移植Nand flash驱动了解Linux内核Nand Flash的实现_华清远见

移植Nand flash驱动了解Linux内核Nand Flash的实现_华清远见
移植Nand flash驱动了解Linux内核Nand Flash的实现_华清远见

移植Nand flash驱动了解Linux内核Nand Flash的实现

如何通过移植Nand flash驱动,了解Linux内核Nand Flash的实现?本篇文章就来教你如何实行!在说到正题之前,先来介绍一下Nand Flash吧!

Nand-flash存储器是flash存储器的一种,其内部采用非线性宏单元模式,为固态大容量内存的实现提供了廉价有效的解决方案。Nand-flash存储器具有容量较大,改写速度快等优点,适用于大量数据的存储,因而在业界得到了越来越广泛的应用,如嵌入式产品中包括数码相机、MP3随身听记忆卡、体积小巧的U盘等。下面回到正题。

【实验目的】

Nand flash 是嵌入式系统最常用的内部存储设备,通过移植Nand flash驱动,了解Linux内核Nand Flash的实现。

说明:在本系统移植课程实验中命令行提示符“$”表示是在主机上执行,“#”表示在目标板执行。

【实验环境】

● 主机:Ubuntu 10.10 (64bit);

● 目标机:FS_S5PC100平台;

● 交叉编译工具链:arm-eabi-4.4.0(Android4.0.4自带交叉工具链);

【实验步骤】

1. 添加驱动文件

添加针对我们平台的Nand flash驱动。

● 拷贝s3c_nand.c到drivers/mtd/nand下;

● 拷贝regs-nand.h到arch/arm/mach-s5pc100/include/mach下;

cp s3c_nand.c drivers/mtd/nand

cpregs-nand.h arch/arm/mach-s5pc100/include/mach

2. 修改文件

针对平台上的nand flash设备,修改drivers/mtd/nand/nand_base.c第2975行。

for (i = 0; i< 5; i++)

3. 配置文件修改

● 修改drivers/mtd/nand/Kconfig,在if mtd_nand(216行)下面添加如下内容:config MTD_NAND_S3C

tristate "NAND Flash support for S3C SoC"

depends on (ARCH_S3C64XX || ARCH_S5P64XX || ARCH_S5PC1XX

|| ARCH_S5PC100) && MTD_NAND

help

This enables the NAND flash controller on the S3C.

No board specfic support is done by this driver, each board

must advertise a platform_device for the driver to attach.

config MTD_NAND_S3C_DEBUG

bool "S3C NAND driver debug"

depends on MTD_NAND_S3C

help

Enable debugging of the S3C NAND driver

config MTD_NAND_S3C_HWECC

bool "S3C NAND Hardware ECC"

depends on MTD_NAND_S3C

help

Enable the use of the S3C's internal ECC generator when

using NAND. Early versions of the chip have had problems with

incorrect ECC generation, and if using these, the default of

software ECC is preferable.

If you lay down a device with the hardware ECC, then you will

currently not be able to switch to software, as there is no

implementation for ECC method used by the S3C

● 修改drivers/mtd/nand/Makefile添加如下内容(19行):obj-$(CONFIG_MTD_NAND_S3C) += s3c_nand.o

4. 平台代码修改

修改arch/arm/mach-s5pc100/mach-smdkc100.c添加如下内容:

● 添加头文件

1 #if defined (CONFIG_MTD_NAND_S3C)

2 #include

3 #include

4 #include

5 #endif

● 添加平台设备

01 #if defined(CONFIG_MTD_NAND_S3C)

02 /* Nand Flash Support */

03 static structmtd_partition s5pc100_nand_part[] = {

04 [0] = {

05 .name = "bootloader",

06 .size = SZ_1M,

07 .offset = 0,

08 },

09 [1] = {

10 .name = "kernel",

11 .offset = MTDPART_OFS_APPEND,

12 .size = SZ_1M*3,

13 },

14 [2] = {

15 .name = "rootfs",

16 .offset = MTDPART_OFS_APPEND,

17 .size = MTDPART_SIZ_FULL,

18 },

19 };

20

21 struct s3c_nand_mtd_info s5pc100_nand_mtd_part_info = {

22 .chip_nr = 1,

23 .mtd_part_nr = ARRAY_SIZE(s5pc100_nand_part),

24 .partition = s5pc100_nand_part,

25 };

26

27 static struct resource s5pc100_nand_resource[] = {

28 [0] = {

29 .start = 0xE7200000,

30 .end = 0xE7200000 + SZ_1M,

31 .flags = IORESOURCE_MEM,

32 }

33 };

34

35 structplatform_device s5pc100_device_nand = {

36 .name = "s5pc100-nand",

37 .id = -1,

38 .num_resources = ARRAY_SIZE(s5pc100_nand_resource),

39 .resource = s5pc100_nand_resource,

40 .dev = {

41 .platform_data = &s5pc100_nand_mtd_part_info,

42 }

43 };

44 #endif

● 添加平台设备列表

在smdkc100_device[]结构体数组中添加如下内容:

1 #if defined(CONFIG_MTD_NAND_S3C)

2 &s5pc100_device_nand,

3 #endif

5. 相关头文件修改

修改arch/arm/plat-samsung/include/plat/nand.h添加如下内容:

1 #if defined(CONFIG_MTD_NAND_S3C)

2 struct s3c_nand_mtd_info {

3 uintchip_nr;

4 uintmtd_part_nr;

5 structmtd_partition *partition;

6 };

7 #endif

6. 配置内核

$ make menuconfig

Device Drivers --->

<*> Memory Technology Device (MTD) support --->

<*> Caching block device access to MTD devices

<*> NAND Device Support --->

<*> NAND Flash support for S3C SoC

[*] S3C NAND Hardware ECC

-*- Enable the block layer --->

Partition Types --->

[*] Advanced partition selection

[*] PC BIOS (MSDOS partition tables) support

[*] BSD disklabel (FreeBSD partition tables) support 7. 编译内核

编译内核并拷贝到tftpboot下。

$ make zImage

$ cp arch/arm/boot/zImage /tftpboot

8. 测试

启动目标板,在目标板上完成如下操作:

# cat /proc/mtd

可以看到之前内核对Nand Flash的分区表。

dev: size erasesize name

mtd0: 00100000 00020000 "bootloader"

mtd1: 00300000 00020000 "kernel"

mtd2: 0fc00000 00020000 "rootfs"

如何移植Nand flash驱动了解Linux内核Nand Flash的实现,现在你知道怎么操作了吗?linux的世界非常奇妙,更多学习内容可以在华清远见官网查看,华清远见提供免费的学习参考资料,供大家学习。

实验四Linux内核移植实验

合肥学院 嵌入式系统设计实验报告 (2013- 2014第二学期) 专业: 实验项目:实验四 Linux内核移植实验 实验时间: 2014 年 5 月 12 实验成员: _____ 指导老师:干开峰 电子信息与电气工程系 2014年4月制

一、实验目的 1、熟悉嵌入式Linux的内核相关代码分布情况。 2、掌握Linux内核移植过程。 3、学会编译和测试Linux内核。 二、实验内容 本实验了解Linux2.6.32代码结构,基于S3C2440处理器,完成Linux2.6.32内核移植,并完成编译和在目标开发板上测试通过。 三、实验步骤 1、使用光盘自带源码默认配置Linux内核 ⑴在光盘linux文件夹中找到linux-2.6.32.2-mini2440.tar.gz源码文件。 输入命令:#tar –jxvf linux-2.6.32.2-mini2440-20110413.tar对其进行解压。 ⑵执行以下命令来使用缺省配置文件config_x35 输入命令#cp config_mini2440_x35 .config;(注意:x35后面有个空格,然后有个“.”开头的 config ) 然后执行“make menuconfig”命令,但是会出现出现缺少ncurses libraries的错误,如下图所示: 解决办法:输入sudo apt-get install libncurses5-dev 命令进行在线安装ncurses libraries服务。

安装好之后在make menuconfig一下就会出现如下图所示。 ⑶配置内核界面,不用做任何更改,在主菜单里选择退出,并选“Yes”保存设置返回到刚命令行界面,生成相应配置的头文件。 编译内核: #make clean #make zImage 在执行#make zImage命令时会出现如下错误: 错误:arch/arm/mach-s3c2440/mach-mini2440.c:156: error: unknown field 'sets' specified in initializer 通过网上查找资料 于是在自己的mach-mini2440.c中加入 #include

NandFlash简介

NandFlash简介 分类:Linux2013-03-06 14:34 2945人阅读评论(0) 收藏举报 Flash Memory中文名字叫闪存,是一种长寿命的非易失性(在断电情况下仍能保持所存储的数据信息)的存储器。 从名字中就可以看出,非易失性就是不容易丢失,数据存储在这类设备中,即使断电了,也不会丢失,这类设备,除了Flash,还有其他比较常见的入硬盘,ROM等,与此相对的,易失性就是断电了,数据就丢失了,比如大家常用的内存,不论是以前的SDRAM,DDR SDRAM,还是现在的DDR2,DDR3等,都是断电后,数据就没了。 FLASH的分类:功能特性分为两种:一种是NOR型闪存,以编码应用为主,其功能多与运算相关;另一种为NAND型闪存,主要功能是存储资料,如数码相机中所用的记忆卡。 NOR FLASH和NAND FLASH NOR和NAND是现在市场上两种主要的非易失闪存技术。Intel于1988年首先开发出NOR flash技术,彻底改变了原先由EPROM和EEPROM 一统天下的局面。紧接着,1989年,东芝公司发表了NAND flash结结,强调降低每比特的成本,更高的性能,并且象磁盘一样可以通过接口轻松升级。但是经过了十多年之后,仍然有相当多的硬件工程师分不清NOR和NAND闪存。 NOR的读速度比NAND稍快一些。 NAND的写入速度比NOR快很多。 NAND的4ms擦除速度远比NOR的5s快。 大多数写入操作需要先进行擦除操作。 NAND的擦除单元更小,相应的擦除电路更少 在NOR Flash中, 所有的存储区域都保证是完好的, 同时也拥有相同的耐久性。在硬模中专门制成了一个相当容量的扩展存储单元—他们被用来修补存储阵列中那些坏的部分,这也是为了保证生产出来的产品全部拥有完好的存储区域。为了增加产量和降低生产成本, NAND Flash 器件中存在一些随机bad block 。为了防止数据存储到这些坏的单元中, bad block 在IC烧录前必须先识别。在一些出版物中, 有人称bad block 为“bad block”, 也有人称bad block 为“invalid block”。其实他们拥有相同的含义, 指相同的东西。 从实际的应用上来说, NOR Flash与NAND Flash主要的区别在于接口。NOR Flash拥有完整的存取-映射访问接口, 它拥有专门的地址线和数据线, 类似与EPROM。然而在NAND Flash中没有专门的地址线。它发送指令,地址和数据都通过8/16位宽的总线(I/O接口)到内部的寄存器。 SLC/MLC基本原理

设备驱动加到Linux内核中

7.2.3 设备驱动加到Linux内核中 设备驱动程序编写完后将该驱动程序加到内核中。这需要修改Linux 的源代码,然后重新编译内核。 ①将设备驱动程序文件(比如mydriver.c)复制到/Linux/drivers/char目录下。该目录保存了Linux下字符设备的设备驱动程序。修改该目录下mem.c 文件,在int chr_dev_init()函数中增加如下代码: #ifdef CONFIG_MYDRIVER device_init(); #endif 其中CONFIG_MYDRIVER是在配置Linux内核时赋值。 ②在/linux/drivers/char目录下Makefile中增加如下代码: ifeq ($(CONFIG_MYDRIVER),y) L_OBJ + = mydriver.o endif 如果在配置Linux内核时选择了支持新定义的设备,则在编译内核时会编译mydriver.c生成mydriver.o文件。 ③修改/linux/drivers/char目录下config.in文件,在 comment Character devices 语句下面加上 bool suppot for mydriver CONFIG_MYDRIVER 这样,若编译内核,运行make config,make menuconfig或make xconfig,那么在配置字符设备时就会有选项: Support for mydriver 当选中这个设备时,设备驱动就加到了内核中了。 重新编译内核,在shell中将当前目录cd 到Linux目录下,然后执行以下代码: # make menuconfig # make dep # make 在配置选项时要注意选择支持用户添加的设备。这样得到的内核就包含用户的设备驱动程序。 Linux通过设备文件来提供应用程序和设备驱动的接口,应用程序通过标准的文件操作函数来打开、关闭、读取和控制设备。查看Linux文件系统下的/proc/devices,可以看到当前的设备信息。如果设备驱动程序已被成功加进,这里应该由该设备对应的项。/proc/interrupts纪录了当时中断情况,可以用来查看中断申请是否正常;对于DMA和I/O口的使用,在/proc下都有相应的文件进行记录;还可以在设备驱动程序中申请在/proc 文件系统下创建一个文件,该文件用来存放设备相关信息。这样通过查看该文件就可以了解设备的使用情况。总之,/proc文件系统为用户提供了查

linux操作系统内核实验报告

linux操作系统内核实验报告 篇一:linux操作系统实验报告 LINUX操作系统实验报告 姓名班级学号指导教师 XX 年 05月 16 日 实验一在LINUX下获取帮助、Shell实用功能实验目的: 1、掌握字符界面下关机及重启的命令。 2、掌握LINUX下获取帮助信息的命令:man、help。 3、掌握LINUX中Shell的实用功能,命令行自动补全,命令历史记录,命令的排列、替 换与别名,管道及输入输出重定向。 实验内容: 1、使用shutdown命令设定在30分钟之后关闭计算机。 2、使用命令“cat /etc/cron.daliy”设置为别名named,然后再取消别名。 3、使用echo命令和输出重定向创建文本文件/root/nn,内容是hello,然后再使用追加重定向输入内容为word。 4、使用管道方式分页显示/var目录下的内容。 5、使用cat显示文件/etc/passwd和/etc/shadow,只有正确显示第一个文件时才显示第二个文件。 实验步骤及结果:

1. 用shutdown命令安全关闭系统,先开机在图形界面中右击鼠标选中新建终端选项中输入 命令 Shutdown -h 30 2、使用命令alias将/etc/cron.daliy文件设置为别名named,左边是要设置的名称右边是要更改的文件。查看目录下的内容,只要在终端输入命令即可。取消更改的名称用命令unalias命令:在命令后输入要取消的名称,再输入名称。 3.输入命令将文件内容HELLO重定向创建文本文件/root/nn,然后用然后再使用追加重定向输入内容为word。步骤与输入内容HELLO一样,然后用命令显示文件的全部内容。 4.使用命令ls /etc显示/etc目录下的内容,命令是分页显示。“|”是管道符号,它可以将多个命令输出信息当作某个命令的输入。 5 实验二文件和目录操作命令 实验目的: 1、掌握LINUX下文件和目录的操作命令,如pwd、cd、ls、touch、mkdir、rmdir、cp、 mv、rm等。

嵌入式Linux内核移植详解(顶嵌)

内核移植阶段 内核是操作系统最基本的部分。它是为众多应用程序提供对计算机硬件的安全访问的一部分软件,这种访问是有限的,并且内核决定一个程序在什么时候对某部分硬件操作多长时间。直接对硬件操作是非常复杂的,所以内核通常提供一种硬件抽象的方法来完成这些操作。硬件抽象隐藏了复杂性,为应用软件和硬件提供了一套简洁,统一的接口,使程序设计更为简单。 内核和用户界面共同为用户提供了操作计算机的方便方式。也就是我们在windows下看到的操作系统了。由于内核的源码提供了非常广泛的硬件支持,通用性很好,所以移植起来就方便了许多,我们需要做的就是针对我们要移植的对象,对内核源码进行相应的配置,如果出现内核源码中不支持的硬件这时就需要我们自己添加相应的驱动程序了。 一.移植准备 1. 目标板 我们还是选用之前bootloader移植选用的开发板参数请参考上文的地址: https://www.360docs.net/doc/8510508170.html,/thread-80832-5-1.html。bootloader移植准备。 2. 内核源码 这里我们选用比较新的内核源码版本linux-2.6.25.8,他的下载地址是 ftp://https://www.360docs.net/doc/8510508170.html,/pub/linux/kernel/v2.6/linux-2.6.25.8.tar.bz2。 3. 烧写工具 我们选用网口进行烧写这就需要内核在才裁剪的时候要对网卡进行支持 4. 知识储备 要进行内核裁剪不可缺少的是要对内核源码的目录结构有一定的了解这里进 行简单介绍。 (1)arch/: arch子目录包括了所有和体系结构相关的核心代码。它的每一个子 目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体 系结构的子目录。PC机一般都基于此目录。 (2)block/:部分块设备驱动程序。 (3)crypto:常用加密和散列算法(如AES、SHA等),还有一些压缩和CRC校验 算法。 (4) documentation/:文档目录,没有内核代码,只是一套有用的文档。 (5) drivers/:放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目 录:如,/block 下为块设备驱动程序,比如ide(ide.c)。 (6)fs/:所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持 一个文件系统, 例如fat和ext2。

linux内核编译和生成makefile文件实验报告

操作系统实验报告 姓名:学号: 一、实验题目 1.编译linux内核 2.使用autoconf和automake工具为project工程自动生成Makefile,并测试 3.在内核中添加一个模块 二、实验目的 1.了解一些命令提示符,也里了解一些linux系统的操作。 2.练习使用autoconf和automake工具自动生成Makefile,使同学们了解Makefile的生成原理,熟悉linux编程开发环境 三、实验要求 1使用静态库编译链接swap.c,同时使用动态库编译链接myadd.c。可运行程序生成在src/main目录下。 2要求独立完成,按时提交 四、设计思路和流程图(如:包括主要数据结构及其说明、测试数据的设计及测试结果分析) 1.Makefile的流程图: 2.内核的编译基本操作 1.在ubuntu环境下获取内核源码 2.解压内核源码用命令符:tar xvf linux- 3.18.12.tar.xz 3.配置内核特性:make allnoconfig 4.编译内核:make 5.安装内核:make install

6.测试:cat/boot/grub/grub.conf 7.重启系统:sudo reboot,看是否成功的安装上了内核 8.详情及结构见附录 3.生成makefile文件: 1.用老师给的projec里的main.c函数。 2.需要使用automake和autoconf两个工具,所以用命令符:sudo apt-get install autoconf 进行安装。 3.进入主函数所在目录执行命令:autoscan,这时会在目录下生成两个文件 autoscan.log和configure.scan,将configure.Scan改名为configure.ac,同时用gedit打开,打开后文件修改后的如下: # -*- Autoconf -*- # Process this file with autoconf to produce a configure script. AC_PREREQ([2.69]) AC_INIT([FULL-PACKAGE-NAME], [VERSION], [BUG-REPORT-ADDRESS]) AC_CONFIG_SRCDIR([main.c]) AC_CONFIG_HEADERS([config.h]) AM_INIT_AUTOMAKE(main,1.0) # Checks for programs. AC_PROG_CC # Checks for libraries. # Checks for header files. # Checks for typedefs, structures, and compiler characteristics. # Checks for library functions. AC_OUTPUT(Makefile) 4.新建Makefile文件,如下: AUTOMAKE_OPTIONS=foreign bin_PROGRAMS=main first_SOURCES=main.c 5.运行命令aclocal 命令成功之后,在目录下会产生aclocal.m4和autom4te.cache两个文件。 6.运行命令autoheader 命令成功之后,会在目录下产生config.h.in这个新文件。 7.运行命令autoconf 命令成功之后,会在目录下产生configure这个新文件。 8.运行命令automake --add-missing输出结果为: Configure.ac:11:installing./compile’ Configure.ac:8:installing ‘.install-sh’ Configure.ac:8:installing ‘./missing’ Makefile.am:installing ‘./decomp’ 9. 命令成功之后,会在目录下产生depcomp,install-sh和missing这三个新文件和执行下一步的Makefile.in文件。 10.运行命令./configure就可以自动生成Makefile。 4.添加内核模块

02--基于ARM9的Linux2.6内核移植

基于ARM9的Linux2.6内核移植 姓名 系别、专业 导师姓名、职称 完成时间

目录 摘要................................................... I ABSTARCT................................................ II 1 绪论.. (1) 1.1课题研究的背景、目的和意义 (1) 1.2嵌入式系统现状及发展趋势 (1) 1.3论文的主要工作 (4) 2 嵌入式 Linux系统构成和软件开发环境 (5) 2.1嵌入式Linux系统的体系结构 (5) 2.2嵌入式Linux系统硬件平台 (5) 2.3嵌入式Linux开发软件平台建立 (7) 2.4本章小结 (11) 3 嵌入式Linux的引导BootLoader程序 (12) 3.1 BootLoader概述 (12) 3.2 NAND Flash和NOR Flash的区别 (13) 3.3本章小结 (19) 4 Linux内核的编译、移植 (20) 4.1 Linux2.6内核的新特性简介 (20) 4.2 Linux内核启动流程 (20) 4.3内核移植的实现 (21) 4.4 MTD内核分区 (23) 4.5配置、编译内核 (24) 4.6本章小结 (26) 5 文件系统制作 (27) 5.1 yaffs文件系统简介 (27) 5.2 内核支持YAFFS文件系统 (27) 5.3本章小结 (30) 6测试 (31) 6.1简单测试方法的介绍 (31) 6.2编写简单C程序测试移植的系统 (31) 6.3在开发板执行测试程序 (32)

海力士NANDFlash选型

Q1’2011 DATABOOK Rev 0.1

NAND Flash –SLC / MLC / TLC AND Flash N NAND Flash SLC COMPONENT Product Tech Density Block Size Stack Vcc/Org Package Availability Remark HY27US08281A 90nm 128Mb 16KB Mono 3.3v/X8TSOP/USOP Now HY27US08561A 90nm 256Mb 16KB Mono 3.3v/X8TSOP/USOP/FBGA Now HY27US08121B 70nm 512Mb 16KB Mono 3.3v/X8TSOP/USOP/FBGA Now H27U518S2C 57nm 512Mb 16KB Mono 3.3v/X8TSOP Now HY27US081G1M 70nm 1Gb 16KB Mono 3.3v/X8USOP Now HY27UF081G2A 70nm 1Gb 128KB Mono 3.3v/X8TSOP/USOP/FBGA Now HY27US081G2A 70nm 1Gb 128KB Mono 1.8v/X8FBGA Now H27U1G8F2B 48nm 1Gb 128KB Mono 3.3v/X8TSOP,FBGA Now H27U1G8F2B 48nm 1Gb 128KB Mono 1.8v/X8FBGA Now H27U1G8F2CTR 32nm 1Gb 128KB Mono 1.8v/X8TSOP Q4 '11H27U1G8F2CFR 32nm 1Gb 128KB Mono 1.8v/X8FBGA Q4 '11HY27UF082G2B 57nm 2Gb 128KB Mono 3.3v/X8TSOP,FBGA, LGA Now H27U2G8F2C 41nm 2Gb 128KB Mono 3.3v/X8TSOP Now HY27UF084G2B 57nm 4Gb 128KB Mono 3.3v/X8TSOP Now H27U4G8F2D 41nm 4Gb 128KB Mono 3.3v/X8TSOP Now HY27UG088G5(D)B 57nm 8Gb 128KB DDP 3.3v/X8TSOP Now 2CE/Dual CH.H27U8G8G5D 41nm 8Gb 128KB Mono 3.3v/X8TSOP Now H27QBG8GDAIR-BCB 32nm 32Gb 512KB DDP 1.8v/x8VFBGA Now 2CE/Dual CH.H27QCG8HEAIR-BCB 32nm 64Gb 512KB QDP 1.8v/x8VFBGA Now 4CE/Dual CH.H27QDG8JEAJR-BCB 32nm 128Gb 512KB ODP 1.8v/x8 JFBGA Feb. '11 4CE/Dual CH.NAND Flash MLC COMPONENT Product Tech Density Block Size Stack Vcc/Org Package Availability Remark H27U8G8T2B 48nm 8Gb 512KB Mono 3.3v/X8TSOP Now H27UAG8T2M 48nm 16Gb 512KB(4KB Page)Mono 3.3v/X8TSOP/VLGA Now H27UAG8T2A 41nm 16Gb 512KB(4KB Page)Mono 3.3v/X8TSOP Now H27UBG8U5A 41nm 32Gb 512KB(4KB Page)DDP 3.3v/X8TSOP Now H27UBG8T2M 41nm 32Gb 512KB(4KB Page)Mono 3.3v/X8VLGA Now H27UBG8T2A 32nm 32Gb 2MB(8KB Page)SDP 3.3v/x8TSOP / VLGA Now H27UCG8VFA 41nm 64Gb 512KB(4KB Page)QDP 3.3v/X8TSOP Now H27UCG8UDM 41nm 64Gb 512KB(4KB Page)DDP 3.3v/X8VLGA Now Dual CH.H27UCG8U5(D)A 32nm 64Gb 2MB(8KB Page)DDP 3.3v/x8TSOP / VLGA Now Dual CH. LGA H27UCG8T2M 26nm 64Gb 2MB(8KB Page)SDP 3.3v/x8VLGA Now H27UDG8VEM 41nm 128Gb 512KB(4KB Page)QDP 3.3v/X8VLGA Now 4CE,Dual CH.H27UDG8V5(E)A 32nm 128Gb 2MB(8KB Page)QDP 3.3v/x8TSOP / VLGA Now 4CE,Dual CH.H27UEG8YEA 32nm 256Gb 2MB(8KB Page)ODP 3.3v/x8VLGA Now 4CE,Dual CH.H27UAG8T2B 32nm 16Gb 2MB(8KB Page)SDP 3.3v/x8TSOP Now H27UBG8T2B 26nm 32Gb 2MB(8KB Page)SDP 3.3v/x8TSOP Now Legacy H27UCG8U2B 26nm 64Gb 2MB(8KB Page)DDP 3.3v/x8TSOP Jan. '11Legacy H27UDG8V2B 26nm 128Gb 2MB(8KB Page)QDP 3.3v/x8FBGA-100Feb. '11HS(ONFi2.2)H27UEG8Y2B 26nm 256Gb 2MB(8KB Page) ODP 3.3v/x8 FBGA-100 Mar. '11 HS(ONFi2.2)NAND Flash TLC COMPONENT Product Tech Density Block Size Stack Vcc/Org Package Availability Remark H27UAG8M2M 41nm 16Gb 768KB (4KB page)SDP 3.3V/x8VLGA Now H27UBG8M2A 32nm 32Gb 1MB (4KB page) SDP 3.3V/x8 VLGA Now

Linux内核驱动加载顺序

Linux内核驱动加载顺序 【问题】 背光驱动初始化先于LCD驱动初始化,导致LCD驱动初始化时出现闪屏的现象。 【解决过程】 1 mach-xxx.c中platform devices列表如下 /* platform devices */ static struct platform_device *athena_evt_platform_devices[] __initdata = { //&xxx_led_device, &xxx_rtc_device, &xxx_uart0_device, &xxx_uart1_device, &xxx_uart2_device, &xxx_uart3_device, &xxx_nand_device, &xxx_i2c_device, &xxx_lcd_device, &xxxpwm_backlight_device, ... }; LCD(xxx_lcd_device)设备先于PWM(xxxpwm_backlight_device)设备。 可见驱动的初始化顺序并不是和这个表定义的顺序始终保持一致的。(记得PM操作 - resume/suspend 的顺序 是和这个表的顺序保持一致的) 2 怀疑和编译顺序有关 Z:\kernel\drivers\video\Makefile:背光驱动(backlight/)的编译限于LCD驱动(xxxfb.o)的编译 obj-$(CONFIG_VT) += console/ obj-$(CONFIG_LOGO) += logo/ obj-y += backlight/ display/ ... obj-$(CONFIG_FB_xxx) += xxxfb.o ak_logo.o obj-$(CONFIG_FB_AK88) += ak88-fb/ 这样编译生成的System.map中的顺序为: 906 c001f540 t __initcall_pwm_backlight_init6 907 c001f544 t __initcall_display_class_init6 908 c001f548 t __initcall_xxxfb_init6 Makefile更改为: obj-$(CONFIG_VT) += console/ obj-$(CONFIG_LOGO) += logo/ obj-y += display/

NandFlash的基础知识

NAND FLASH的基础知识 NAND Flash 的数据是以bit 的方式保存在memory cell,一般来说,一个cell 中只能存储一个bit。这些cell 以8 个或者16 个为单位,连成bit line,形成所谓的byte(x8)/word(x16),这就是NAND Device 的位宽。这些Line 会再组成Page,(Nand Flash 有多种结构,我使用的Nand Flash 是K9F1208,下面内容针对三星的K9F1208U0M),每页528Byte,每32 个page 形成一个Block, Sizeof(block)=16kByte = 32 page = 32 * 528 byte Numberof(block)=64Mbyte/16kbyte=4096 1page=528byte=512byte(Main Area)+16byte(Spare Area) Nand flash 以页为单位读写数据,而以块为单位擦除数据。按照这样的组织方式可以形成所谓的三类地址: --Block Address -- Page Address --Column Address 对于NAND Flash 来讲,地址和命令只能在I/O[7:0]上传递,数据宽度是8 位。 512byte需要9bit来表示,对于528byte系列的NAND,这512byte被分成1st half和2nd half,各自的访问由地址指针命令来选择,A[7:0]就是所谓的column address。32 个page 需要5bit 来表示,占用A[13:9],即该page 在块内的相对地址。Block的地址是由A14 以上的bit 来表示,例如512Mbit的NAND,共4096block,因此,需要12 个bit 来表示,即A[25:14],如果是1Gbit 的528byte/page的NAND Flash,则block address用A[26:24]表示。而page address就是blcok address|page address in block NAND Flash 的地址表示为:Block Address|Page Address in block|halfpage pointer|Column Address 地址传送顺序是Column Address,Page Address,Block Address。由于地址只能在I/O[7:0]上传递,因此,必须采用移位的方式进行。例如,对于512Mbit x8 的NAND flash,地址范围是0~0x3FF_FFFF,只要是这个范围内的数值表示的地址都是有效的。以NAND_ADDR 为例: ◆第1 步是传递column address,就是NAND_ADDR[7:0],不需移位即可传递到I/O[7:0] 上,而halfpage pointer 即bit8 是由操作指令决定的,即指令决定在哪个halfpage 上进行读写。而真正的bit8 的值是don't care 的。 ◆第2 步就是将NAND_ADDR 右移9 位,将NAND_ADDR[16:9]传到I/O[7:0]上 ◆第3 步将NAND_ADDR[24:17]放到I/O 上 ◆第4 步需要将NAND_ADDR[25]放到I/O 上因此,整个地址传递过程需要4 步才能 完成,即4-step addressing。 如果NAND Flash 的容量是256Mbit 以下,那么,block adress 最高位只到bit24,因此寻址只需要3 步。下面,就x16 的NAND flash 器件稍微进行一下说明。由于一个page 的main area 的容量为256word,仍相当于512byte。但是,这个时候没有所谓的1st halfpage 和2nd halfpage 之分了,所以,bit8就变得没有意义了,也就是这个时候bit8 完全不用管,地址传递仍然和x8 器件相同。除了,这一点之外,x16 的NAND使用方法和x8 的使用方法完全相同。 正如硬盘的盘片被分为磁道,每个磁道又分为若干扇区,一块nand flash也分为若干block,每个block分为如干page。一般而言,block、page之间的关系随着芯片的不同而不同,典型的分配是这样的

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

Linux内核移植开发手册

江苏中科龙梦科技有限公司 Linux内核移植开发手册 修 订 记 录 项 次 修订日期 版 本修订內容修订者审 核 1 2009‐02‐04 0.1 初版发行陶宏亮, 胡洪兵 2 2009‐11‐20 0.2 删除一些 多余文字 陶宏亮, 胡洪兵

DISCLAIMER THIS DOCUMENTATION IS PROVIDED FOR USE WITH LEMOTE PRODUCTS. NO LICENSE TO LEMOTE PROPERTY RIGHTS IS GRANTED. LEMOTE ASSUMES NO LIABILITY, PROVIDES NO WARRANTY EITHER EXPRESSED OR IMPLIED RELATING TO THE USAGE, OR INTELLECTUAL PROPERTY RIGHT INFRINGEMENT EXCEPT AS PROVIDED FOR BY LEMOTE TERMS AND CONDITIONS OF SALE. LEMOTE PRODUCTS ARE NOT DESIGNED FOR AND SHOULD NOT BE USED IN ANY MEDICAL OR LIFE SUSTAINING OR SUPPORTING EQUIPMENT. ALL INFORMATION IN THIS DOCUMENT SHOULD BE TREATED AS PRELIMINARY. LEMOTE MAY MAKE CHANGES TO THIS DOCUMENT WITHOUT NOTICE. ANYONE RELYING ON THIS DOCUMENTATION SHOULD CONTACT LEMOTE FOR THE CURRENT DOCUMENTATION AND ERRATA. JIANGSU LEMOTE TECHNOLOGY CORPORATION LIMITED MENGLAN INDUSTRIAL PARK,YUSHAN,CHANGSHU CITY,JIANGSU PROVINCE,CHINA Tel: 0512‐52308661 Fax: 0512‐52308688 Http: //https://www.360docs.net/doc/8510508170.html,

Nand Flash存储结构及控制方法

Nand Flash存储结构及控制方法(K9F1G08) 2011-02-26 15:05:59| 分类:默认分类 | 标签: mini2440nandflash k9f1g08 |字号订阅 一、NAND Flash介绍和NAND Flash控制器的使用 NAND Flash在嵌入式系统中的作用,相当于PC上的硬盘 常见的Flash有NOR Flash和NAND Flash,NOR Flash上进行读取的效率非常高,但是擦除和写操作的效率很低,容量一般比较小;NAND Flash进行擦除和写操作的效率更高,并且容量更大。一般NOR Flash用于存储程序,NAND Flash 用于存储数据。 1)NAND Flash的物理结构 笔者用的开发板上NAND Flash型号是K9F1G08,大小为128M,下图为它的封装和外部引脚 I/O0-I/O7 数据输入/输出 CLE 命令锁存使能 ALE 地址锁存使能 CE 芯片使能 RE 读使能 WE 写使能 WP 写保护 R/B 就绪/忙输出信号 Vcc 电源 Vss 地 N.C 不接 K9F1G08功能结构图如下

K9F1G08内部结构有下面一些功能部件 ①X-Buffers Latches & Decoders:用于行地址 ②Y-Buffers Latches & Decoders:用于列地址 ③Command Register:用于命令字 ④Control Logic & High Voltage Generator:控制逻辑及产生Flash所需高压 ⑤Nand Flash Array:存储部件 ⑥Data Register & S/A:数据寄存器,读、写页时,数据存放此寄存器 ⑦Y-Gating ⑧I/O Buffers & Latches ⑨Global Buffers ⑩Output Driver

Linux内核驱动模块编写概览-ioctl,class_create,device_create

如果你对内核驱动模块一无所知,请先学习内核驱动模块的基础知识。 如果你已经入门了内核驱动模块,但是仍感觉有些模糊,不能从整体来了解一个内核驱动模块的结构,请赏读一下这篇拙文。 如果你已经从事内核模块编程N年,并且道行高深,也请不吝赐教一下文中的疏漏错误。 本文中我将实现一个简单的Linux字符设备,旨在大致勾勒出linux内核模块的编写方法的轮廓。其中重点介绍ioctl的用途。 我把这个简单的Linux字符设备模块命名为hello_mod. 设备类型名为hello_cl ass 设备名为hello 该设备是一个虚拟设备,模块加载时会在/sys/class/中创建名为hello_class 的逻辑设备,在/dev/中创建hello的物理设备文件。模块名为hello_mod,可接受输入字符串数据(长度小于128),处理该输入字符串之后可向外输出字符串。并且可以接受ioctl()函数控制内部处理字符串的方式。 例如: a.通过write函数写入“Tom”,通过ioctl函数设置langtype=chinese,通过read函数读出的数据将会是“你好!Tom/n” b.通过write函数写入“Tom”,通过ioctl函数设置langtype=english,通过read函数读出的数据将会是“hello!Tom/n” c.通过write函数写入“Tom”,通过ioctl函数设置langtype=pinyin,通过read函数读出的数据将会是“ni hao!Tom/n” 一般的内核模块中不会负责设备类别和节点的创建,我们在编译完之后会得到.o或者.k o文件,然后insmod之后需要mk nod来创建相应文件,这个简单的例子 中我们让驱动模块加载时负责自动创建设备类别和设备文件。这个功能有两个步骤, 1)创建设备类别文件class_cr eate(); 2)创建设备文件dev ice_create(); 关于这两个函数的使用方法请参阅其他资料。 linux设备驱动的编写相对wi ndows编程来说更容易理解一点因为不需要处理IR P,应用层函数和内核函数的关联方式浅显易懂。 比如当应曾函数对我的设备调用了open()函数,而最终这个应用层函数会调用我的设备中的自定义open()函数,这个函数要怎么写呢, 我在我的设备中定义的函数名是hello_mod_open,注意函数名是可以随意定义,但是函数签名是要符合内核要求的,具体的定义是怎么样请看 static int hello_mod_open(struct inode *, struct file *); 这样就定义了内核中的open函数,这只是定义还需要与我们自己的模块关联起来,这就要用到一个结构 struct file_operations 这个结构里面的成员是对应于设备操作的各种函数的指针。 我在设备中用到了这些函数所以就如下定义,注意下面的写法不是标准ANSI C的语法,而是GNU扩展语法。 struct file_operations hello_mod_fops = { .owner = THIS_MODULE, .open = hello_mod_open,

相关文档
最新文档