矢量的定义和加减法运算法则

常用地一些矢量运算公式

常用的一些矢量运算公式 1.三重标量积 如a ,b 和c 是三个矢量,组合 ()a b c ??叫做他们的三重标量积。三重标量积等于这三 个矢量为棱边所作的平行六面体体积。在直角坐标系中,设坐标轴向的三个单位矢量标记为 (),,i j k ,令三个矢量的分量记为()()1 2 3 1 2 3 ,,,,,a a a a b b b b 及()1 2 3 ,,c c c c 则有 ( )() 123123123123 123123 c c c i jk a b c a a a c i c j c k a a a b b b b b b ??=?++= 因此,三重标量积必有如下关系式: ()()()a b c b c a c a b ??=??=??即有循环法则成立,这就是说不改变三重标量积中三个矢量顺序的组合,其结果相等。 2.三重矢量积 如a ,b 和c 是三个矢量,组合 ( ) a b c ??叫做他们的三重标量积,因有 ()()()a b c a c b c b a ??=-??=?? 故有中心法则成立,这就是说只有改变中间矢量时,三重标量积符号才改变。三重标量积有一个重要的性质(证略):() ()()a b c a b c a c b ??=-?+? (1-209) 将矢量作重新排列又有:()()() a b c b a c b a c ?=??+? (1-210) 3.算子( a ? ) ? 是哈密顿算子,它是一个矢量算子。( a ? )则是一个标量算子,将它作用于标量φ ,即 ()a φ?是φ在a 方向的变化速率的a 倍。如以无穷小的位置矢量 d r 代替以上矢量a ,则 ()dr φ ?是φ在位移方向 d r 的变化率的 d r 倍,即 d φ 。 () ()d dr dr φφφ=?=? 若将 () dr ?作用于矢量v ,则 ()dr v ?就是v 再位移方向 d r 变化率的 d r 倍,既为速度矢量 的全微分() dv dr v =? 应 用 三 重 矢 量 积 公 式 ( 1-209 ) ()()() 00()()()() a b a b a b b a a b b a a b ???=???+???=??-??-??+??

平面向量及其加减运算课后训练

数学《平面向量》复习卷 一、填空题 1、向量的两个要素是: 和 。 2、A 、B 、C 是⊙O 上的三点,则向量OA 、OB 、OC 的关系是 . 3、下列命题:①若两个向量相等则起点相同,终点相同; ②若AB =DC ,则ABCD 是平行四边形;③若ABCD 是平行四边形,则 AB =DC ; ④a =b ,b =c 则a =c ;其中正确的序号是 . 4、如图所示,四边形ABCD 与ABDE 都是平行四边形,则 ①与向量AB 平行的向量有 ; ②若|AB |=1.5,则|CE |= . 5、 如图,四边形ABCD 与ABDE 都是平行四边形 ①与向量AB 相等的向量有 ; ②若|AB |=3,则向量EC 的模等于 。 6、已知正方形ABCD 的边长为1,AB =a ,AC =c , BC =b ,则|a +b +c |为 7、在四边形ABCD 中,AC =AB +AD ,则ABCD 是 形。 8、化简(AB -CD )+(BE -DE )的结果是 。 9、化简:OM -ON +MN . 10、一架飞机向西飞行100km,然后改变方向向南飞行100km,飞机两次位移的和为 。 二、选择题 1、在四边形ABCD 中,AB =DC ,且|AB |=|BC |,那么四边形ABCD 为( ) A .平行四边形 B .菱形 C .长方形 D .正方形 2、等腰梯形ABCD 中,对角线AC 与BD 相交于点P ,点E 、F 分别在两腰 AD 、BC 上,EF 过点P 且EF ∥AB ,则下列等式正确的是 ( ) A.AD =BC B.AC =BD C.PE =PF D.EP =PF E C A B

向量的加法与减法运算练习

练习一 选择题: 1.如图,等腰梯形两腰上的向量、是( ) (A)相等的向量(B)模相等的向量(C)方向相反的向量(D)方向相同的向量2.如图,在菱形中,可以用同一条有向线段表示的向量是( ). 第2题 (A)和(B)和(C)和(D)和 3.如图,,-+等于( ). (A) (B) (C) (D) 4.如图,在中,-+等于( ) (A) (B) (C) (D) 填空题: 5.如图,正六边形,为中心,图中所示向量中: (1)与相等的向量有__________; (2)与相等的向量有__________; 6.=_________;

7.化简 (1)++—_____________; (2)____________; (3)++=_____________; (4)-+=_____________; 解答题: 8.已知向量、,求作+,-. 9.河水自西向东流,流速为3 m/s,轮船垂直水流方向以18.7 km/h的速度向北航行,求轮船的实际航速. 答案、提示和解答: 1.B.2.B.3.C.4.B. 5.(1),;(2). 6.0. 7.(1)0;(2);(3);(4)0.8.略. 9.设=“向东方向,3 m/s”,=“向东方向,18.7 km/h”≈“向北方向,5.19 m/s”,如图,适当选取比例尺,作

==“向东3 m/s” ==“向北,5.19 m/s”, =+=+. ||= 与夹角的余弦值为,则与夹角为60°. 所以轮船的实际航速为东偏北60°,6 m/s. 练习二 选择题: 1.如图,梯形,其中||=||,相等的向量是( ). (A)与(B)与(C)与(D)与 2.已知如图,、分别是与的中点,、、、、、中,相等的向量共有( ). (A)1组(B)2组(C)3组(D)4组

矢量计算题

矢量的基本知识和运算法则 1.矢量和标量的不同点在于:矢量除了有大小之外,还有方向,矢量A 记做A ,其大小等于A 矢量的图示:通常用一条带有箭头的线段来表示,(线段的长度表示大小,箭头表示方向)如图5-1所示。 两个矢量相等的条件是:大小相等,方向相同。如图5-2所示。两矢量的夹角定义为两矢量所构成的小于或等于1800的角。在一般问题中(除非特别指明),矢量的始点位置不关重要的,在进行矢量运算时可将矢量平移。 2.矢量的加减法运算遵从平行四边形法则或三角形法则。 对三个以上的矢量相加,通常使用多边形法则。 3.矢量A 与数量K 相乘时,其结果仍是一个矢量。所得矢量的大小等于原矢量大小乘以,所得矢量的方向:当K >0时,与原矢量方向相同;当K<0 时,与原矢量方向相反 如动量()mV 、冲量()F t ??都是矢量,其方向分别与矢量V 和F 矢量相同。动量的变化量()m V ?也是矢量,其方向与V ?相同。 矢量A 与数量K 相除,可以看成A 矢量乘以数量 1K ,如加速度1F a F m m ==?,方向与F 相同。 4.矢量A 与矢量B 相乘 一种乘法叫做两矢量的数量积(又叫点积),用AB ?表示,乘得的积是标量,大小等于两矢量的大小与两矢量夹角余弦的积。即:c o s A B A B θ?=。如:功是力F 与位移S 的数量积,是标量。c o s W F S F S θ=?= 另一种乘法运算是两矢量的矢量积(又叫叉积),用A B ?表示,矢量积A B C ?=还是一个矢量,其大小等于两矢量的大小和两矢量夹角的正弦的乘积。sin C A B θ=?,即矢量C 的大小等于两矢量A 和B 为邻边的平行四边形的面积,矢量C 的方向垂直于矢量A 和B 所决定的平面,指向用“右手螺旋法则”来确定,如图5-5(甲)或(乙)所示。 A B B A ?≠?,A B ?与B A ?大小相等,方向相反。 如力矩M 等于力F 和矢径r 两矢量的矢量积,力矩M r F =?,大小为sin M Fr θ=。带电粒子所受的磁场力(即洛仑兹力)F qV B =?,大小为sin F q vB θ=?(若是负电荷受力方向与此相反) 例5-1为什么说匀速园周运动既不是匀速运动,也不是匀变速运动?物体在运动过程中合外力是否做功? 解:因为速度和加速度都是矢量,在图5-6所示的圆周上任意取两点A 、B ,虽然,A B A B v v a a ==,但方向不同,由矢量相等的条件可知:A B v v ≠,A B a a ≠,因此匀速园周运动既不是匀速运动,也不是匀变速运动。

最新平面向量及其加减运算(练习)

练习内容:22.7平面向量 22.8平面向量的加法 22.9平面向量的减法 姓名 学号 成绩 一、选择题 (每小题3分,共18分) 1.在四边形ABCD 中,AB DC =,且||||AB BC =,那么四边形ABCD 为 ( ) A 、平行四边形 B 、菱形 C 、长方形 D 、正方形 2.四边形ABCD 中,若向量AB 与CD 是平行向量,则四边形ABCD ( ) A 、是平行四边形 B 、是梯形 C 、是平行四边形或梯形 D 、不是平行四边形,也不是梯形 3.设b 是a 的相反向量,则下列说法错误的是 ( ) A 、a 与b 的长度必相等 B 、a ∥b C 、a 与b 一定不相等 D 、a 是b 的相反向量 4.下列说法中不正确的是 ( ) A 、零向量是没有方向的向量 B 、零向量的方向是任意的 C 、零向量与任一向量平行 D 、零向量只能与零向量相等 5.下列四式不能化简为AD 的是 ( ) A 、()A B CD B C ++ B 、()()A D MB BC CM +++ C 、A D AD BM +- D 、OC AO CD ++ 6.下列说法中,正确的有 ( ) ① 若a b =±,则a ∥b ② 若a ∥b ,则a b =± ③ 若a b =±,则||||a b = ④ 若||||a b =,则a b =± A 、1个 B 、2个 C 、3个 D 、4个

二、填空题 (每小题4分,共40分) 7.规定了方向的线段叫做 8.向量是既有大小、又有 的量,可以用 线段表示 9.AB BA + = ;a a - = 第10题到15题的图 10.平行四边形ABCD 中,与AB 相等的向量有 11.平行四边形ABCD 中,与AB 相反的向量有 12.平行四边形ABCD 中,与AB 平行的向量有 13.平行四边形ABCD 中,与AO 相等的向量有 14.平行四边形ABCD 中,与AO 相反的向量有 15.平行四边形ABCD 中,与AO 平行的向量有 16.设a 表示“向东走1km ”,b ”,则a b +表示 三、简答题 (每小题6分,共24分) 17.判断下列命题是否为真命题 (1)★ AB BC DC AD +-= ( ) (2)★ 向量b 的长度记作||b ( ) (3)★ 用两个字母表示有向线段,起点字母与终点字母随便哪个写在前面无所谓 ( ) 18.判断命题“若a b =,则a 与b 是平行向量”是否是真命题。若是真命题,请说明理由;若是假命题,请举反例;并写出此命题的逆命题 D

向量的加减乘除运算

向量的加法满足平行四边形法则和三角形法则. 向量的加法OB+OA=OC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 向量的减法 AB-AC=CB.即“共同起点,指向被 向量的减法减” a=(x,y)b=(x',y') 则a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣. 当λ>0时,λa与a同方向; 向量的数乘 当λ<0时,λa与a反方向; 向量的数乘当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍. 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb). 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λ b. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ. 4、向量的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos 〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣. 向量的数量积的坐标表示:a·b=x·x'+y·y'.向量的数量积的运算律 a·b=b·a(交换律); (λa)·b=λ(a·b)(关于数乘法的结合律); (a+b)·c=a·c+b·c(分配律); 向量的数量积的性质 a·a=|a|的平方.

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案 教学目标: 1、 掌握向量的加法运算,并理解其几何意义; 2、 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3、 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量. 教学难点:理解向量加法的定义. 学 法: 数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律. 教 具:多媒体或实物投影仪,尺规 授课类型:新授课 教学思路: 一、设置情景: 1、 复习:向量的定义以及有关概念 强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 2、 情景设置: (1)某人从A 到B ,再从B 按原方向到C , 则两次的位移和:=+ (2)若上题改为从A 到B ,再从B 按反方向到C , 则两次的位移和:=+ (3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:=+ (4)船速为,水速为,则两速度和: AC =+ 二、探索研究: 1、向量的加法:求两个向量和的运算,叫做向量的加法. A B C A B C A B C

§1 矢量的基本知识和运算法则

§1 矢量的基本知识和运算法则 1.矢量和标量的不同点在于:矢量除了有大小之外,还有方向,矢量A 记做A ,其大小等于A 矢量的图示:通常用一条带有箭头的线段来表示,(线段的长度表示大小,箭头表示方向)如图5-1所示。 两个矢量相等的条件是:大小相等,方向相同。如图5-2所示。两矢量的夹角定义为两矢量所构成的小于或等于1800的角。在一般问题中(除非特别指明),矢量的始点位置不关重要的,在进行矢量运算时可将矢量平移。 2.矢量的加减法运算遵从平行四边形法则或三角形法则。 对三个以上的矢量相加,通常使用多边形法则。 10N F 图5-1 A /A /A A /A A /A A = /A A ≠ /A A =- 图5- 2 C A B A B C += C A B ()A B A B C -=+-= C A B A B C += A B C A B C -= 图5- 3 A B C D E A B C D E +++= A B C D E B D A C E +++= 图5-4

3.矢量A 与数量K 相乘时,其结果仍是一个矢量。所得矢量的大小等于原矢量大小乘以,所得矢量的方向:当K >0时,与原矢量方向相同;当K<0 时,与原矢量方向相反 如动量() mV 、冲量() F t ??都是矢量,其方向分别与矢量V 和F 矢量相同。动量的变化量() m V ?也是矢量,其方向与V ?相同。 矢量A 与数量K 相除,可以看成A 矢量乘以数量 1K ,如加速度1 F a F m m = =?,方向与F 相同。 4.矢量A 与矢量B 相乘 一种乘法叫做两矢量的数量积(又叫点积),用A B ?表示,乘得的积是标量,大小等于两矢量的大小与两矢量夹角余弦的积。即:cos A B AB θ?=。如:功是力F 与位移S 的数量积,是标量。cos W F S FS θ=?= 另一种乘法运算是两矢量的矢量积(又叫叉积),用A B ?表示,矢量积A B C ?=还是一个矢量,其大小等于两矢量的大小和两矢量夹角的正弦的乘积。 sin C A B θ=?,即矢量C 的大小等于两矢量A 和B 为邻边的平行四边形的面积, 矢量C 的方向垂直于矢量A 和B 所决定的平面,指向用“右手螺旋法则”来确定,如图5-5(甲)或(乙)所示。 注意:A B B A ?≠?,A B ?与B A ?大小相等,方向相反。 如力矩M 等于力F 和矢径r 两矢量的矢量积,力矩M r F =?,大小为

向量加法运算及其几何意义(教学设计)

2.2.1向量加法运算及其几何意义(教学设计) [教学目标] 一、知识与能力: 1. 掌握向量的加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量; 2. 能准确表述向量加法的交换律和结合律,并能熟练运用它们进行计算; 二、过程与方法: 1. 经历向量加法三角形法则和平行四边形法则的归纳过程; 2.体会数形结合的数学思想方法. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题. [教学重点] 向量加法定义的理解;向量加法的运算律. [教学难点] 向量加法的意义 一、复习回顾,新课导入 1. 物理学中,两次位移,OA AB u u u r u u u r 的结果与位移OB u u u r 是相同的。 2. 物理学中,作用于物体同一点的两个不共线的合力如何求得? 3. 引入:两个向量的合成可用“平行四边形法则”和“三角形法则”求出,本节将研究向量的加法。 二、师生互动,新课讲解 1. 已知向量a,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC u u u r 叫做a 与b 的和,记作a +b ,即 a + b =AB BC AC +=u u u r u u u r u u u r 求两个向量和的运算,叫做向量的加法. 这种求作两个向量的方法叫做三角形法则,简记“首尾相连,首是首,尾是尾”。 以同一点O 为起点的两个已知向量a ,b 为邻边作OABC Y ,则以O 为起点的对角线OC u u u r 就是a 与b 的和。我们把这种 作两个向量和的方法叫做向量加法的平行四边形法则。 对于零向量与任一向量a ,规定a +0=0+a =a 例1(课本P81例1) 已知向量a,b ,用两种方法(三角形和平行四边形法则)求作向量a+b 。

常用的一些矢量运算公式

常用的一些矢量运算公式

常用的一些矢量运算公式 1.三重标量积 如a ,b 和c 是三个矢量,组合 ()a b c ??叫做他们的三重标量积。三重标量积等于这三个矢量为棱边所作的平行六面体体积。在直角坐标系中,设坐标轴向的三个单位矢量标记为(),,i j k ,令三个矢量的分量记为 ()() 123123,,,,,a a a a b b b b 及 () 123,,c c c c 则有 ( )() 123123123123 123 123 c c c i jk a b c a a a c i c j c k a a a b b b b b b ??=?++= 因此,三重标量积必有如下关系式: ()()()a b c b c a c a b ??=??=??即有循环法则成立,这就是说 不改变三重标量积中三个矢量顺序的组合,其结果相等。 2.三重矢量积 如a ,b 和c 是三个矢量,组合 ()a b c ??叫做他们的三重标量积,因有 ()()()a b c a c b c b a ??=-??=?? 故有中心法则成立,这就是说只有改变中间矢量时,三重标量积符号才改变。三重标量积有一个重要的性质(证略):( )()()a b c a b c a c b ??=-?+? (1-209)

将矢量作重新排列又有:()()( )a b c b a c b a c ?=??+? (1-210) 3.算子(a ? ) ?是哈密顿算子,它是一个矢量算子。(a ? )则是 一个标量算子,将它作用于标量φ,即()a φ?是φ 在a 方向的变化速率的a 倍。如以无穷小的位置矢量 d r 代替以上矢量a ,则 ()dr φ ?是φ在位移方向d r 的变化率的d r 倍,即d φ。 () ()d dr dr φφφ=?=? 若将()dr ?作用于矢量v ,则()dr v ?就是v 再位移方向d r 变化率的d r 倍,既为速度矢量的全微分()dv dr v =? 应用三重矢量积公式(1-209) ()()() 00()()()() a b a b a b b a a b b a a b ???=???+???=??-??-??+?? 应用三重矢量积公式(1-210)又有 ()()() 00()()()()a b a b a b a b a b b a b a ??=??+??=???+?+???+?? 将以上两式结合(相减)后可得 () {() }1 ()()()()()2 a b a b a b b a a b b a a b ?= ??-???-???-???-??+?? 一个重要的特例,令 a b v ==,因 () v v ???=则有 21 ()() 2v v v v v ?=?-??? 4.算子? 的应用 令φ是标量,a 是矢量,;a b 为并矢量,则有

向量减法运算及其

2.2.2向量减法运算及其几何意义 一.选择题 1. 当|a|=|b|≠0且a、b不共线时,a+b与a-b的关系是() A. 平行 B. 垂直 C. 相交但不垂直 D. 相等 2. 在下列各题中,正确的命题个数为 (1)若向量a与b方向相反,且|a|>|b|,则a+ b与a方向相同 (2)若向量a与b方向相反,且|a|>|b|,则方向a- b与a+ b相同 (3)若向量a与b方向相同,且|a|>|b|,则a - b与a方向相反 (4)若向量a与b方向相同,且|a|>|b|,则a- b与a+ b方向相反 A. 1个 B. 2 个 C. 3个 D. 4个 =+,则ABCD是( ) 3. 在四边形ABCD中,AC AB AD A. 矩形 B. 菱形 C. 正方形 D. 平行四边形 4. 任给向量a,b,则恒有() A. |a+b|=|a|+|b| B. |a-b|=|a|-|b| C .|a-b|≤|a|+|b| D. |a-b|≤|a|-|b| 5. 已知正方形ABCD的边长为1,=a,BC=b,AC=c,则|a+b+c|等于() A. 0 B. 3 C. 2 D. 22 6. 已知A、B、C三点不共线,O是△ABC内的一点,若++=0, 则O是△ABC的() A. 重心 B. 垂心 C. 内心 D. 外心 7.已知=a,=b,=c,=d,且四边形ABCD为平行四边形,则() A. a+b+c+d=0 B. a-b+c-d=0 C. a+b-c-d=0 D. a-b-c+d=0 二.填空题 8. 若向量a,b满足关系a+b=b,则a =,|a+b| =。 9. 化简:(1)(-)-(-)= .

最新向量加减法运算及其几何意义练习

李林中学高一年级(下)数学练习 编号 向量加减法运算及其几何意义 制作人:贾胜如 审核人: 时间: 一、选择题 1.已知向量a ∥b ,且|a |>|b |>0,则向量a +b 的方向( ) A .与向量a 方向相同 B .与向量a 方向相反 C .与向量b 方向相同 D .不确定 2.下列等式错误的是( ) A .a +0=0+a =a B.A B →+B C →+AC →=0 C.AB →+BA →=0 D.CA →+AC →=MN →+NP →+PM → 3.a ,b 为非零向量,且|a +b |=|a |+|b |,则( ) A .a ∥b ,且a 与b 方向相同 B .a ,b 是共线向量且方向相反 C .a =b D .a ,b 无论什么关系均可 4.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →等于( ) A.BD → B.DB → C.BC → D.CB → 5.如图所示,在正六边形ABCDEF 中,若AB =1,则|AB →+FE →+CD →|等于( ) A .1 B .2 C .3 D .2 3 6.设a =(AB →+CD →)+(BC →+DA →),b 是任一非零向量,则下列结论中正确的 是( ) ①a ∥b ;②a +b =a ;③a +b =b ;④|a +b |=|a |-|b |;⑤|a +b |=|a |+|b |. A .①② B .①③ C .①③⑤ D .③④⑤ 7.在平行四边形ABCD 中,AC →-AD →等于( ) A.AB → B.BA → C.CD → D.DB → 8.下列等式中,正确的个数为( ) ①0-a =-a ;②-(-a )=a ;③a +(-a )=0;④a +0=a ; ⑤a -b =a +(-b );⑥a -(-a )=0.

最新高中物理模型组合详解- 矢量运算模型

模型组合讲解——矢量运算模型 [模型概述] 矢量及运算是高中物理的重点和难点之一,常见的矢量有位移、速度、加速度、力、动量、电场强度、磁感应强度等,由于其运算贯穿整个中学物理,所以在进行模块讲解之前,我们有必要熟练掌握矢量的运算规律。 [模型讲解] 例.(2005年安丘市统考) 如图1所示,平行四边形ABCD的两条对角线的交点为G。在平行四边形内任取一点O,作矢量OA、OB、OC、OD,则这四个矢量所代表的四个共点力的合力等于() 图1 A. 4OG B. 2AB C. 4GB D. 2CB 解析:如图2所示,延长OG至P,使GP=OG,连结PA、PB、PC、PD,得平行四边形AODP和平行四边形COBP。由力的平行四边形定则知道,矢量OA、OD所代表的两个共点力F F A D 、的 合力F AD 可用矢量OP表示,即F OP OG AD ==2。

图2 同理,矢量OB 、OC 所代表的两个共点力F F B C 、的合力F BC 也可用矢量OP 表示,即F OP OG BC ==2。 从而,F F F F A B C D 、、、四个共点力的合力F F F OG AD BC =+=4。所以A 项正确。 评点:由于题中的O 点是任取的,各力的大小和方向无法确定,通过直接计算肯定行不通。但考虑到平行四边形的对角线互相平分这一特点问题就解决了。其实对该部分的考查往往是从特殊的角度进行的,如θ=0°,90°,120°,180°等。 总结:(1)当两分力F 1和F 2大小一定时,合力F 随着θ角的增大而减小。当两分力间的夹角θ=0°时,合力最大,等于F F F max =+12;当两分力间的夹角θ=180°时,合力最小,等于F F F min =-12。两个力的合力的取值范围是F F F F F 1212-≤<+。 (2)求两个以上的力的合力,也可以采用平行四边形定则,先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的就是这些力的合力。为方便某些问题的研究,在很多问题中都采用特殊法或正交分解法。 [误区点拨] (1)在受力分析时要明确合力与分力的关系。“有合无分,有分无合”,不要多添力或少力。

向量的运算(加法)

a b b a a a b b =?→ ?OB a +b A B A a +b 向量的运算:加法 教学目标: 1.理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则作两个向量的和。 2.通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,表述两个运算律的几何意义,并会用它们进行向量计算,渗透类比的数学方法;培养数形结合解决问题的能力; 3.掌握有特殊位置关系的两个向量的和,比如共线向量、共起点向量、共终点向量等. 重点:如何作两个向量的和向量 难点:对向量加法定义的理解. 教学过程: 一、创设情景,揭示课题 【复习】:1.向量的概念 2.平行向量、相等向量的概念。 【情景设置】:利用向量的表示,从景点O 到景点A 的位移为→ --OA ,从景点A 到景点B 的位移为 → --AB ,那么经过这两次位移后游艇的合位移是→ --OB ●这里,向量→ --OA ,→ --OB ,→ --OC 三者之间有什么关系? 二、研探新知 1.向量的加法 向量的加法:求两个向量和的运算叫做向量的加法。表示:→ --AB ?→ ?+BC =→ --AC . 规定:零向量与任一向量a ,都有00a a a +=+=. 【注意】:两个向量的和仍旧是向量(简称和向量) 作法:在平面内任意取一点O ,作→ --OA =a ,→--→--=→--OA +→ --AB =b 2.向量的加法法则 (1)共线向量的加法 同向向量 反向向量

(2)不共线向量的加法 几何中向量加法是用几何作图来定义的,一般有两种方法,即向量加法的三角形法则(“首尾相接,首尾连”)和平行四边形法则(对于两个向量共线不适应)。 三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。表示: → --AB ?→?+BC =→ --AC . 平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作平行四边形ABCD ,则以A 为起点的对角线→ --AC 就是a 与b 的和,这种求向量和的方法称为向量加法的平行四边形法则。 如图,已知向量a 、b A ,作→--AB =a ,=?→?BC b ,则向量?→ ?AC 叫做a 与b 的和, 记作a +b ,即a +b +=?→?AB =?→?BC ?→ ?AC 【说明】:教材中采用了三角形法则来定义,这种定义,对两向量共线时同样适用,当向量不共线时,向量加法的三角形法则和平行四边形法则是一致的 特殊情况: 探究:(1)两相向量的和仍是一个向量; (2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b |=|b |-|a |. (4)“向量平移”:使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加 3.向量加法的运算律 (1)向量加法的交换律:a +b =b +a (2)向量加法的结合律:(a +b ) +c =a +(b +c ) a a a b b b a +b a +b A A B 三角形法则平行四边形法则

向量加法运算及其几何性质

§2.2.1向量的加法运算及其几何意义 一、学习目标 1. 掌握向量加法的概念,结合物理学中的相关知识理解向量加法的意义; 2. 熟练掌握向量加法的三角形法则和平行四边形法则; 3. 理解向量加法的运算律. 二、学习过程 (一)复习 1.向量、平行向量、相等向量,零向量和单位向量的含义分别是什么? 2:下列说法正确的有 ①向量可以用有向线段来表示; ②两个有共同起点且长度相等的向量,其终点必相同; ③两个有共同终点的向量,一定是共线向量; ④向量AB 与向量CD 是共线向量,则点A ,B ,C ,D 必在同一条直线上; ⑤若AB DC = ,则A ,B ,C ,D 是一个平行四边形的四个顶点. 三、新课导学 (一)向量加法的几何运算法则 如图,已知非零向量a 、b ,在平面内任取一点A ,做A B a = ,BC b = ,则向量AC 叫做a 与b 的和,记作:a b + ,即a b AB BC AC +=+= . 新知1:求两个向量和的运算,叫做向量的加法.这种求向量和的方法,称为向量加法的三角 形法则. 向量的加法的三角形法则的作法: 练习 已知向量a 、b ,利用向量加法的三角形法则求作向量a b + . a b (1) (2) a a b b (3) (4)

向量加法的平行四边形法则的作法 练习 如图,已知a 、b ,用向量加法的平行四边形法则做出a b + . b 小结: 用三角形法则和平行四边形法则求作两个向量的和向量,其作图特点分别如何? 三角形法则: 平行四边形法则: 准确理解向量加法的三角形法则和平行四边形法则 两个法则的使用条件不同:三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和;当两个向量不共线时,两个法则是一致的. (二)向量加法的代数运算性质 思考1:零向量0与任一向量a 可以相加吗? 思考2:若向量a 与b 为相反向量,则a +b 等于什么?反之成立吗? 思考3:考察下列各图,|a +b |与|a |+|b |的大小关系如何?|a +b |与|a |-|b |的大小关系如何? 当a ,b 不共线时,a b a b +<+ ; 当a ,b 同向时,a b a b +=+ ; 当a ,b 反向时,a b a b +=- (或b a - ). 新知2:向量加法的交换律和结合律: a b b a +=+ ;()() a b c a b c ++=++ 例1:长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如图所示,一艘船从长江南岸A 点出发,以5km/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h. (1)使用向量表示江水速度、船速以及船的实际航行的速度; (2)求船实际航行速度的大小与方向. a

向量的加法运算及几何意义

教学目标: 1、掌握向量的加法运算,并理解其几何意义; 2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量. 教学难点:理解向量加法的定义. 学 法: 数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律. 教 具:多媒体或实物投影仪,尺规 授课类型:新授课 教学思路: 一、设置情景: 1、 复习:向量的定义以及有关概念 强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 2、情景设置: (1)某人从A 到B ,再从B 按原方向到C , 则两次的位移和:=+ (2)若上题改为从A 到B ,再从B 按反方向到C , 则两次的位移和:=+ (3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:AC BC AB =+ (4)船速为,水速为BC ,则两速度和:AC BC AB =+ 二、探索研究: 1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”) A B C A B C A B C

高中物理模型组合27讲(Word) 矢量运算模型

模型组合讲解——矢量运算模型 [模型概述] 矢量及运算是高中物理的重点和难点之一,常见的矢量有位移、速度、加速度、力、动量、电场强度、磁感应强度等,由于其运算贯穿整个中学物理,所以在进行模块讲解之前,我们有必要熟练掌握矢量的运算规律。 [模型讲解] 例. (2005年安丘市统考) 如图1所示,平行四边形ABCD 的两条对角线的交点为G 。在平行四边形内任取一点O ,作矢量OA 、OB 、OC 、OD ,则这四个矢量所代表的四个共点力的合力等于( ) 图1 A. 4OG B. 2AB C. 4GB D. 2CB 解析:如图2所示,延长OG 至P ,使GP =OG ,连结PA 、PB 、PC 、PD ,得平行四边形AODP 和平行四边形COBP 。由力的平行四边形定则知道,矢量OA 、OD 所代表的两个共点力F F A D 、的合力F AD 可用矢量OP 表示,即F OP OG AD ==2。 图2 同理,矢量OB 、OC 所代表的两个共点力F F B C 、的合力F BC 也可用矢量OP 表示,即F OP OG BC ==2。 从而,F F F F A B C D 、、、四个共点力的合力F F F OG AD BC =+=4。所以A 项正确。 评点:由于题中的O 点是任取的,各力的大小和方向无法确定,通过直接计算肯定行不通。但考虑到平行四边形的对角线互相平分这一特点问题就解决了。其实对该部分的考查往往是从特殊的角度进行的,如θ=0°,90°,120°,180°等。 总结:(1)当两分力F 1和F 2大小一定时,合力F 随着θ角的增大而减小。当两分力间的夹角θ=0°时,合力最大,等于F F F max =+12;当两分力间的夹角θ=180°时,合力

空间矢量算法计算

啊一直以来对SVPWM原理和实现方法困惑颇多,无奈现有资料或是模糊不清,或是错误百出。经查阅众多书籍论文,长期积累总结,去伪存真,总算对其略窥门径。未敢私藏,故公之于众。其中难免有误,请大家指正,谢谢! 此文的讲解是非常清楚,但是还是存在一些错误,本人做了一些修正,为了更好的理解整个推导过程,对部分过程进行分解,并加入加入7段和5段时调制区别。 1 空间电压矢量调制 SVPWM 技术 SVPWM是近年发展的一种比较新颖的控制方法,是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽可能接近于理想的正弦波形。空间电压矢量PWM与传统的正弦PWM不同,它是从三相输出电压的整体效果出发,着眼于如何使电机获得理想圆形磁链轨迹。 SVPWM技术与SPWM相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降低,旋转磁场更逼近圆形,而且使直流母线电压的利用率有了很大提高,且更易于实现数字化。下面将对该算法进行详细分析阐述。 SVPWM基本原理 SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。两个矢量的作用时间在一个采样周期内分多次施加,从而控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,通过逆变器的不同开关状态所产生的实际磁通去逼近理想磁通圆,并由两者的比较结果来决定逆变器的开关状态,从而形成PWM 波形。逆变电路如图 2-8 示。 设直流母线侧电压为Udc,逆变器输出的三相相电压为UA、UB、UC,其分别加在空间上互差120°的三相平面静止坐标系上,可以定义三个电压空间矢量 UA(t)、UB(t)、UC(t),它们的方向始终在各相的轴线上,而大小则随时间按正弦规律做变化,时间相位互差120°。假设Um为相电压有效值,f为电源频率,则有: (2-27) 其中,,则三相电压空间矢量相加的合成空间矢量 U(t)就可以表示为: (2-28) 可见 U(t)是一个旋转的空间矢量,它的幅值为相电压峰值的倍,Um为相电压峰值,且以角频率ω=2πf按逆时针方向匀速旋转的空间矢量,而空间矢量 U(t)在三相坐标轴(a,b,c)上的投影就是对称的三相正弦量。 图 2-8 逆变电路 由于逆变器三相桥臂共有6个开关管,为了研究各相上下桥臂不同开关组合时逆变器输出的空间电压矢量,特定义开关函数 Sx ( x = a、b、c) 为: (2-30) (Sa、Sb、Sc)的全部可能组合共有八个,包括6个非零矢量 Ul(001)、U2(010)、U3(011)、U4(100)、U5(101)、U6(110)、和两个零矢量U0(000)、U7(111),下面以其中一种开关组合为例分析,假设Sx ( x= a、b、c)= (100),此时 (2-30)求解上述方程可得:Uan=2Ud /3、UbN=-U d/3、UcN=-Ud /3。同理可计算出其它各种组合下的空间电压矢量,列表如下:

矢量的基本代数运算

《微分几何简介》笔记 Ch.1 矢量代数及其在解析几何中的简单应用 §1 矢量代数 定义:矢量即既有大小,又有方向的量(数学量、物理量等)。 1.1 直角坐标系-点的坐标与矢的分量 在三维空间中,取任意一点O 和任意彼此垂直的三个右旋的(即构成右手系的)单位矢量1e ,2e ,3e ,构成一个直角坐标系(或标架)。用],,;[321e e e O =σ表示;O 称为σ的原点,1e ,2e ,3e 称为σ的基矢(或底矢)。 若P 为空间任意一点,以O 为始点,P 为终点的矢量OP =r 称为P 点在标架σ里的径矢。P 点在σ里的坐标1x ,2x ,3x 就是r 径矢在σ里的分量: 332211e e e r x x x ++= 若P 、Q 为空间两点,它们在σ里的径矢依次为 332211e e e r x x x ++=,332211e e e s y y y ++= 则矢量 333222111)()()(e e e r s x y x y x y OP OQ PQ -+-+-=-=-= 其中)3,2,1(=-i x y i i 就是该矢量在σ里的分量。各分量均为0的矢量称为零矢。 在同一标架里,两个矢量相等的充要条件是它们的分量依次相等。 矢量332211e e e αa a a ++=的长为 232221a a a ++=α 若1=α,α为单位矢量(幺矢)。0≠α,则 α/i a 叫做α在σ里的方向余弦,它们是α和1e 间的角],0[π之间的余弦。零矢没有方向余弦。 1.2 矢量的基本代数运算 现有矢量332211e e e αa a a ++=和332211e e e βb b b ++=,则

矢量计算

如图I-1,a×b是a和b垂直的矢量,其数值等于absinφ,即等于由a和b构成的平行四边形的面积。 但ccosθ等于图中所示的平行六面体的高,因此c?(a×b)等于由这三个矢量构成的平行六面体的体积。同理a?(b×c)和b?(c×a)都等于同一个体积。又因为a×b = ? b×a,所以c?(b×a) = ? c?(a×b)。总括起来,混合积有如下性质: (I.1) 上式表明,把三个矢量按循环次序轮换,其积不变;若只把两矢量对调,其积差一负号。 (2)三矢量的矢积 a×b是与a和b都垂直的一个矢量d,而c×d是与d垂直的一个矢量f,因此f必在a和b构成的平面上,即可表为a和b的线性组合。用矢积的分量表示可以直接算出结果。令 先算f的x分量f1: 同样可算出f2和f3,结果是

(I.2) 把c和(a×b)对调,矢积差一负号,由上式得 (I.3) 由公式和可得规则:把括号外的矢量与括号内较远的矢量点乘起来,所得的项为正号,另一项为符号。 2. 散度、旋度和梯度 (1)矢量场f (x,y,z)的散度 设闭合曲面S围着体积ΔV。当ΔV→0时,f对S的通量与ΔV之比的极限称f为的散度 (I.4) (2)矢量场f (x,y,z)的旋度 设闭合曲线L围着面积ΔS。当ΔS→0时,f对L的通量与ΔS之比的极限称f为的散度 (I.5) 上式可以写作,当ΔS→0时, (I.5a) (3)标量场φ(x,y,z)的梯度 设沿线元dl上,标量场φ(x,y,z)的数值改变dφ.dφ/dl称为φ(x,y,z)的梯度沿dl方向的分量 (I.6) 上式可以写作, (I.6a) (4)积分变换式 由上述定义可得积分变换式 (I.7)

相关文档
最新文档