基础环节之一。模块化智能变电站是变电站建设的一种创新模式,从设计到建设阶段将全过程遵循“标准化设计、工厂化加工、装配式建设”的管理理念,通过电气一、二次集成设备最大程度实现工厂内规模生产、集成调试、模块化配送,减少现场安装、接线、调试工作,建筑物采用装配式结构,工厂预制、现场机械化安装,将工业建筑实现标准化设计,统一建筑结构、材料、模数等,实现设计、建设标准化,有效提高建设质量、效率,提升电网建设能力。 1.2研究现状 2012年以来,新一代智能变电站概念设计方案应运而生,构建了以集成化智能设备、一体化业务系统及站内统一信息流为特征的新一代智能变电站设计方案。2013年,变电站模块化建设研究工作和试点工程又取得了突飞猛进的进展,提出了“模块化建设”的工程建设理念。设备厂商设计生产的电气设备质量的提高和电网可靠性的增加及电网发展的需求,推动了变电站设计模块化方案的可行性。 2智能变电站的模块化划分 智能变电站是随着科学技术的普及而出现的一种新型变电站形式,具有自动化和信息化的特点。对于它的模块化来说,属于变电站建设的一种新型模式,是时代发展的产物,它的模块化建设主要涉及到主变压器、高压开关、中压开关、中压配套设备和综合自动化等五个部分,它们相互作用、联系,共同构成智能化变电站。 第一,主变压器。它是通过拔插的方式,和高压进线电缆接头相互连接,在全封闭和多股电缆母线桥架,来实现和中压出线的相互连接。 第二,高压开关。它是在进出线部位选择拔插的具体方式,在气体绝缘封闭方式的利用下,来实现和组合电器的相互连接。 第三,中压开关。它是选择一体化的预装性质的组合电器。 第四,中压配套设备。这一设备中,它的结构构成主要是以消弧线圈、接地变压器以及无功补偿装置为主的o 第五,综合自动化。它属于是选择一体化预装式的控制室。 在实际的变电站建设中,这五个功能模块都是需要在事前进行调试的,在开始安装操作时,依次选择的是一次电缆、连接变压器、开关和配套设备、综合自动化选择通讯线路、电缆连接,在各个部分连接完成之后,最后开始进行整体上的调试工作,对各个功能组成进行性能的测试,以确保智能变电站模块化建设的顺利进行。 3 智能变电站模块化典型设计技术 3.1预制舱式二次组合设备设计 针对原来变电站单独配置的二次设备室,占地面积相对比较大,新一代智能变电站通过设计优化,提出了预制舱式二次组合设备,用体积较小的舱体来替代二次设备室,从而节省了变电站占地面积。 预制舱式二次组合设备按设备对象模块化设计,以方便运行、维护,变电站根据需要设置公用设备预制舱、间隔设备预制舱等,可根据变电站具体建设规模、布置方式等进行选择调整组合设计。预制舱内二次设备采用前接线、前显示式装置,屏柜采用双列靠墙布置,屏正面开门,屏后面不开门。舱体内集成二次设备及相应辅助设施,包括安防、消防、暖通、照明、检修、接地等。舱内与舱外光纤联系采用预制式光缆,舱内与舱外电缆联系可采用预制式电缆。舱内设备在工厂内完成相关接线、调试等工作,从而缩短施工周期。 3.2预制电缆设计 现有智能变电站中使用最多的控制电缆大多为4芯、7芯、14芯铠装电缆,接线芯数较多,容易出现接头不牢固而断线,采用预制电缆,按双端、单端预制方式,统一航空插头、电缆的型号,从而大大减小断线概率。预制电缆可以使用于主变压器、GIS本体与智能控制柜之间二次控制电缆连接。对于AIS变电站,断路器、隔离开关与智能控制柜之间二次控制电缆宜采用预制电缆。预制电缆可采用穿管、槽盒、电缆沟等敷设方式,从而使屏柜内的电缆接线简洁清晰,便于运行与维护。 3.3装配式建筑物设计 结合实际工程出线情况,对于采用组合电器(GIS)的工程规模,在组合电器全部为架空出线的情况下,可以利用架空出线套管作为后期试验、耐压的场所。充分利用建筑本身的结构,考虑后期设备运行、检修的移动,适当考虑取消目前GIS室双层层高的现状,能够优化建筑体量,实现建筑和设备的紧凑布局: 3.4配电装置选型设计 模块化设计要求设备选型均严格按照工厂预制现场装配的理念设计,一次设备本体加智能组件的方式实现一次设备智能化,智能组件统一由一次设备厂家场内集成,体现模块化设计的高效;电气装置的布置方式采用“单元”布置方式,一台主变所带设备成“单元”分区就近布置,并满足二次接线的要求。开关设备同无功补偿设备分区明确,充分体现电气布置模块化。一、二次设备高度集成,现场只需完成合并单元及保测装置至二次设备室的相关交直流电源电缆及光缆的敷设,全站电缆大幅减少,电缆敷设、电缆施工接线的工作量相应减轻,缩短电缆施工安装周期,节约工程造价。

智能变电站中工业以太网交换机要求

智能变电站中工业以太网交换机要求 在智能变电站普遍采用合并单元进行过程层数字化采样值数据传输、依靠GOOSE报文传输一次设备状态和控制命令的背景下,工业以太网交换机除承载传统的站级通信服务外,开始逐渐替代传统电缆,成为维系一、二次设备关联的中枢设备。这样对工业以太网交换机的功能、性能和可靠性都提出了非常高的要求。 在IEC 61850标准中,IEC 61850-3《变电站通信网络和系统》第3部分:总体要求,提出了针对工业以太网交换机的环境和电磁兼容要求,具体涉及环境及安全要求(温度、湿度、大气压力、机械和振动、污染和腐蚀),电磁兼容要求(振荡波、辐射电磁场骚扰、快速瞬变、浪涌、工频磁场)和供电要求(电压范围、电压容差、电压中断、电压质量)。而对于工业以太网交换机的功能要求,IEC 61850并未对其给出相关的标准,因此,其功能测试通常以国内通信行业标准要求和IEEE相关标准为准。 1 工业以太网交换机的功能要求 根据国家电网《智能变电站技术导则》的定义,智能变电站具有全站信息数字化、通信平台网络化等基本要求,而这些要求则对承载通信网络的工业以太网交换机提出了以下基本需求:①高性能的信息传输,保证高优先级的用户数据优先传送;②网络流量控制;③冗余网络;④网络工况监视和故障诊断;⑤高精度网络对时协议。 通过IEC61850-3及IEEE 1613《变电站通信网络装置的环境和测试要求》的MOXA交换机(功能特点见附录1)均具有以下功能满足变

电站自动化系统的需求: (1)支持IEEE802.3x全双工以太网协议。全双工数据传输模式能同时支持两个方向的数据发送和接收,在交换机端口上不会发生信息“碰撞”,因此舍弃了半双工以太网的CSMA/CD机制,从而大大降低了数据传输时延。 (2)根据IEEE 802.1P标准,可通过以太网报文头部增加优先级序号进行QOS服务质量标识,由交换机按照流量分配原则或权重设置进行优先转发。 (3)虚拟局域网(VLAN)技术和多播过滤技术可进行通信区域的划分,有效防止广播风暴并实现安全隔离。VLAN技术分别基于端口、基于MAC地址和基于协议等,主流标准为IEEE802.1q。通用的多播技术分静态和动态2种,静态多播主要基于多播MAC地址表;动态多播主要有GMRP和IGMP snooping 2种协议。 (4)基于交换机的标准网络冗余技术主要是IEEE 802.1D生成树STP协议和IEEE 802.1W快速生成树RSTP协议。IEEE 802.1D协议下生成树的收敛时间约为60 s,而IEEE 802.1W对其进行了改进,收敛时间约为l一10 s(目前正普遍达到100 ms)。 (5)目前较开放的SNMP协议能够支持监控交换机端口、划分VLAN、设置Trunk端口等管理功能。 (6)PTP精确时钟协议(IEEE 1588)使用硬件和软件配合的方式,能达到亚微秒级的时间同步精度。工业以太网交换机需特别支持E2E (End-to-End)和P2P(Peer-to-Peer)透明时钟技术。

相关文档
最新文档