随机数学-概率论与数理统计--概率作业A答案

随机数学-概率论与数理统计--概率作业A答案
随机数学-概率论与数理统计--概率作业A答案

普通高等教育“十一五”国家级规划教材

随机数学

(A)

标准化作业简答

吉林大学公共数学中心

2013.2

第一次作业

一、填空题 1.解:应填

29

. 分析:样本空间含基本事件总数2

10C ,事件所含基本事件数为10个,即(1,2),

(2,3)…,(9,10),(10,1)共10个,故所求概率为

210102

9

C =. 2.应填0.6.

分析: ()()()1()1()()()P AB P A B P A B P A B P A P B P AB ==+=-+=--+, 故()1()0.6.P B P A =-=

3.应填1

5.

4. 应填1725

. 5.应填

23. 6

. 二、选择题

1.(D ).2.(C ).3.(B ).4.(C ).5.(C ).6.(A ). 三、计算题

1.将n 只球随机地放入N ()n N ≤个盒子中,设每个盒子都可以容纳n 只球,求:(1)每个盒子最多有一只球的概率1p ;(2)恰有()m m n ≤只球放入某一个指定的盒子中的概率2p ;(3)n 只球全部都放入某一个盒子中的概率3p .

解:此题为古典概型,由公式直接计算概率.

(1)1n

N n P p N

=.

(2)2(1)m n m

N n

C N p N --=.

(3)31

1

n n N p N N -=

=

.

2.三个人独立地去破译一份密码,已知每个人能译出的概率分别为111

,,534,问三人

中至少有一人能将此密码译出的概率是多少?

解:设i A 表示事件“第i 个人译出密码”,1,2,3.i =B 表示事件“至少有一人译出密码”.

则1231234233

()1()1()()()15345

P B P A A A P A P A P A =-=-=-

=. 3.随机地向半圆)0(202>-<

4

π

的概率. 解:此为几何概型问题.

设A 表示事件“原点与该点的连线与x 轴夹角小于4

π

”. 则2

221142()22

a a P A a πππ+=

=+. 4.仪器中有三个元件,它们损坏的概率都是0.2,并且损坏与否相互独立.当一个元件损坏时, 仪器发生故障的概率为0.25,当两个元件损坏时,仪器发生故障的概率为0.6,当三个元件损坏时,仪器发生故障的概率为0.95, 当三个元件都不损坏时,仪器不发生故障.求:(1)仪器发生故障的概率;(2)仪器发生故障时恰有二个元件损坏的概率.

解: 设A 表示事件“仪器出现故障”,

B i 表示事件“有i 个元件出现故障”,i =1,2,3. (1)3

1()()()i i i P A P B P A B ==∑,

384.08.02.03)(21=??=B P ,2

2()30.20.80.096P B =??=,008.02.0)(33==B P .

所以1612.095.0008.06.0096.025.0384.0)(=?+?+?=A P . (2)22()0.0960.6

()0.3573()0.1612

P AB P B A P A ?=

==. 5.在100件产品中有10件次品;现在进行5次放回抽样检查,每次随机地抽取一件产品,求下列事件的概率:(1)抽到2件次品;(2)至少抽到1件次品.

解:设i A 表示取到i 件次品,0,1,2,3,4,5.i = (1)()()2

3

225()0.110.10.73.P A C =-≈ (2)()50()110.10.41.P A =--≈

四、证明题

1.设0()1,0()1,(|)(|)1P A P B P A B P A B <<<<+=,证明事件A 与B 相互独立. 证明:由定义证明.

(|)(|)1(|)1(|)(|)()()

()()

()()()()1()()()()P A B P A B P A B P A B P A B P AB P AB P B P B P AB P A P AB P B P B P AB P A P B +=?=-=?

=-?=

-?=

所以事件A 与B 相互独立.

2.已知任意事件123,,,A A A A 满足()1,2,3i A A i ?=,证明

123()()()()2P A P A P A P A ≥++-.

证明:已知3

1

,1,2,3.i i i A A i A A =?=?

?U

()()()()()()()()()()()()()()()()()()()()()()

121213132323123123121323;33P A P A P A P A A P A P A P A P A A P A P A P A P A A P A P A P A P A P A P A P A P A A P A A P A A ?≥+-≥+-≥+-???≥++??

??-++---??

()()()()()()()()1231233362.

P A P A P A P A P A P A P A P A ???≥++-???≥++-

第二次作业

一、填空题 1.应填

1124

. 2. 应填

3.应填

964

. 4 5.应填

1927

. 6. 应填0.2. 7. 应填0.975. 二、选择题

1.(D ).

2.(D ). 3.(A ).4.(B ).5.(D ).6. (C ). 7.(C ). 三、计算题

1.一批产品由9个正品和3个次品组成,从这批产品中每次任取一个,取后不放回,直到取得正品为止.用X 表示取到的次品个数,写出X 的分布律和分布函数.

解:X 的分布律为

X 的分布函数为

0,

0,3

,01,421(),12,22119

,23,2201,

3.x x F x x x x

≥??

2.设随机变量X 的概率分布为

(1)求2Y X =-的概率分布;(2)求Z X =的概率分布. 解:倒表即可.

3.设连续型随机变量X 的概率密度为

,

01,()(2),12,0,,x x f x k x x ≤

=-≤

其它

求:(1)k 的值;(2)X 的分布函数.

解:(1)由1

2

1

1(2)122

k

xdx k x dx +-=

+=??,得1=k . (2)当0x <时,()0F x =,

当01x ≤<时201

()()d 2

x F x f t t x ==?,

当12x ≤<时120011

()()d (2)d 212

x x F x f t t tdt t t x x ==+-=--???,

当2x >时,()1F x =.

4.设随机变量X 服从正态分布(3,4)N ,求:{23},{||2}P X P X <<>,{||3}P X <. 解:11

{23}{

0}(0)()(0.5)0.5.22

P X P X ΦΦΦ-<<=<<=--=- {||2}1{||2}1(2.5)(0.5).P X P X ΦΦ>=-≤=-+

{||3}(3)0.5.P X Φ<=-

5.设连续型随机变量X 的分布函数为0,

,()arcsin ,,(0)1,,x a x F x A B a x a a a x a ≤-???

=+-<<>??

≥??

求:(1)常数A 、B .(2)随机变量X 落在,22a a ??

- ???

内的概率.(3)X 的概率密度函

数.

解:(1)(0)0,(0)12

2F a A B F a A B π

π

+=-

=-=+

=,得11

,.2A B π

== (2)1()(0).2

2223a

a a a P X F F ??-<<=---=????

(3)X

的概率密度函数,()()0,x a f x F x <'==?

其 它.

6.已知随机变量X 的概率密度为

,

0<1,()0,

ax b x f x +

?其 他,

且15,28P X ?

?>=???

?求(1)常数,a b 的值;(2)11.42P X ??<≤????

解:(1)由101

1()d ()d 2

f x x ax b x a b +∞-∞==+=+??,

再由112

5131

{}()d ,8282P X ax b x a b =>=+=+?

解得1

1,2

a b ==

. (2)1

214

1117

{}()d .42232P X x x <≤=+=?

7.已知随机变量X 的概率密度为1

()e ,,2x X f x x -=-∞<<+∞又设1,0,1,0,X Y X +>?=?-≤?

求:

(1)Y 的分布律;(2)计算12P Y ?

?>???

?.

解:(1),21)0(}0{}1{==≤=-=X F X P Y P .2

1

211}1{1}1{=-=-=-==Y P Y P 分布律为

Y -1 1

k p 21 21

(2)1122P Y ?

?>=???

?.

8.已知随机变量X 的概率密度为

e ,0,

()0,0,x x f x x -?>=?≤?

求:随机变量2Y X =的概率密度函数.

解:设Y 的分布函数为{}()Y F y P Y y =≤.

当0y <时,{}{

}2()0Y F y P Y y P X y =≤=≤=,

当0y ≥时,{}{

}2

()(Y

X

X F y P Y y P X

y F

F =≤=≤=-,

因此Y

的概率密度函数为0,()0,0.Y y f y y >=

四、证明题

1. 设随机变量X 服从正态分布2(,)N μσ,证明:(0)Y aX b a =+≠仍然服从正态分布,并指出参数.

解:教材59页例题.

2. 设随机变量X 服从参数为2λ=的指数分布,证明:21e X Y -=-服从[0,1]上的均匀分布.

解:设21e X Y -=-的分布函数为(),Y F y 取值范围为[0,1]. 当0y <时,{}()0Y F y P Y y =≤=,

当01y ≤<时,{}{}21

()1e (ln(1))2X Y X F y P Y y P y F y -=≤=-≤=--,

当1y ≥时,{}()1Y F y P Y y =≤=,

因此Y 的概率密度函数为1,01,

()0,.Y y f y <

其 它

第三次作业

一、填空题

1.max{,}X Y 的分布律为

2. {}1,1,2,2m m P X m m +===L ,{}

1

,1,2,2n

P Y n n ===L . 3.应填0. 4.应填112e

-

. 5.应填22221,,

(,)0,x y R f x y R π?+≤?=???其

它.

6. 应填3.

7. 应填()X F x =(())n F x . 二、选择题

1.(B ). 2.(B ). 3.(A ). 4.(C ). 5.(D ). 6.(D ). 7.(B ). 三、计算题

1.设随机变量X 在1,2,3,4四个数字中等可能取值,随机变量Y 在1~X 中等可能地取一整数值,求(,)X Y 的概率分布,并判断X 和Y 是否独立.

解:(,)X Y 的概率分布为

可以验证X 和Y 不相互独立.

2. 设随机事件A 、B 满足11

(),()(),42P A P B A P A B ===令1,0A X A ?=??发生,,不发生,

1,

0B Y B ?=??

发生,,不发生,求(1)(,)X Y 的概率分布;(2)Z X Y =+的概率分布.

解:(1)111(),()()4312P A P B A P AB ==?=,11()()26

P A B P B =?=

{}2

0,0()1()()()3

P X Y P AB P A P B P AB ====--+=,

{}10,1()()()12

P X Y P AB P B P AB ====-=, {}11,06P X Y ===

,{}11,112

P X Y ===. (2)Z 可能取值为0,1,2.{}{}{}211

0,1,2.3412

P Z P Z P Z ======

3.已知随机变量X 和Y 相互独立,且都服从正态分布2(0,)N σ,求常数R ,使得概

率}0.5P R =.

解:X 的概率密度为22

2(),

x X f x σ

-=

Y 的概率密度为22

2(),y Y f y σ-

=

由于X 和Y 相互独立,从而联合概率密度为222

22

1(,)e ,2x y f x y σπσ

+-

=

22

2

2

2222

001}d e

d 1e

0.52r R R

P R r r π

σ

σθπσ-

-

≤=

=-=??,

解得R =.

4.已知二维随机变量(,)X Y 的概率密度为(2)e ,0,0,

(,)0,x y k x y f x y -+?>>=??

其它.(1)求系

数k ;(2)条件概率密度()X Y f x y ;(3)判断X 和Y 是否相互独立;(4)计算概率{}21P X Y <<;(5)求min{,}Z X Y =的密度函数()Z f z .

解:(1)由(,)d d 1,f x y x y +∞

+∞

-∞

-∞

=?

?

得2k =.

(2)关于X 和Y 的边缘概率密度分别为22e ,0,()0,0,x X x f x x -?>=?≤?e ,0,

()0,0.y Y y f x y -?>=?

≤?

从而X 和Y 是相互独立的,()X Y f x y 22e ,0,

0,0.x x x -?>=?≤?

(3)相互独立.

(4){}4211e P X Y -<<=-.

(5)min{,}Z X Y =的分布函数为31e ,0,()0,0.z Z z F z z -?->=?≤?所以33e ,0,

()0,0.z Z z f z z -?>=?≤?

5. 设随机变量U 在区间[2,2]-上服从均匀分布,令1

1,

11,

U X U -≤-?=?

>-?若若

11,

1

1,

U Y U -≤?=?

>?若若求(,)X Y 的联合分布律.

解:(,)X Y 可能取的值为(-1,-1),(-1,1),(1,-1),(1,1)

{}{}{}11,1114

P X Y P U P U =-=-=≤-≤=

, {}{}{}1,1110P X Y P U P U =-==≤->=,

{}{}{}11,1112

P X Y P U P U ==-=>-≤=, {}{}{}11,1114

P X Y P U P U ===>->=

. 6.设(,)X Y 的概率密度1,01,02,

(,)0,.x y x f x y <<<

其 它求2Z X Y =-的概率密度.

解:设z 的分布函数为()Z F z ,取值范围[0,2],当0z <时,()0Z F z =, 当02z ≤<时,{}21

()24

Z F z P X Y z z z =-≤=-,

当2z ≥时,()1Z F z =.

从而2Z X Y =-的概率密度1

1,02

()20,.Z z z f z ?-<

其他

第四次作业

一、填空题

1.应填()E X =-0.2, 2()E X =2.8,,13.4.

2.应填22

12(23)43D X Y σσ-=+.

3.应填2()5E Y =. 4.应填13. 5.应填

22()6

b ab a π

++.

6.应填8()9D Y =.

7.应填41()5E X =,31

()7

D X =. 二、选择题

1.(C ). 2.(D ). 3.(B ).4. (B ).5.(A ). 6.(C ). 7.(C ). 三、计算题

1.设随机变量X 的概率密度为

,

02,(),24,0,ax x f x cx b x <

=+≤

其它.

已知3

()2,{13}4

E X P X =<<=

,求,,a b c 的值. 解:由以下三个条件

()d 12621,f x x a c b +∞

-∞

=?++=?

()d 242893,EX xf x x a c b +∞-∞

==?++=?

32311233

{13}()d d ()d 61043,44

P X f x x ax x cx b x a c b <<=

?=++=?++=??? 解得11

,1,44

a b c ===-.

2.设二维随机变量(,)X Y 的概率密度为1

(),02,02,

(,)80,

,x y x y f x y ?+≤≤≤≤?=???其 它

求(),(),cov(,),XY E X E Y X Y ρ和()D X Y +.

解:220017

()()d ()d 86

E X E Y x x x y y ==+=??,

222220015()()d ()d 83E X E Y x x x y y ==+=??,11

()()36D X D Y ==,

220014

()d ()d 83

E XY x xy x y y =+=??,

1

cov(,)()()()36

X Y E XY E X E Y =-=-

111XY ρ=

=-

,5()()()2cov(,)9

D X Y D X D Y X Y +=++=. 3.设二维离散型随机变量(,)X Y 的联合概率分布为

(1)写出关于X 、Y 及XY 的概率分布;(2)求X 和Y 的相关系数XY ρ. 解:(1)

(2)4()3E X =

,()1E Y =,4

()3

E XY =,Cov(,)0X Y =,0XY ρ=.

4.在数轴上的区间[0,]a 内任意独立地选取两点M 与N ,求线段MN 长度的数学期望.

解:设两点的坐标分别为X ,Y ,则(X ,Y )的联合概率密度为

2

1

,0,,

(,)0,x y a f x y a ?≤≤?=???其

它. 所求2

()d d 3

a

a

x y a E X Y x y a --==

?

?

. 5.一民航送客车载有20名乘客自机场开出,旅客有10个车站可以下车,如到达一个车站没有旅客下车就不停车,假设每位旅客在各个车站下车的可能性相同,且各个旅客是否下车相互独立,求停车次数X 的数学期望.

解:引入随机变量,令

0,1,2,,10.1

i i X i i ?==??L 第站不停,,第站停,

从而110X X X =++L ,又{}{}20

20

990,111010i i P X P X ????

====- ? ?????

所以()()2020

()10.9,()1010.98.784i E X E X ??=-=?-≈??

(次).

6.假设由自动流水线加工的某种零件的内径X (毫米)服从正态分布(,1)N μ,内径小于10或大于12为不合格品,其余为合格品;销售合格品获利,销售不合格品亏损,已知销售一个零件的利润T (元)与零件内径X 的关系为

1,10,20,1012,5,12,X T X X -

=≤≤??->?

问平均内径μ取何值时,销售一个零件的平均利润最大. 解:{}{}{}20101210512ET P X P X P X =?≤≤-<->

25(12)21(10)5μμ=Φ--Φ--

令2

d 250,11ln 10.9d 21ET μμ??

==-≈ ???

得(mm ) 即平均内径μ取10.9mm 时,销售一个零件的平均利润最大.

第五次作业

一、填空题 1.应填

112

. 2.应填0.975. 二、选择题 1.(B ). 2.(D ). 三、计算题

1.某保险公司多年的统计资料表明,在索赔客户中被盗索赔占20%,以X 表示在随机抽查的100个索赔客户中因被盗向保险公司索赔的户数.(1)写出X 的概率分布;(2)利用德莫佛—拉普拉斯定理,求被盗索赔客户不少14户且不多于30户的概率的近似值.

解:(1)索赔户为X ,则~(100,0.2)X B , (2)由De Moivre-Laplace 极限定理

{

}1430P X P ≤≤=≤≤

53

()()0.927.22

≈Φ-Φ-≈

2.设某种元件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为40小时,在使用中当一个元件损坏后立即更换另一个新的元件,如此继续下去.已知每个元件的进价为a 元,试求在年计划中应为购买此种元件作多少预算,才可以有95%的把握保证一年够用(假定一年按照2000个工作小时计算).

解:假设一年需要n 个元件,则预算经费为na 元. 设每个元件的寿命为,i X 则n 个元件使用寿命为1,n

i i X =∑

由题意120000.95,n i i P X =??≥≥????

∑又2211

40,40,i i EX DX λλ====

由独立同分布中心极限定理,()21

~40,40,n

i i X N n n =∑

1200010.95 1.6463.04,n i i P X n =??

≥=-Φ≥≥?≥????∑ 故年预算至少应为64a 元.

3.一条生产线的产品成箱包装,每箱的重量时随机的.假设平均重50千克,标准差为5千克.如果用最大载重量为5吨的汽车承运,试利用中心极限定理说明每量车最多可以装多少箱,才能保证不超载的概率大于0.977,((2)0.977Φ=.)

解:设i X 是装运的第i 箱的重量,n 是箱数,且()5,1,2,.i E X i n ===L

{}50000.977

n P T P ≤=≤≈Φ> 解得98.0199,n <,即最多可以装98箱.

第六次作业

一、填空题

1.应填1

n

i i

i n x x n

==∑,2

2

11()1n i i s x x n ==--∑

,s = 2.应填a =

120,b =1100

,2. 3.应填()E X mp =,(1)

()mp p D X n

-=. 4.应填(1).t n -

5.应填1

12e ,0,

(,,,)0,

0.n

i i x

n i

n i x f x x x x λλ=-∑??>=??≤?L 二、选择题

1.(B ).2.(C ).3.(D ).4.(D ). 5.(A ). 三、计算题

1.从正态总体N (20, 3) 中分别抽取容量为10和15的两个相互独立样本,求样本均值之差的绝对值大于0.3的概率.

解:设样本均值为,X Y ,则~(0,0.5)U X Y N =-,

{

}

0.31220.6744.P X Y P ?->=-≤=-Φ≈

2.设128,,,X X X L 是来自正态总体(0,0.2)N 的样本,试求k ,使

{}

821

0.95i i P

X k =<=∑

解:因为228

2

21~~(0,1),~(1),~(8)0.20.2

i i i i X X X N N χχ=∑. 所以{

}

8

221

(8)0.950.2i i k P

X k

P χ=?

?<=<=????

∑,

查表得

15.5070.2

k

=,即 3.1014.k = 3.设12,,,n X X X L 是取自正态总体2~(,)X N μσ的一个样本,样本均值为X ,样本方

差为2S ,22(),(),(),().E X D X E S D S

解:2

22();();(),E X D X E S n

σμσ===

2

22

2

22

24

(1)(1)(1)~(1),()2(1),n S n S n n D D S n χσσσ??----==- ???

从而4

2

2().1D S n σ=-

4.设总体X 的概率密度为

2cos2,0,()40,

,x x f x π?

<

12,,,n X X X L 为总体X 的样本,求样本容量n ,使1215

{min(,,,)}1216

n P X X X π

<

≥L . 解:先求X 的分布函数,代入有 115

1[1()]1,12216

n

n

p F π

??=--=-≥ ???

解得4n ≥,故n 取4.

5.已知二维随机变量(,)X Y 服从二维正态分布2

2

(0,1,2,3,0)N ,判断2

2

94(1)X F Y =-服从

的概率分布.

解:由题意~(0,2),~(1,9)X N Y N ,且相互独立, 从而

1~(0,1),~(0,1)23

X Y N N -, 即222

2(1)~(1),~(1)49

X Y χχ-,

由F 分布的定义2

2

9~(1,1).4(1)X F F Y =

-

第七次作业

一、填空题 1.应填X λ=$. 2.应填22X θ

=-$. 3.应填X λ=$. 4.应填(0.98,0.98)-. 5.35. 二、选择题

1.(B ).2.(D ).3.(C ).4.(A ). 三、计算题

1.设总体X 具有概率分布

其中()01θθ<<是未知参数,已知来自总体X 的样本值为1,2,1.求θ的矩估计值和最大似然估计值.

解:4()23,3E X x θ=-+=

,令()E X x =,解得θ的矩估计值为μ1

56

θ=. 似然函数为5()2(1),ln ()ln 25ln ln(1)L L θθθθθθ=-=++-, 令

dln ()51

0d 1L θθθθ

=-=-, 解得θ的最大似然值为μ25

6

θ=. 2.设总体X 的分布函数为

11(),1,

(;)0,

1.x F x x

x ββ?

->?=??≤? 其中参数1β>是未知参数,又12,,,n X X X L 为来自总体X 的随机样本,(1)求X 的概率密度函数( ; )f x β;(2)求参数β的矩估计量;(3)求参数β的最大似然估计量.

解:由题意

(1)1,1,( ; )0,

1.x f x x x ββ

β+?>?

=??≤?

(2)μ1

1

d 1

1

X

EX x

x X x

X ββ

ββ

β+∞

+==

=?=--?

. (3)设1,,n x x L 为一组样本值,似然函数为

111

,1,()(;)1,2,,.()0,.n

n

i i n i x L f x i n x x ββββ+=?>?

===???

L L 其 他

当1i x >时,1ln ()ln (1)ln()n L n x x βββ=-+L 令1

dln ()ln 0d n

i i L n x βββ==-=∑,

得β的最大似然估计量为μ1

.ln n

i

i n

X

β

==∑

四、证明题

1.设总体X 的均值()E X μ=及方差2()0D X σ=>都存在,μ与2σ均未知,12,,,n X X X L 是X 的样本,试证明不论总体X 服从什么分布,样本方差

()

2

2

1

11n

i i S X X

n ==--∑都是总体方差2()D X σ=的无偏估计.

证明:教材145~146页.

2.设123,,X X X 是总体X 的样本,()E X μ=,2()D X σ=存在,证明估计量

μ11232

11366X X X μ=++, ?2123111424X X X μ=++, ?3123

311555

X X X μ=++ 都是总体X 的均值()E X 的无偏估计量;并判断哪一个估计量更有效.

证明:μ2221231311(),(),(),()2825

i E D D D μμμσμσμσ====, 因为2()D μ最小,所以?2123

111424X X X μ=++更有效.

全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二) 课程代码:02197 选择题和填空题详解 试题来自百度文库 答案由王馨磊导师提供 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=5 3, 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936 解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8 解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4 )3(2 e 2 π21)(+-= x x f , 则E (X ), D (X )分别为 ( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为? ??≤≤≤≤=,,0, 20,20,),(其他y x c y x f 则常数 c = ( A ) A .4 1 B .2 1 C .2 D .4 解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为 则称 (X ,Y )服从区域D 上的均匀分布,

概率论与数理统计第4章作业题解

第四章作业题解 4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知 ,X Y 的概率分布如下表所示: 如果两台机床的产量相同, 问哪台机床生产的零件的质量较好? 解: 11.032.023.014.00)(=?+?+?+?=X E 9.0032.025.013.00)(=?+?+?+?=Y E 因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。 4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ). 解:X 的可能取值为3,4,5. 因为1.01011)3(35 == = =C X P ;3.010 3)4(35 2 3== = =C C X P ; 6.010 6)5(3 5 24=== =C C X P 所以 5.46.053.041.03)(=?+?+?=X E 4.3 设随机变量X 的概率分布1 {}(0,1,2,),(1) k k a P X k k a +===+ 其中0a >是个常 数,求()E X 解: 1 1 2 1 1 1 ()(1) (1) (1) k k k k k k a a a E X k k a a a -∞ ∞ +-=== = +++∑∑ ,下面求幂级数11 k k k x ∞ -=∑的和函数, 易知幂级数的收敛半径为1=R ,于是有 1 2 1 1 1()( ),1,1(1) k k k k x k x x x x x ∞ ∞ -==''=== <--∑ ∑

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

概率论与数理统计练习题

概率论与数理统计练习题 一、填空题 1、设A 、B 为随机事件,且P (A)=,P (B)=,P (B A)=,则P (A+B)=__ __。 2、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 3、设A 、B 为随机事件,且P (A )=, P (B )=, P (A ∪B )=,则P (B A )=。 4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5. 设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α= 。 6. 已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (Y )= 3/4 。 7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。设Z =X -Y +3,则Z ~ N (2, 13) 。 * 8. 设A ,B 为随机事件,且P (A)=,P (A -B)=,则=?)(B A P 。 9. 设随机变量X ~ N (1, 4),已知Φ=,Φ=,则{}=<2X P 。 10. 随机变量X 的概率密度函数1 22 1 )(-+-= x x e x f π ,则E (X )= 1 。 11. 已知随机向量(X ,Y )的联合密度函数 ?? ?≤≤≤≤=其他 , 010,20, ),(y x xy y x f ,则 E (X )= 4/3 。 12. 设A ,B 为随机事件,且P (A)=, P (AB)= P (B A ), 则P (B )= 。 13. 设随机变量),(~2σμN X ,其密度函数6 4 4261)(+-- = x x e x f π ,则μ= 2 。 14. 设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 1 。 15. 随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。 16. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为3 1 ,41,51,则目标能被击中 的概率是3/5 。 17. 设随机变量X ~N (2,2σ),且P {2 < X <4}=,则P {X < 0}= 。 ! 18. 设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望

概率论与数理统计课后习题答案

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数 (设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产 品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上 “正品”,不合格的记上“次品”,如连续查出2个次品 就停止检查,或检查4个产品就停止检查,记录检查的 结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100, 1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

(2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC , (5)C B A , (6)C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, (8)BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作 图说明。 (1)B B A B A =(2)AB B A = (3)AB B A B =?则若,(4)若 A B B A ??则, (5)C B A C B A = (6)若Φ=AB 且A C ?,

《概率论与数理统计》在线作业

第一阶段在线作业 第1题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:对立不是独立。两个集合互补。第2题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:A发生,必然导致和事件发生。第3题

您的答案:B 题目分数:0.5 此题得分:0.5 批注:分布函数的取值最大为1,最小为0. 第4题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:密度函数在【-1,1】区间积分。第5题

您的答案:A 题目分数:0.5 此题得分:0.5 批注:A答案,包括了BC两种情况。 第6题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:古典概型,等可能概型,16种总共的投法。第7题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:几何概型,前两次没有命中,且第三次命中,三次相互独立,概率相乘。 第8题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:利用随机变量单调性函数的概率密度求解公式公式。中间有反函数求导数,加绝对值。第9题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用概率密度的性质,概率密度在相应范围上的积分值为1.验证四个区间。 第10题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用分布函数的性质,包括分布函数的值域[0,1]当自变量趋向无穷时,分布函数取值应该是1.排除答案。 第11题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用上分位点的定义。 第12题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用和事件的公式,还有概率小于等于1.P(AB)小于等于P(C)。第13题

概率论与数理统计答案,祝东进

习题 1. 写出下列随机试验的样本空间: (1) 掷两颗骰子,观察两颗骰子出现的点数. (2) 从正整数中任取一个数,观察取出数的个位数. (3) 连续抛一枚硬币,直到出现正面时为止. (4) 对某工厂出厂的产品进行检查,如连续检查出两个次品,则停止检查,或 检查四个产品就停止检查,记录检查的结果. (5) 在单位圆内任意取一点,记录它的坐标. 解:(1){(,)|1,2,,6,1,2, ,6}i j i j Ω===; (2){|0,1, ,9}i i Ω==; (3)Ω={(正), (反, 正), (反, 反, 正), (反, 反, 反, 正), … }; (4)Ω={(次, 次), (次, 正, 正, 正), (次, 正, 正, 次), (次, 正, 次, 次), (次, 正, 次,正), (正, 次, 次), (正, 次, 正, 正), (正, 次, 正, 次)}; (5)22{(,)|,,1}x y x R y R x y Ω=∈∈+≤. 2. 在掷两颗骰子的试验中写出下列事件的集合表示: (1) A =”出现的点数之和为偶数”. (2) B =”出现的点数之和为奇数, 但没有骰子出现1点”. (3) C =”至少掷出一个2点”. (4) D =”两颗骰子出现的点数相同”. 解: (1) {(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),A = {(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)}=; (2){(2,3),(2,5),(3,2),(3,4),(3,6),(4,3),(4,5),(5,2),(5,4),(5,6),(6,3),(6,5)}B =; (3){(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2)}C =; (4){(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}D =. 3. 设,,A B C 是三个事件,试用,,A B C 来表示下列事件:

概率论与数理统计考研复习资料

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.A ?B(事件B 包含事件A )事件A 发生必然导致事件B 发生. 2.A ∪B(和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A -B(差事件)事件A 发生而B 不发生. 5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A = B A B A = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n , P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n ()()() () +∑ + ∑ - ∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 111 21 …+(-1)n-1P(A 1A 2…A n ) 四.等可能(古典)概型 1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率 1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)= ()()i n i i B A P B P ∑=1

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案 第七章参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σμ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。 解:(1)X c θc θc c θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θ n n n i i x x x c θ x f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

《概率论与数理统计》基本名词中英文对照表

《概率论与数理统计》基本名词中英文对照表英文中文 Probability theory 概率论 mathematical statistics 数理统计 deterministic phenomenon 确定性现象 random phenomenon 随机现象 sample space 样本空间 random occurrence 随机事件 fundamental event 基本事件 certain event 必然事件 impossible event 不可能事件 random test 随机试验 incompatible events 互不相容事件 frequency 频率 classical probabilistic model 古典概型 geometric probability 几何概率 conditional probability 条件概率 multiplication theorem 乘法定理 Bayes's formula 贝叶斯公式 Prior probability 先验概率 Posterior probability 后验概率 Independent events 相互独立事件 Bernoulli trials 贝努利试验 random variable 随机变量

probability distribution 概率分布 distribution function 分布函数 discrete random variable 离散随机变量distribution law 分布律hypergeometric distribution 超几何分布 random sampling model 随机抽样模型binomial distribution 二项分布 Poisson distribution 泊松分布 geometric distribution 几何分布 probability density 概率密度 continuous random variable 连续随机变量uniformly distribution 均匀分布exponential distribution 指数分布 numerical character 数字特征mathematical expectation 数学期望 variance 方差 moment 矩 central moment 中心矩 n-dimensional random variable n-维随机变量 two-dimensional random variable 二维离散随机变量joint probability distribution 联合概率分布 joint distribution law 联合分布律 joint distribution function 联合分布函数boundary distribution law 边缘分布律

概率论与数理统计习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

【解】令1,,0,i i X ?? ?若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且 X 1,X 2,…,X n 独立同分布,p =P {X i =1}=. 现要求n ,使得 1 {0.760.84}0.9.n i i X P n =≤ ≤≥∑ 即 0.80.9n i X n P -≤≤≥∑ 由中心极限定理得 0.9,Φ-Φ≥ 整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能 才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,

福州大学概率论与数理统计课后习题答案高等教育出版社

福州大学概率论与数理统计课后习题答案 高等教育出版社 习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数 之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下 事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和: C B A ++,C AB +,AC B -.

概率论与数理统计基本知识

概率论与数理统计基本知识点 一、概率的基本概念 1.概率的定义: 在事件上的一个集合函数P ,如果它满足如下三个条件: (1)非负性 A A P ?≥,0)( (2)正规性 1)(=ΩP (3)可列可加性 若事件,...,2,1,=n A n 两两互斥 则称P 为概率。 2.几何概型的定义: 若随机试验的样本空间对应一个度量有限的几何区域S ,每一基本事件与S 内的点一一对应,则任一随机事件A 对应S 中的某一子区域D 。(若事件A 的概率只与A 对应的区域D 的度量成正比,而与D 的形状及D 在S 中的位置无关。)==(每点等可能性)则称为几何概型。 的度量 对应区域的度量 对应区域S D )()()(Ω=Ω= A m A m A P 3.条件概率与乘法公式: 设A,B 是试验E 的两个随机事件,且0)(>B P ,则称) () ()|(B P AB P B A P = 为事件B 发生的条件下,事件A 发生的条件概率。(其中)(AB P 是AB 同时发生的概率) 乘法公式:)|()()|()()(B A P B P A B P A P AB P == 4.全概率公式与贝叶斯公式: (全概率公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则有∑== n i i i A B P A P B P 1 )|()()(。 (贝叶斯公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则∑== =?n k k k i i A B P A P A B P A P B A P n i 1 ) |()() |()()|(,,...,2,1。 5.事件的独立性: 两事件的独立性:(定义)设A 、B 是任意二事件,若P(AB)= P(A)P(B),则称事件A 、B 是相互独立的。(直观解释)A 、B 为试验E 的二事件,若A 、 B 的发生互不影响。 二、随机变量和分布函数:

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

相关文档
最新文档