第六章-个体化给药的理论与方法辅导

第六章-个体化给药的理论与方法辅导
第六章-个体化给药的理论与方法辅导

第六章个体化给药的理论与方法辅导

一、药物动力学基本内容

本文由【中文word文档库】https://www.360docs.net/doc/846296869.html,搜集整理。中文word文档库免费提供海量教学资料、行业资料、范文模板、应用文书、考试学习和社会经济等word

文档

药物在人体内从给药到发挥治疗作用必须经过药剂学、药动学和药效学三个过程。药物的治疗效应和毒性强度直接取决于药物在作用部位的浓度或血药浓度,而影响作用部位药物浓度或血药浓度的一些生理因素,均使药物在机体的吸收、分布、代谢和排泄的速率上出现差异。因此药动学研究血药浓度随时间改变的动态变化过程,定量的描述药物的体内过程和变化规律,可以为临床制定合理给药方案提供科学依据。

药物动力学主要用于

①建立监测个体的体内药量或药物浓度随时间变化的数学表达式,并求算出有关药动学参数;

②应用药物动力学模型、表达式和药动学参数,制定和调整个体化的用药方案,保证药物治疗的有效性和安全性。

1.房室模型

药物动力学中用房室模型来模拟机体系统,根据药物的体内过程和分布速度的差异,将机体划分为若干“房室”或称“隔室”。单室模型和双室模型在数学处理上较为简单,应用较广。

①单室模型

把整个机体看成药物转运动态平衡的“均一单元”即一个“隔室”,药物进入体内后,能够迅速、均匀分布到全身各组织、器官和体液中,然后通过排泄或结构转化消除。其血药浓度将只受吸收和消除的影响。

②双室模型

在双室模型中,一般将血液以及血流丰富的能瞬时分布的组织、器官,如心、肝、脾、肺、肾等划分为一个“室”,称为“中央室”;将血液供应较少,药物分布缓慢的组织、器官,如骨骼、脂肪、肌肉等划分为“周边室”或称“外室”。属于双室模型的药物,其首先在中央室范围内达到快速分布平衡,然后再和周边室间达到分布平衡,因此其血药浓度除受吸收和消除的影响外,在室间未达分布平衡前,还受分布的影响。

2.药物转运的速度过程

药物通过各种给药途径进入体内后,体内药量或血药浓度始终处于变化状态。在动力学研究中,通常将药物体内转运的速度过程分为如下三种类型。

一级速度过程,特点:①药物浓度按恒定的比值减少,即恒比消除。②半衰期与剂量无关;③一次给药的血药浓度-时间曲线下面积与剂量成正比;④一次给药情况下,尿排泄量与剂量成正比。

零级速度过程,特点:药物浓度按恒量衰减,即恒量消除。临床上恒速静脉滴注的给药速率以及控释制剂中药物的释放速度均为零级速度过程,亦称零级动力学过程。

二、药物动力学的重要参数

1.血药浓度-时间曲线:简称药时曲线,为给药后定时采血测定血药浓度作出血药浓度随时间变化的动态曲线,可用于判断药物的疗效与毒性。包括:峰浓度(Cmax)、达峰时间(Tmax)、药时曲线下面积(AUC)是药时曲线的三个重要参数,常用Cmax和Tmax 作为药物吸收快慢的具体指标;AUC表示药物的吸收总量。

2.速率常数

速率常数是描述速度过程的重要参数。以h-1为单位,速率常数越大,过程进行也越快。

3.半衰期(t1/2)

半衰期的变化可以反映消除器官的功能状态,故当主要经肾脏消除的药物用于严重肾功能不全患者,或主要经肝脏代谢的药物用于肝病患者时,必须根据药物的消除率或半衰期而随时调整剂量。

4.表观分布容积(Vd)

表观分布容积为描述药物在体内分布的药动学参数。它是指当药物在体内各房室的分布达到动态平衡时,体内药物按血浆中同样浓度分布所需的体液总容积,即血药浓度与体内药量间的比值。

表观分布容积小,表明药物主要分布于血浆中,而在组织和器官中的分布有限;表观分布容积大,则表明药物分布广泛,血药浓度很低时,药物大多与组织和器官有特异性结合或发生了蓄积。

5.清除率(CL)

它是临床药动学中十分重要的参数,常用于设计长期给药方案。

6.生物利用度(F)

是指药物从某一制剂吸收进入全身血循环中的速率和相对数量,即药物制剂在给药后产生的药时曲线下面积的比值。F的大小与药物的理化特性和制剂特性有关。在多次给药时,F是决定药物平均稳态血药浓度高低的重要因素之一。

7.稳态血药浓度(Css):从临床用药的角度,通常认为给药5个半衰期后,可视为达到稳态浓度。

三、治疗药物监测

(一)治疗药物监测的临床意义

1.增强药物治疗作用,降低药物毒性

2.根据血药浓度调整给药方法

3.解决患者个体差异所造成的用药个体化的困难

(二)合理应用治疗药物监测应考虑的基本因素

一般认为,对存在有下列药效学、药动学或其他原因,并且其治疗作用、毒性反应呈血药浓度依赖性,而治疗血药浓度范围和中毒水平已确定的药物,应考虑进行治疗药物监测。

1.药效学原因

①安全范围窄,治疗指数低的药物:强心苷、大多数抗心律失常药、抗躁狂症药锂盐等。

②以控制疾病发作或复发为目的的用药:如苯妥英钠控制癫痫大发作,环孢素用于器官移植术后抑制排斥反应的发生。通过治疗药物监测将血药浓度控制在有效浓度范围内,以保证长期用药的有效性和安全性。

③不同治疗目的需不同血药浓度:如用地高辛治疗心房扑动或心房纤维性颤动时,大多数患者需血药浓度达2ng/ml左右或更高,而不会出现毒性反应;但同样的血药浓度在治疗慢性充血性心力衰竭时,不少患者将发生严重的心律失常等毒性反应。在这种情况下,借助治疗药物监测准确控制药物在治疗目的时所需的血药浓度范围,是十分必要的。

④药物过量中毒:强心苷可用于治疗心衰和某些心律失常,但其中毒也可表现为心衰加重、出现多种心律失常,若仅凭临床表现判断为剂量不足而加大剂量,将会产生严重后果。另一方面,任何药物过量中毒,通过TDM将有助于监控抢救效果,评估预后。

2.药动学原因

①治疗血药浓度范围内存在消除动力学方式的转换

②首关消除强及生物利用度差异大的药物

③存在影响药物体内过程的病理情况

④需长期用药及可能产生药动学相互作用的联合用药

⑤特殊情况的需要

(三)治疗药物监测的适用范围

1.服用以下药物的患者有必要进行血药浓度监测

①治疗窗窄的药物。

②药动学呈非线性特征的药物

③临床应用有严重药物不良反应的药物

④药物相互作用具有显著临床意义的相关药物

⑤有必要明确所期望治疗效果的药物

⑥某一药物的目标浓度将决定临床治疗和预后情况2.如下特定情况尤其需要进行血药浓度监测

①临床怀疑药物或其代谢产物中毒

②临床出现药物治疗继发反应或不良反应

③评估潜在的药物相互作用

④评估患者临床表现不稳定的治疗

⑤评价药物治疗方案和改变药物治疗方案的依据

⑥患者曾有不良反应或中毒

⑦评估患者的用药依从性

(四)血药浓度监测的工作流程

申请→取血→测定→数据处理→药师向医师提供结果解释和建议→医师根据患者临床综合情况进行判断和确定是否需要修改给药方案。

(五)治疗药物监测的注意事项

(1)开始治疗药物监测就应当了解患者的基本情况。

(2)应明确患者的用药情况。

(3)在准确的时间正确地采取标本。

(4)测定稳态血药浓度必须在连续给药后经过5个半衰期采血。

第七章特殊人群和特殊病理状态下的药物治疗辅导一、妊娠和哺乳期妇女用药原则

妊娠和哺乳期妇女不仅由于自身生理和生化功能发生了很大变化给药物的吸收、分布和消除带来影响,而且某些药物由母体吸收后可经胎盘对胎儿或经乳汁对婴儿产生影响,在这

个时期用药必须具有明确的治疗目的,选择疗效确切、不良反应轻、对孕妇产妇胎儿或婴儿无毒性、不会导致畸形的药物。

1.在妊娠早期,药物或毒性物质对胎儿的影响最大

在妊娠早期即妊娠前三个月,尤其是妊娠前8周,药物使用不当,容易引起畸形。从下表中我们可以看到一些药物对胎儿的危害。

有机反应和反应机理总结

有机反应和反应机理总结(二) 来源:王悦的日志 有机反应和反应机理总结(二) (5)还原反应 1乌尔夫-凯惜纳-黄鸣龙还原:将醛或酮、肼和氢氧化钾在一高沸点的溶剂如一缩二乙二醇(HOCH2CH2OCH2CH2OH,沸点245˚C)中进行反应,使醛或酮的羰基被还原成亚甲基,这个方法称为乌尔夫-凯惜纳(Wolff L−Kishner N M)-黄鸣龙方法还原。对酸不稳定而对碱稳定的羰基化合物可以用此法还原。 2去氨基还原:重氮盐在某些还原剂的作用下,能发生重氮基被氢原子取代的反应,由于重氮基来自氨基,因此常称该反应为去氨基还原反应。 3异相催化氢化:适用于烯烃氢化的催化剂有铂、钯、铑、钌、镍等,这些分散的金属态的催化剂均不溶于有机溶剂,一般称之为异相催化剂。在异相催化剂作用下发生的加氢反应称为异相催化氢化。 4麦尔外因—彭杜尔夫还原:醛酮用异丙醇铝还原成醇的一种方法。这个反应一般是在苯或甲苯溶液中进行。异丙醇铝把氢负离子转移给醛或酮,而自身氧化成丙酮,随着反应进行,把丙酮蒸出来,使反应朝产物方面进行。这是欧芬脑尔氧化法的逆反应,叫做麦尔外因—彭杜尔夫(Meerwein H-Ponndorf W)反应。5卤代烃的还原:卤代烃被还原剂还原成烃的反应称为卤代烃的还原。还原试剂很多,目前使用较为普遍的是氢化锂铝,它是个很强的还原剂,所有类型的卤代烃包括乙烯型卤代烃均可被还原,还原反应一般在乙醚或四氢呋喃(THF)等溶剂中进行。 6伯奇还原:碱金属在液氨和醇的混合液中,与芳香化合物反应,苯环被还原为1,4-环己二烯类化合物,这种反应被称为伯奇还原。 7均相催化氢化:一些可溶于有机溶剂中的催化剂称为均相催化剂。在均相催化剂作用下发生的加氢反应称为均相催化氢化。 8克莱门森还原:醛或酮与锌汞齐和浓盐酸一起回流反应。醛或酮的羰基被还原成亚甲基,这个方法称为克莱门森还原。 9罗森孟还原法:用部分失活的钯催化剂使酰氯进行催化还原生成醛。此还原法称为罗森孟(Posenmund, K. W.)还原法。 10斯蒂芬还原:将氯化亚锡悬浮在乙醚溶液中,并用氯化氢气体饱和,将芳腈加入反应,水解后得到芳醛。此还原法称为斯蒂芬(Stephen, H.)还原。 11催化氢化:在催化剂的作用下,不饱和化合物与氢发生的加氢反应称之为催化氢化。 12催化氢解:用催化氢化法使碳与杂原子(O,N,X等)之间的键断裂,称为催化氢解。苯甲位的碳与杂原子之间的键很易催化氢解。 13酮的双分子还原:在钠、铝、镁、铝汞齐或低价钛试剂的催化下,酮在非质子溶剂中发生双分子还原偶联生成频哪醇,该反应称为酮的双分子还原。 14硼氢化-还原反应:烯烃与甲硼烷作用生成烷基硼的反应称为烯烃的硼氢化反

个体化用药基因检测

个体化用药基因检测 临床意义:药物反应的个体差异是药物治疗中的普遍现象,也是临床药物治疗失败与不良反应发生的重要原因。其中各种药物相关代谢酶的基因单核苷酸多态性(SNP)成为影响患者药物治疗有效性及毒副反应的重要因素之一。明确患者基因多态性(SNP)是药物精准治疗的前提。目前为止,美国FDA已批准了有约140个需要基因信息指导才能准确治疗的药物,CFDA也推荐卡马西平等药物通过筛查基因避免发生诸如表皮剥脱性皮炎严重不良反应。仁济医院检验科为更好地服务于临床,开展基于患者基因SNP的个体化用药基因检测项目。具体个体化用药基因检测项目见“检验信息-临床分子诊断菜单”。 采血时间:周一至周六门诊时间 检测时间:周一至周五 报告时间:5个工作日 高敏HBV-DNA(检测下限20 IU/mL)检测

临床意义:为了满足临床对乙肝患者病毒DNA基线水平评估、药物疗效与耐药监控、治疗终点判定及治疗后复发的早期检测。检验科开展高敏乙肝病毒DNA (高敏HBV-DNA)检测。高敏HBV-DNA检测灵敏度高(检测下限20 IU/mL),线性范围宽(20 – 109 IU/mL),核酸提取、纯化、加样实现全自动化操作,降低人为误差,提高检测准确性。检验过程从核酸提取开始加入内标,全程监控(提取+扩增),防止假阴性。 采血时间:周一~周六 检测时间:周一~周六 报告时间:3工作日 高通量基因测序产前筛查(胎儿非整倍体无创产前基因检测) 临床意义:仁济医院是国家卫生计生委批准的“高通量基因检测技术进行产筛与疾病诊断”试点单位,为了满足临床诊断需求,检验科和妇产科联合在国家卫生计生委规范要求下开展新项目“高通量基因测序产前筛查”的检测。 无创胎儿染色体非整倍体产前检测项目(简称无创DNA)是筛查胎儿染色体疾病,降低出生缺陷的项目,是一种精确的筛查技术,准确率为99%。本项目定性检测孕周为12-24周的高危孕妇(如产前常规筛查胎儿染色体异常高风险、35岁以上高龄孕妇等)所孕育胎儿的染色体非整倍体(13-三体、18-三体、21-三体)。通过抽取孕妇外周血(8-10mL),通过高通量测序平台对母亲外周血游离胎儿

有机人名反应及其机理(整理缩小版)

本文整理出常见的有机人名反应80多个,共计约100页,大部分内容在竞赛考察范围之内。全国初赛有机难度虽然有所降低,但有能力冲刺决赛的选手对于有机反应必须熟练掌握,熟记反应实例与机理。熟记有机人名反应不仅是化学竞赛的要求,也是考研的重要内容,更是对化学先驱们的尊重与缅怀。 索引: Arbuzov反应 Arndt-Eister反应 Baeyer-Villiger 氧化 Beckmann 重排 Birch 还原 Bischler-Napieralski 合成法 Bouveault-Blanc还原 Bucherer 反应 Cannizzaro 反应 Chichibabin 反应 Claisen 酯缩合反应 Claisen-Schmidt 反应 Clemmensen 还原 Combes 合成法 Cope 重排 Cope 消除反应 Curtius 反应 Dakin 反应 Darzens 反应 Demjanov 重排 Dieckmann 缩合反应 Elbs 反应 Eschweiler-Clarke 反应 Favorskii 反应 Favorskii 重排 Friedel-Crafts烷基化反应 Friedel-Crafts酰基化反应 Fries 重排 Gabriel 合成法 Gattermann 反应 Gattermann-Koch 反应 Gomberg-Bachmann 反应 Hantzsch 合成法 Haworth 反应 Hell-V olhard-Zelinski 反应 Hinsberg 反应 Hofmann 烷基化 Hofmann 消除反应 Hofmann 重排(降解)

Houben-Hoesch 反应Hunsdiecker 反应 Kiliani 氰化增碳法Knoevenagel 反应 Knorr 反应 Koble 反应 Koble-Schmitt 反应Leuckart 反应 Lossen反应 Mannich 反应 Meerwein-Ponndorf 反应Meerwein-Ponndorf 反应Michael 加成反应Norrish I和II 型裂解反应Oppenauer 氧化 Paal-Knorr 反应 Pictet-Spengler 合成法Pschorr 反应Reformatsky 反应 Reimer-Tiemann 反应Reppe 合成法 Robinson 缩环反应Rosenmund 还原 Ruff 递降反应Sandmeyer 反应Schiemann 反应 Schmidt反应 Skraup 合成法Sommelet-Hauser 反应Stephen 还原 Stevens 重排 Strecker 氨基酸合成法Tiffeneau-Demjanov 重排Ullmann反应 Vilsmeier 反应 Wagner-Meerwein 重排Wacker 反应 Williamson 合成法 Wittig 反应 Wittig-Horner 反应 Wohl 递降反应 Wolff-Kishner-黄鸣龙反应Yurév 反应 Zeisel 甲氧基测定法

基因检测基因分型指导临床个体化用药

基因分型检测指导个体化用药 据联合国世界卫生组织统计,全球死亡患者中三分之一是死于不合理用药,而非死于自然疾病本身。我国卫生部药品不良反应监测中心的数据为:住院病人中,每年约有19.2万人死于药品不良反应;家庭用药不良反应需要住院治疗的病人则多达250万人。 人们对药物毒副作用不重视是药物不良反应的重要原因。处方中的剂量多是常规剂量,对患者来说未必准确,没考虑个人代谢耐受因素,长期过量用药,很可能导致慢性药物中毒。 基因组的多态性是导致药物反应多态性的重要因素。实际上,每个人有自己特有的药物代谢基因,决定着药物的代谢和耐受剂量,只有根据自己的耐受剂量服药,才是最合理的安全剂量。进行药物代谢相关基因型检测,合理调整用药剂量,使长期用药更安全,毒副作用更小,效果更好。 药物基因组学正是从已知基因对药物效应的影响,确定药物作用的靶点,研究从表型到基因型的药物反应个体多样性。从基因水平研究证明和阐述药物疗效以及药物作用的靶位、作用模式和毒副作用。揭示药物反应多态性这些差异的遗传特征,鉴别基因序列中的差异,并以药物效应及安全性为目标,研究各种基因突变与药效及安全性之间的关系。通过对药物疗效与安全性的遗传体质评估,减少药物毒副作用及耐药现象发生,实现“个性化用药”的目标。 我们第四军医大学药学系药物基因组教研室经过研究,已开发了结核病用药指导的基因检测,乙肝治疗药物拉米夫定、抗凝剂药物华法林以及铂类、5-氟尿嘧啶、巯基嘌呤类等肿瘤化疗药物的用药指导基因检测项目,倡导基于基因分型的个体化合理用药。同时还开发了人乳头瘤病毒筛查与宫颈癌预警项目。 1.结核病用药指导的基因检测: 近年来,结核分枝杆菌耐药现象日趋严重,大大削弱了抗结核药物的疗效。目前结核菌的耐药性问题已成为结核病疫情上升和难以控制的一个重要原因。研究表明,结核分枝杆菌基因中基因突变所引起的耐药性是结核分枝杆菌产生耐药的主要方式。多数导致结核分枝杆菌耐药的基因突变机理比较明确,异烟肼、利福平、乙胺丁醇是一线抗结核药物。kat G 基因的点突变与异烟肼耐药性密切相关,kat G 基

有机化学反应机理+范例+原理

1.A rndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。 反应机理 重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 反应实例

2.Baeyer----Villiger 反应 反应机理 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应 具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。 反应实例

酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。 3.Beckmann 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:

反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。 迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如: 反应实例

有机反应和反应机理

十、反应和反应机理 有机反应:在一定的条件下,有机化合物分子中的成键电子发生重新分布,原有的键断裂,新的键形成,从而使原分子中原子间的组合发生了变化,新的分子产生。这种变化过程称为有机反应(organic reaction)。 一级反应:在动力学上,将反应速率只取决于一种化合物浓度的反应称为一级反应。 二级反应:在动力学上,将反应速率取决于两种化合物浓度的反应称为二级反应。 按化学键的断裂和生成分类 协同反应:在反应过程中,旧键的断裂和新键的形成都相互协调地在同一步骤中完成的反应称为协同反应。协同反应往往有一个环状过渡态。它是一种基元反应。 自由基型反应:由于分子经过均裂产生自由基而引发的反应称为自由基型反应。自由基型反应分链引发、链转移和链终止三个阶段:链引发阶段是产生自由基的阶段。由于键的均裂需要能量,所以链引发阶段需要加热或光照。链转移阶段是由一个自由基转变成另一个自由基的阶段,犹如接力赛一样,自由基不断地传递下去,像一环接一环的链,所以称之为链反应。链终止阶段是消失自由基的阶段,自由基两两结合成键,所有的自由基都消失了,自由基反应也就终止了。 离子型反应:由分子经过异裂生成离子而引发的反应称为离子型反应。离子型反应有亲核反应和亲电反应,由亲核试剂进攻而发生的反应称为亲核反应,亲核试剂是对原子核有显著亲和力而起反应的试剂。由亲电试剂进攻而发生的反应称为亲电反应。亲电试剂是对电子有显著亲合力而起反应的试剂。 按反应物和产物的结构关系分类 加成反应:两个或多个分子相互作用,生成一个加成产物的反应称为加成反应。 取代反应:有机化合物分子中的某个原子或基团被其它原子或基团所置换的反应称为取代反应。 重排反应:当化学键的断裂和形成发生在同一分子中时,会引起组成分子的原子的配置方式发生改变,从而形成组成相同,结构不同的新分子,这种反应称为重排反应。 消除反应:在一个有机分子中消去两个原子或基团的反应称为消除反应。可以根据两个消去基团的相对位置将其分类。若两个消去基团连在同一个碳原子上,称为1,1-消除或α-消除;两个消去基团连在两个相邻的碳原子上,则称为1,2-消除或β-消除;两个消去基团连在1,3位碳原子上,则称为1,3-消除或γ-消除。其余类推。 氧化还原反应:有机化学中的氧化和还原是指有机化合物分子中碳原子和其它原子的氧化和还原,可根据氧化数的变化来确定。氧化数升高为氧化,氧化数降低为还原。氧化和还原总是同时发生的,由于有机反应的属性是根据底物的变化来确定的,因此常常将有机分子中碳原子氧化数升高的反应为氧化反应,碳原子氧化数降低的反应为还原反应。有机反应中,多数氧化反应表现为分子中氧的增加或氢的减少,多数还原反应表现为分子中氧的减少或氢的增加。

偶氮苯顺反异构化机理研究进展

偶氮苯顺反异构化机理研究进展 王罗新1,2 王晓工 2 * (1武汉科技学院 武汉 430073; 2清华大学化工系高分子研究所 北京 100084) 摘要 偶氮苯的光致顺反异构化是许多偶氮类功能材料光响应的基础。近年来,偶氮苯的顺反异构化机理受到了广泛关注。本文综述了有关偶氮苯顺反异构化机理的一些最新研究进展,针对偶氮苯光致异构化过程中有争议的旋转和反转机理问题,从争论的起源到目前的研究结论进行了系统总结,同时也提出了一些尚需深入研究的问题。 关键词偶氮苯异构化机理光响应性 Progress of the Trans-Cis Isomerization Mechanism of Azobenzene Wang Luoxin1, 2, Wang Xiaogong2 * (Wuhan Universtity of Science and Engineering, Wuhan 430073; Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084) Abstract: The trans-cis photoisomerization of azobenzene is the basis of photo-responsive properties of many azo-functional materials. The isomerization mechanism has drawn extensive attention recently. This paper reviews the recent research progress in the isomerization mechanism of azobenzene. A comprehensive summary, from the original argument to the present research state, has been given to the open question about the rotation and inversion mechanisms of the photoisomerization. Some relevant problems necessary to be further studied are put forward at the same time. Key words: Azobenzene, Isomerization, Mechanism, Photoresponsive 偶氮苯及其衍生物是目前世界上使用量最大的一类染料。近年来,偶氮苯的光响应特性使其在许多领域表现出巨大的应用潜力。偶氮苯分子存在顺式和反式两种异构体。在特定波长的紫外光照射下,反式构型的偶氮苯会转变为顺式构型;在可见光或热作用下,顺式构型可回复到反式构型。两种构型的偶氮苯分子具有明显不同的紫外可见吸收光谱。同时,两者的立体结构、偶极矩等一些物理和化学性质亦存在明显差异。目前,偶氮苯顺反异构体的不同特性,以及顺反异构化诱导产生的各种光响应现象,引起了广泛的关注。含偶氮基元的光响应性材料表现出很多独特的性能,如光动力纳微米机械[1,2]、光驱动分子开关[3]、信息存储[4]、表面起伏光栅及命令表面[5,6]、非线性光学材料及光子材料[7~9]等。最近,随着各种偶氮苯类材料奇特性质的不断发现,偶氮苯分子的结构[10~12]、光谱特性[13,14]、异构化机理[15~20]、激发态衰减动力学过程[21~29]等重新引起了人们的极大兴趣。 1 偶氮苯热致顺反异构化机理 相对于偶氮苯的光异构化,偶氮苯的热异构化机理较为简单。但已有的相关文献对于偶氮苯分子的国家自然基金重点项目(50533040)

(完整版)有机化学反应机理详解(共95个反应机理)

一、Arbuzow反应(重排) 亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷: 卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。 本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得: 如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzow反应如下: 这是制备烷基膦酸酯的常用方法。 除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:

反应机理 一般认为是按 S N2 进行的分子内重排反应: 反应实例 二、Arndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。 反应机理

重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 反应实例 三、Baeyer----Villiger 反应 反应机理 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应

具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。 反应实例

有机化学重要反应和机理以及总结

目录 第一部分有机化学重要反应和机理 (1) Arbuzov 反应 (1) Arndt-Eister 反应 (2) Baeyer-Villiger 反应 (2) Beckmann 重排 (4) Birch 还原 (4) Bouveault---Blanc 还原 (5) Bamberger,E.重排 (6) Berthsen,A.Y 吖啶合成法 (7) Bucherer反应 (8) Cannizzaro 反应 (9) Chichibabin 反应 (10) Claisen 酯缩合反应 (11) Claisen—Schmidt 反应 (12) Claisen 重排 (13) Clemmensen 还原 (15) Combes 喹啉合成法 (15) Cope 消除反应 (16) Cope 重排 (17) Curtius 反应 (18) Crigee,R 反应 (19) Dakin 反应 (20) Elbs 反应 (21) Edvhweiler-Clarke 反应 (21) Elbs,K.过硫酸钾氧化法 (22) Favorskii 反应 (23) Favorskii 重排 (24) Friedel-Crafts 烷基化反应 (24) Friedel-Crafts 酰基化反应 (25) Fries 重排 (26) Fischer,O-Hepp,E 重排 (27) Gabriel 合成法 (27) Gattermann 反应 (28)

Gattermann-Koch 反应 (29) Gomberg-Bachmann 反应 (29) Hantzsch 合成法 (30) Haworth 反应 (31) Hell-Volhard-Zelinski 反应 (31) Hinsberg 反应 (32) Hofmann 烷基化 (32) Hofmann重排 (33) Hofmann 消除反应 (34) Houben-Hoesch 反应 (35) Hunsdieecker 反应 (35) Kiliani 氯化增碳法 (36) Knoevenagel 反应 (36) Koble 反应 (37) Koble-Schmitt 反应 (37) Kolbe,H.Syntbexis of Nitroparsffini 合成 (38) Leuckart 反应 (39) Lossen 反应 (39) Mannich 反应 (40) Meerwein-Ponndorf 反应 (41) Michael 加成反应 (42) Martius,C.A. 重排 (42) Norrish Ⅰ和Ⅱ型裂 (43) Oppenauer 氧化 (44) Orton,K.J.P 重排 (45) Paal-Knorr 反应 (45) Pschorr 反应 (46) Prileschajew,N.反应 (47) Prins,H.J 反应 (48) Pinacol-Pinacolone Rearrangement 重排 (49) Perkin,W.H 反应 (49) Pictet-Spengler 合成法-异喹啉 (50) Reformatsky 反应 (51) Reimer-Tiemann 反应 (52) Reppe 合成法 (53) Robinson 缩环反应 (53) Rosenmund 还原 (54)

正构烷烃临氢异构化反应的研究综述

正构烷烃临氢异构化反应的研究综述 摘要:综述了近年来正构烷烃在分子筛为载体的双功能催化剂上临氢异构化反应机理的研究进展,介绍了单分子机理、双分子机理、孔口机理及锁匙机理。同时,综述了近年来临氢异 构催化剂的发展,介绍了β分子筛、丝光沸石、SAPO 系列分子筛、固体超强酸等为载体的双 功能催化剂。最后,对反应机理在制备新型催化剂领域的应用以及新型复合材料在这一领域的 应用前景做了展望。 关键词:正构烷烃,临氢异构,反应机理,催化剂 1 前言 随着环保法规的要求日益严格以及人们环保意识的增强,石油产品的质量规格日益提高,人们对清洁汽油、柴油和润滑油等产品的需求不断增加,因而加氢异构化作为生产优质石油产品的技术越来越受到人们的重视。在汽油的生产中,利用加氢异构化技术可以提高辛烷值;在柴油和润滑油的生产中,通过加氢异构化可以降低凝点或倾点,改善润滑油的粘温性质,同时保持较高的产品收率。加氢异构化技术还可以改善产品的结构。现代炼油工业为了充分利用石油资源,对重质油的加工越来越多,在重油的加氢裂化工艺中,提高催化剂的异构化性能可以多产中间馏分油。因此,对于烷烃的临氢异构化反应进行深入的研究,了解异构化反应的途径,揭示反应规律,可为催化剂的设计提供更好的思路,具有十分重要的意义。 2 临氢异构反应机理 2.1 单分子反应机理 正构烷烃在双功能催化剂上进行加氢异构化反应,部分通过烷基正碳离子中间体进行。其中,异构化反应可通过两条途径来实现[1]:(1)烷基迁移,即A型异构化;(2)质子角-角迁移,即B型异构化,如图1所示。其中A型异构化机理能够改变侧链的位置,但不改变分子中伯、仲、叔和季碳的原子个数,经历了一个烷基正碳离子环化过程,生成角状质子化的环丙烷结构的中间体(简称CPCP),随后环丙烷开环;而B型异构化机理能够改变支链度,随之改变分子中伯、仲、叔和季碳的原子个数,通常发生在CPCP开环之前,质子先进行角-角迁移,然后经过取代质子化环丁烷(简称CPCB)生成乙基侧链的烃。由于角-角迁移需较高的能量,因此,B型异构化比A型反应慢。 图1 烷基正碳离子A型和B型异构化机理 通常认为,单分子异构化反应机理按照环丙烷正碳离子机理(PCP)进行,如图2所示。

麻醉领域的个体化用药,药物基因组学(Evan Kharasch)

Pharmacogenetics in Anesthesia Evan D. Kharasch, M.D., Ph.D. St. Louis, Missouri 302 Page 1 Pharmacogenetics (or pharmacogenomics) aims to understand the inherited basis for variability in drug response. The promise of pharmacogenetics has been a change from “one drug and dose fits all” to individualized predictive medicine, or “the right drug at the right dose in the right patient”. Anesthesiology as a specialty played a key role in developing pharmacogenetics. Prolonged apnea after succinylcholine, thiopental-induced acute porphyria, and malignant hyperthermia were clinical problems of the 1960’s whose investigation helped craft the new science of pharmacogenetics. Today we perhaps take for granted the knowledge that they are genetically-based problems, due to variants in pseudocholinesterase, heme synthesis and the ryanodine receptor, respectively. This review will address basic principles of pharmacogenetics and their application to drugs used in anesthetic practice. The term pharmacogenetics was originally defined (1959) as “the role of genetics in drug response”. Since the science of pharmacokinetics (drug absorption, distribution, metabolism, excretion) evolved earlier than pharmacodynamics, early pharmacogenetic studies addressed mainly pharmaco-kinetics. Application (fusion) of the genomic revolution and associated technologies to pharmaco-genetics spawned pharmacogenomics. Pharmacogenetics has been used by some in a more narrow sense, to refer only to genetic factors which influence drug kinetics and dynamics (drug receptor actions), while pharmacogenomics has been used more broadly to refer to the application of genomic technologies (whole-genome or individual gene changes) to drug discovery, pharmacokinetics and pharmacodynamics, pharmacologic response, and therapeutic outcome. Nonetheless, many consider this distinction unimportant and use the two terms interchangeably, as will this review. BASIC CONCEPTS A polymorphism is a discontinuous variation in a population (a bimodal or trimodal distribution). It is different than simple continuous variability (i.e. a unimodal population distribution, even if quite wide). A genetic polymorphism is the presence of multiple discrete states (i.e. for a particular trait) within a population, which has an inherited difference. The complete human genome consists of approximately 3 billion base pairs, which encode approximately 30,000 genes. A single nucleotide polymorphism (SNP) is a variation in the DNA sequence which occurs at a specific base. Polymorphisms are relatively common, occurring by definition in ≥1% of the population, while mutations are less common, occurring in <1%. Only 3% of DNA consists of sequences which code for protein (exons). Other portions of the DNA include promoter regions (near the transcription initiation site), enhancer regions (which bind regulatory transcription factors), and introns (DNA sequences which do not code for protein). After exons and introns are transcribed, the intronic mRNA is excised and the exonic mRNA is spliced together to form the final mature mRNA, which then undergoes translation into protein. SNPs are frequent, occurring in approximately 1:100-1:1000 bases. SNPs and mutations may occur in the coding or noncoding regions of the DNA. Since most occur in the latter, they are usually synonymous (or silent, having no effect on proteins), although intronic changes and promoter variants can change protein expression. Non-synonymous SNPs result in a change in an amino acid. A conservative change results in a similar amino acid that does not alter protein function, while a non-conservative change yields an amino acid which alters protein structure or function. These latter SNPs may be clinically significant. SNPs are not the only events which can cause RNA and protein changes; others are deletions, insertions, duplications, and splice variants, however these are not inherited. Multiple SNPs can occur in the DNA which encodes a particular protein. A haplotype is a set of closely linked alleles or DNA polymorphisms which are inherited together. While SNPs are important, haplotypes are more clinically relevant. Polymorphisms can be classified at the DNA locus (which depicts the normal “wild-type” and the altered base pair; for example the mu opioid receptor gene polymorphism at base pair 118 which codes for changing an adenine nucleotide to a guanine is abbreviated as A118G, or 118 A>G); at polymorphism changes the amino acid at position 40

催化裂化反应机理

异丙醇脱氢制丙酮所采用的催化剂及其设计原理 张若杰 1201班 化学工程 01201208170114 一、反应机理 脱氢反应是脱氢催化剂(Dehydrogenation catalysts )下进行的气固相催化反应,且反应是吸热的。在异丙醇分子中由于羟基的影响,α-H 比较活泼,容易发生脱氢。 常压200-300℃,异丙醇在催化剂表面,脱氢吸热生成丙酮,并产生大量氢气。本反应主要涉及两个过程。温度适中时,发生主反应: ()()↑+?→? 22323H CO CH CHOH CH (1) 起始时,由于异丙醇的加入,汽化需要吸收大量的热,导致反应温度降低,发生 副反应: ()()()O H COCH CHCH CH CHOH CH CO CH 232232323+?→?+ (2) 温度过高时,发生异丙醇分子内脱水,生成异丙醚: ()()()O H CH CHOCH CH CHOH CH 2232332+?→? (3) 因此温度控制的是否得当是生成目的产物的关键。 二、反应热力学分析 查有关手册得298K 各相关物质的 f H ?和 f G ?值于下表:(kcal/mol ) 求出各反应在298K 的r H ?、r G ?和Kp 值列于下表: 由方程??? ? ??-?=211211ln T T R H Kp Kp r 求出多个温度的Kp 值列于下表:

由上表数据可知,高温、低压有利异丙醇脱氢生成丙酮的反应。 三、分子反应机理 反应物分子先被催化剂上的金属离子Mn+作用而脱去H-(发生C-H键异裂),随后再脱去H+而成不饱和键。要求反应分子交易极化产生Cδ+—Hδ-,催化剂也需要有极化能力的金属离子Mn+用来脱去H-,同时具有负电荷的O2-,以接受H-。因此这类机理类似于酸碱催化。 四、催化剂的选择 在反应过程中,反应温度随催化剂的不同而不同。异丙醇脱氢反应是一简单反应,工业上大多采用气相反应,原料在气相条件下流过列管式固定床反应器,发生脱氢反应,常用铜锌系催化剂。典型的工艺条件为反应压力0.2~0.3 MPa,反应温度200~300℃,异丙醇单程转化率(摩尔分数)大于6O%,产品丙酮对异丙醇总收率(摩尔分数)大于95.5%。 所用催化剂有铜、银、铂、钯等金属以及过渡金属的硫化物,负载于惰性载体上,反应在管式反应器中进行,温度400~600℃。在使用氧化锌-氧化锆、铜-铬氧化物或铜-二氧化硅催化剂时,脱氢温度降低为300~500℃。

有机化学中用来研究反应机理的方法

有机化学中用来研究反应机理的方法

有机反应机制的研究方法 有机化学中用来解释反应机理的传统方法主要集中在Kinetics和Dynamics两方面,即理解势能面、深入研究分子运动和碰撞、测定活化参数、测定速率常数、确定某个反应机理中一系列化学步骤的顺序、确定反应限速步骤和决速步骤。 研究机理的关键目的是反应机理知识可以对如何在原子或分子水平上操纵物质给出最快速的洞察,而不是依靠运气来获得偶然性的变化从而获得想要的结果。由于动力学在辨别机理方面起着关键作用,所以动力学是整个有机反应机理研究领域中最重要的分支之一。 传统的反应机理研究方法除了动力学分析之外,还有同位素效应、结构-功能分析等。这些都是研究有机反应机理的标准实验工具,然后实验化学家可以根据其想象力和化学创造性,设计出一些完全不同于之前出现过的研究方法。因此,本文总结了一些最为常见的方法。首先分析最简单的实验,例如产物和中间体的鉴定。但也会分析一些更为微妙、精细的实验,如交叉和同位素置乱(cross-over and isotope scrambling)实验。 1.改变反应物结构以转变或捕获预想的中间体 有时可以通过合成一种类似于所研究的反应物的新反应物来破译中间体的性质,但是这需要所预测的中间体能以一种可预想的方式进行反应。没有标准的方式来处理这一类实验,所以实验者必须根

据具体实验情况来设计实验。下面以酶反应作为此方法的应用实例。 Lin[1]等人设计了一种转变中间体的方法。扁桃酸消旋化酶可使扁桃酸根离子的对映体(2-羟基苯甲酸)互换。位于羧酸跟α位的碳负离子被认为是中间体。为了测试此中间体是否存在,作者合成设计了扁桃酸跟离子的类似物i,并用酶对其进行了外消旋化。其过程是首先形成碳负离子,然后经过溴化物的1,6-消除,最后经过互变异构化,分离得到产物ii。此结果支持了在扁桃酸根离子路径中碳负离子中间体iii的存在。 2.捕获实验和竞争实验 鉴定中间体的一种常见方法是通过加入额外的试剂来捕获中间体。目前存在着几种自由基不伙计,许多好的亲核试剂是半衰期很短的亲电试剂(如碳正离子)的可行的捕获剂。必须以自己的化学知识来设计捕获中间体(如碳正离子、卡宾等)的捕获剂。但是活泼中间体的半衰期很短,所以捕获剂必须是具有很高的活性,并能与活泼中间体的标准反应路径进行竞争。同样,因为捕获反应是典

临床个体化用药

个体化用药研究 充分考虑每个病人的遗传因素(即药物代谢基因类型)、性别、年龄、体重、生理病理特征以及正在服用的其它药物等综合情况的基础上制定安全、合理、有效、经济的药物治疗方式称为个体化用药。个体化用药能够减少药物浪费、减轻病人的经济负担和时间花费。 个体化用药是现代医学用药的重大进展,我国临床药理学的快速发展始于20世纪70年代,而国外发展得更早一些[1]。临床药代动力学理论的建立和完善,使得治疗医学领域产生了一门重要技术—治疗药物监测(TDM),并在近二十多年的医学实践中发挥重大作用。随着人类基因组学的发展,以及临床药物疗效与毒副作用个体多样性的表现,近三年来,国外又提出了药物基因组学,它可以提高用药的安全性和有效性,减少药物不良反应的发生,为发展个体化用药提供了新的理论依据。 一、药物动力学研究与个体化用药 临床药代动力学理论为临床个体化给药提供了理论基础。80年代后期,在我国形成了治疗药物监测的新体系。治疗药物监测的目的,是通过测定体液(或血液)中药物浓度,利用药代动力学的原理和计算方法,使给药方案个体化,提高药物的疗效、避免或减少毒性反应。临床使用的药物中有一部分可通过此法进行检验。药代动力学的主要内容是随着时间变化,药物及其代谢产物在生物体液、组织和排泄物中定量变化的规律。为了较为正确地描述需采用适当的数学模型,建立微分方程。一般用房室模型来说明不同药物进入体内的转运。 例如环孢素在小肠吸收时可被小肠壁上皮细胞中的CYP3A酶系代谢或被小肠上皮细胞表达的P一糖蛋白阻止吸收,吸收后主要经肝脏的CYP3A酶系代谢。因此,环孢素在人体内的吸收和消除都具有非线性药动学特点,血液中药物谷浓度与服用剂量不成比例,稍微增减剂量,均会引起血药浓度较大波动。药师应告知病人不要随意减量。临床上将环孢素改为150 mg/d与125 mg/d交替使用,这样易致血药浓度波动大,建议改为135 mg/d,结果血药浓度稳定在130 ng/m左右,环孢素在体

相关文档
最新文档