导数大题答题模板

导数大题答题模板
导数大题答题模板

利用导数研究函数的零点与不等式答题模板

函数是中学数学的核心内容,而导数是研究函数的重要工具,因此,导数的应用是历年高考的重点与难点.常涉及的问题有:讨论函数的单调性(求函数的单调区间),求极值、最值、切线方程、函数的零点或方程的根,求参数的范围及函数的零点、证明不等式等,涉及的数学思想有:函数与方程、分类讨论、数形结合、转化与化归等

一、利用导数研究函数的零点问题

1.设函数f (x )=ln x +m x

,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;

(2)讨论函数g (x )=f ′(x )-x 3

零点的个数. 解:(1)由题设,当m =e 时,f (x )=ln x +e x

, 定义域为(0,+∞),则f ′(x )=

x -e x 2

, 由f ′(x )=0,得x =e.

所以当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减;

当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增,

所以当x =e 时,f (x )取得极小值f (e)=ln e +e e

=2, 所以f (x )的极小值为2.

(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0), 令g (x )=0,得m =-13

x 3+x (x >0). 设φ(x )=-13

x 3+x (x >0), 则φ′(x )=-x 2+1=-(x -1)(x +1),

当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;

当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.

所以x =1是φ(x )的唯一极值点,且是极大值点,

因此x =1也是φ(x )的最大值点.

所以φ(x )的最大值为φ(1)=23

. 又φ(0)=0,结合y =φ(x )的图象(如图),

可知①当m >23

时,函数g (x )无零点; ②当m =23

时,函数g (x )有且只有一个零点; ③当0

时,函数g (x )有两个零点; ④当m ≤0时,函数g (x )有且只有一个零点.

综上所述,当m >23

时,函数g (x )无零点; 当m =23

或m ≤0时,函数g (x )有且只有一个零点; 当0

时,函数g (x )有两个零点. 2.已知f (x )=ax 2(a ∈R ),g (x )=2ln x .

(1)讨论函数F (x )=f (x )-g (x )的单调性;

(2)若方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.

[解] (1)F (x )=ax 2-2ln x ,

其定义域为(0,+∞),

所以F ′(x )=2ax -2x =2(ax 2-1)x

(x >0). ①当a >0时,由ax 2-1>0,得x >

1a

; 由ax 2-1<0,得00时,F (x )在区间????1a ,+∞上单调递增,在区间?

???0,1a 上单调递减. ②当a ≤0时,F ′(x )<0(x >0)恒成立.

故当a ≤0时,F (x )在(0,+∞)上单调递减.

导数大题练习带的答案解析

导数大题练习 1.已知f (x )=x ln x -ax ,g (x )=-x 2-2, (Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围;(Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有ln x +1>ex e x 2 1-成立. 2、已知函数2 ()ln 2(0)f x a x a x = +->.(Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于(0,)x ?∈+∞都有f (x )>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ―b (b ∈R ).当a =1时,函数g (x )在区 间[e ― 1,e]上有两个零点,求实数b 的取值范围. 3. 设函数f (x )=ln x +(x -a )2,a ∈R .(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值; (Ⅱ)若函数f (x )在1 [,2]2 上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数f (x )的极值点. 4、已知函数2 1()(21)2ln ()2 f x ax a x x a = -++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2 ()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得 12()()f x g x <,求a 的取值范围. 5、已知函数())0(2ln 2 >-+= a x a x x f (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单 调区间; (Ⅱ)若对于任意()())1(2,0->+∞∈a x f x 都有成立,试求a 的取值范围; (Ⅲ)记g (x )=f (x )+x -b (b ∈R ).当a =1时,函数g (x )在区间[ ] e ,e 1 -上有两个零点, 求实数b 的取值范围. 6、已知函数1ln ()x f x x += . (1)若函数在区间1 (,)2 a a + (其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1 k f x x ≥ +恒成立,求实数k 的取值范围.

导数大题第一、二问解题方法

导数大题一、二问专练 一、求单调性解题步骤: (1)求函数()f x 的定义域 (2)求函数的导函数()f x ',并化简; (3)令()0f x '=,求出所有的根,并检查根是否在定义域内。(注意此处是否引出讨论)............ (讨论:1)讨论的对象,即讨论哪个字母参数 2)讨论的引发,即为何讨论 3)讨论的范围,即讨论中要做到“不重不漏”) (4)列表:注意定义域的划分、()f x '正负号的确定 (5)根据列表情况作出答案 二、导数难点: 难点一:如何讨论: (1)判断()0f x '=是否有根(可通过判别式的正负来确定),如果无法确定,引发讨论; (2) 求完根后,比较()0f x '=两根的大小,如果无法确定,引发讨论。 (3在填表时确定()f x '的正负或解不等式()0f x '>过程中,引发讨论。 难点二、()f x '正负的确定 (1) 当()f x '或()f x '式中未确定部分是一次或二次函数时,画函数图象草图来确定正负号; (2)()f x '为其他函数时,由()0f x '>的解集来确定()f x '的正负。 (3)若()0f x '=无根或重根,不必列表,直接判断导函数的正负即可。 题型一:讨论()0f x '=是否有根型

(1)若导数是二次函数,需判断判别式?的正负 (2)若导数是一次函数y kx b =+,需判断k 的正负 1、设函数3 ()3(0)f x x ax b a =-+≠. (Ⅰ)若曲线()y f x =在点(2,(2))f 处与直线8y =相切,求,a b 的值; (Ⅱ)求函数()f x 的单调区间与极值点 2.(08文)已知函数32 ()3(0)f x x ax bx c b =+++≠,且()()2g x f x =-是奇函数. (Ⅰ)求a ,c 的值; (Ⅱ)求函数()f x 的单调区间 (18) (本小题共13分)已知函数x a x x f ln )(2 -=(R a ∈).(练习) (Ⅰ)若2=a ,求证:)(x f 在(1,)+∞上是增函数; (2)求()f x 的单调区间; 18.设函数()0)(2>+=a b x ax x f 。 (1)若函数)(x f 在1-=x 处取得极值2-,求b a ,的值; (2)求函数()f x 的单调区间 (3)若函数)(x f 在区间()1,1-内单调递增,求b 的取值范围 3(2010东城一摸试卷)已知函数1()ln f x a x x =-,a ∈R

导数测试题(含答案)

导数单元测试题 班级姓名 一、选择题 1.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( ) A.0.40 B.0.41 C.0.43 D.0.44 2.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率Δy Δx 等于( ) A.4 B.4+2Δx C.4+2(Δx)2 D.4x 3.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( ) A.不存在B.与x轴平行或重合 C.与x轴垂直D.与x轴相交但不垂直 4.曲线y=-1 x 在点(1,-1)处的切线方程为( ) A.y=x-2 B.y=x C.y=x+2 D.y=-x-2 5.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π 4 的是( ) A.(0,0) B.(2,4) C.(1 4 , 1 16 ) D.( 1 2 , 1 4 ) 6.已知函数f(x)=1 x ,则f′(-3)=( ) A.4 B.1 9 C.- 1 4 D.- 1 9 7.函数f(x)=(x-3)e x的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( ) A.1个B.2个 C.3个D.4个 10.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分 别是( ) A.f(2),f(3) B.f(3),f(5) C.f(2),f(5) D.f(5),f(3) 11.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( ) A.-10 B.-71 C.-15 D.-22 12.一点沿直线运动,如果由始点起经过t秒运动的距离为s= 1 4 t4- 5 3 t3+2t2,那么速度为零的时刻是( ) A.1秒末 B.0秒 C.4秒末 D.0,1,4秒末 二、填空题 13.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________. 14.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则 b a =________. 15.函数y=x e x的最小值为________. 16.有一长为16 m的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m2. 三、解答题 17.求下列函数的导数:(1)y=3x2+x cos x; (2)y= x 1+x ; (3)y=lg x-e x. 18.已知抛物线y=x2+4与直线y=x+10,求: (1)它们的交点; (2)抛物线在交点处的切线方程. 19.已知函数f(x)= 1 3 x3-4x+4.(1)求函数的极值; (2)求函数在区间[-3,4]上的最大值和最小值.

最全导数解答题方法归纳总结

导数解答题归纳总结 19.(2009浙江文)(本题满分15分)已知函数3 2 ()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R . (I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解析 (Ⅰ)由题意得)2()1(23)(2 +--+='a a x a x x f 又?? ?-=+-='==3 )2()0(0 )0(a a f b f ,解得0=b ,3-=a 或1=a (Ⅱ)函数)(x f 在区间)1,1(-不单调,等价于 导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有 0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a 整理得:0)1)(1)(5(2 <-++a a a ,解得15-<<-a 20.(2009北京文)(本小题共14分) 设函数3 ()3(0)f x x ax b a =-+≠. (Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值; (Ⅱ)求函数()f x 的单调区间与极值点. 解析 本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能 力. (Ⅰ)()' 233f x x a =-, ∵曲线()y f x =在点(2,())f x 处与直线8y =相切, ∴()()()'20340 4,24.86828 f a a b a b f ?=-=?=????????=-+==????? (Ⅱ)∵()()()' 230f x x a a =-≠, 当0a <时,()' 0f x >,函数()f x 在(),-∞+∞上单调递增, 此时函数()f x 没有极值点. 当0a >时,由()' 0f x x a =?=± , 当() ,x a ∈-∞-时,()' 0f x >,函数()f x 单调递增, 当(),x a a ∈-时,()'0f x <,函数()f x 单调递减, 当(),x a ∈+∞时,()' 0f x >,函数()f x 单调递增,

导数练习题含答案

导数概念及其几何意义、导数的运算 一、选择题: 1 已知32 ()32f x ax x =++,若(1)4f '-=,则a 的值等于 A 193 B 103 C 16 3 D 133 2 已知直线1y kx =+与曲线3 y x ax b =++切于点(1,3),则b 的值为 A 3 B -3 C 5 D -5 3 函数2y x a a = +2 ()(x-)的导数为 A 222()x a - B 223()x a + C 223()x a - D 22 2()x a + 4 曲线313y x x =+在点4 (1,)3 处的切线与坐标轴围成的三角形的面积为 A 1 9 B 29 C 13 D 2 3 5 已知二次函数2 y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1) (0) f f '的最小值为 A 3 B 52 C 2 D 32 6 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B ()2(1)f x x =- C 2()2(1)f x x =- D ()1f x x =- 7 下列求导数运算正确的是 A 211()1x x x '+=+ B 21 (log )ln 2 x x '= C 3(3)3log x x e '=? D 2 (cos )2sin x x x x '=- 8 曲线32 153 y x x =-+在1x =处的切线的倾斜角为 A 6 π B 34π C 4π D 3 π 9 曲线3 2 31y x x =-+在点(1,1)-处的切线方程为 A 34y x =- B 32y x =-+ C 43y x =-+ D 45y x =- 10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为

函数与导数大题部分-高考数学解题方法归纳总结专题训练

专题03 函数与导数大题部分 【训练目标】 1、 理解函数的概念,会求函数的定义域,值域和解析式,特别是定义域的求法; 2、 掌握函数单调性,奇偶性,周期性的判断方法及相互之间的关系,会解决它们之间的综合问题; 3、 掌握指数和对数的运算性质,对数的换底公式; 4、 掌握指数函数和对数函数的图像与性质; 5、 掌握函数的零点存在定理,函数与方程的关系; 6、 熟练数形结合的数学思想在解决函数问题的运用; 7、 熟练掌握导数的计算,导数的几何意义求切线问题; 8、 理解并掌握导数与函数单调性之间的关系,会利用导数分析函数的单调性,会根据单调性确定参数的取 值范围; 9、 会利用导数求函数的极值和最值,掌握构造函数的方法解决问题。 【温馨小提示】 本章内容既是高考的重点,又是难点,再备考过程中应该大量解出各种题型,总结其解题方法,积累一些常用的小结论,会给解题带来极大的方便。 【名校试题荟萃】 1、(2019届新余四中、上高二中高三第一次联考)已知函数 .,R n m ∈ (1)若函数()x f 在()()2,2f 处的切线与直线0=-y x 平行,求实数n 的值; (2)试讨论函数()x f 在区间[)+∞,1上最大值; (3)若1=n 时,函数()x f 恰有两个零点,求证:221>+x x 【答案】(1)6n =(2)1ln m n --(3)见解析 【解析】(1)由, ,由于函数()f x 在(2,(2))f 处的切线与直线0x y -=平行, 故 2 14 n -=,解得6n =。 (2) ,由()0f x '<时,x n >;()0f x '>时,x n <,所以 ①当1n ≤时,()f x 在[)1,+∞上单调递减,故()f x 在[)1,+∞上的最大值为 ;

导数大题练习题答案

导数练习题(B)答案 1.(本题满分12分) 已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II)若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数 ) (x f 的解析式; (III )在(II)的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的 图象有三 个不同的交点,求m 的取值范围. 2.(本小题满分12分) 已知函数)(3ln )(R a ax x a x f ∈--=. (I)求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为,2 3 若函数]2 )('[3 1)(23m x f x x x g ++=在区间 (1,3)上不是单调函数,求m 的取值范围. 3.(本小题满分14分) 已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (I I)若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (I II)对于(I I)中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分) 已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I)写出)(x f 的单调递增区间,并证明a e a >; (II)讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分) 已知函数()ln(1)(1)1f x x k x =---+. (I)当1k =时,求函数()f x 的最大值; (I I)若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分) 已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I)求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.(本小题满分14分)

导数大题方法总结[1]

导数大题方法总结 一总论 一般来说,导数的大题有两到三问。每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。 二主流题型及其方法 *(1)求函数中某参数的值或给定参数的值求导数或切线 一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x = k时取得极值,试求所给函数中参数的值;或者是f(x)在(a , f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是: 先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。 注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。 *(2)求函数的单调性或单调区间以及极值点和最值 一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是: 首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。 极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。 最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。 注意:①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。②分类要准,不要慌张。③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下

导数大题经典练习及答案

导数大题专题训练 2g(x)-ax,=-x1.已知f(x)=xlnx的取值范围;,+∞),f(x)≥g(x)恒成立,求实数2,- a(Ⅰ)对一切x∈(0>1lnx+>0)上的最值;(Ⅲ)证明:对一切x∈(0,+∞),都有1时,求函数f(x)在[m,m+3](m=-(Ⅱ)当a成立. 的单调区垂直,求函数y=f (x)f (1))处的切线与直线y=x+2P.(Ⅰ)若曲线y=f (x)在点(1,2、已知函数a=1当R).g (x)=f (x)+x―b(b∈成立,试求间;(Ⅱ)若对于都有f (x)>2(a―1)a的取值范围;(Ⅲ)记1―.,e]上有两个零点,求实数b的取值范围在区间时,函数g (x)[e a=0,求函数f (x)[1,e](Ⅰ)若af (x)=lnx+(x3.设函数-a),∈R.在2上的最小值;在 上存在单调递增区间,试求实数(Ⅱ)若函数f (x)a的取值范围;(Ⅲ)求函数f (x)的极值点. 、已知函数.4设,若对任意,均存在,使得,求的)Ⅲ(求的单调区间;)Ⅱ(若曲线在和处的切线互相平行,求的值;)Ⅰ( 取值范围. 5、已知函数 (Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于任意成立,试求a的取值范围; (Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间上有两个零点,求实数b的取值范围.

6、已知函数. (1)若函数在区间(其中)上存在极值,求实数a的取值范围; (2)如果当时,不等式恒成立,求实数k的取值范围. 1.解:(Ⅰ)对一切恒成立,即恒成立.也就是在恒成立;令,则, 在上,在上,因此,在处取极小值,也是最小值, 即,所以. (Ⅱ)当,,由得. ①当时,在上,在上 因此,在处取得极小值,也是最小值. . 由于因此, ②当,,因此上单调递增,所以, ……9分 (Ⅲ)证明:问题等价于证明 由(Ⅱ)知时,的最小值是,当且仅当时取得, 设,则,易知,当且仅当时取到, 但从而可知对一切,都有成立. 2、解:(Ⅰ)直线y=x+2的斜率为1.函数f (x)的定义域为(0,+∞),因为,所以,所以a=1.所以. .由解得x>0;由解得0<x<2. 所以f (x)的单调增区间是(2,+∞),单调减区间是(0,2) (Ⅱ),由解得;由解得.所以f (x)在区间上单调递增,在区间上单调递减.所以当时,函数f (x)取得最小值,. 因为对于都有成立, 所以即可. 则.由解得.所以a的取值范围是. (Ⅲ)依题得,则.由解得x>1;由解得0<x<1.所以函数在区间(0,1)为减函数,在区间(1,+∞)为增函-1.所以b的取值范围是[e,e]上有两个零点,所以.解得.数.又因为函数在区间,e]上是增函数,∞). 因为,所以f (x)在[103.解:(Ⅰ)f (x)的定义域为(,+ e]上的最小值为1.所以f (x)在[1,f (x)当x=1时,取得最小值f (1)=1.2注意到抛. ,依题意,在区间上存在子区间使得不等式g (x)>0成立2ax+1(Ⅱ)解法一:设g (x)=2x―2物线g (x)=2x―2ax+1开口向上,所以只要g (2)>0,或即可由g (2)>0,即8―4a+1>0,得,由,即,得,所以, 所以实数a的取值范围是. 所以.又因为x>0,依题意得,在区间上存在子区间使不等式2x―2ax+1>0成立.解法二: . 2,

高中导数大题专题复习

高中导数大题专题复习 一、导数的基本应用 (一)研究含参数的函数的单调性、极值和最值 基本思路:定义域 →→ 疑似极值点 →→ 单调区间 →→ 极值 →→ 最值 基本方法: 一般通法:利用导函数研究法 特殊方法:(1)二次函数分析法;(2)单调性定义法 【例题】(2008北京理18/22)已知函数2 2()(1)x b f x x -=-,求导函数()f x ',并确定()f x 的 单调区间.

本组题旨在强化对导函数零点进行分类讨论的意识、能力和技巧 【例题】(2009北京文18/22)设函数3 ()3(0)f x x ax b a =-+≠. (Ⅱ)求函数()f x 的单调区间与极值点. 【例题】(2009天津理20/22)已知函数2 2 ()(23)(),x f x x ax a a e x R =+-+∈其中a R ∈. (II )当2 3 a ≠时,求函数()f x 的单调区间与极值. 【例题】(2008福建文21/22)已知函数3 2 ()2f x x mx nx =++-的图象过点(1,6)--,且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m n 、的值及函数()y f x =的单调区间;(Ⅱ)若0a >,求函数()y f x =在区间(1,1)a a -+内的极值.

【例题】(2009安徽文21/21)已知函数2 ()1ln f x x a x x =-+-,a >0, (I)讨论()f x 的单调性; (II)设a=3,求()f x 在区间[1,2 e ]上值域.其中e=2.71828…是自然对数的底数. (二)利用函数的单调性、极值、最值,求参数取值范围 基本思路:定义域 →→ 单调区间、极值、最值 →→ 不等关系式 →→ 参数取值范围 基本工具:导数、含参不等式解法、均值定理等 【例题】(2008湖北文17/21)已知函数3 2 2 ()1f x x mx m x =+-+(m 为常数,且m >0)有极大值....9. . (Ⅰ)求m 的值; (Ⅱ)若斜率为5-的直线是曲线()y f x =的切线,求此直线方程. 【例题】(2009四川文20/22)已知函数3 2()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-. (I )求函数()f x 的解析式; (II )设函数1 ()()3 g x f x mx =+ ,若.()g x 的极值存在.....,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.

导数大题练习带答案汇编

1.已知f (x )=x ln x -ax ,g (x )=-x 2-2, (Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围;(Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有ln x +1>ex e x 2 1- 成立. 2、已知函数2 ()ln 2(0)f x a x a x = +->.(Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于(0,)x ?∈+∞都有f (x )>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ―b (b ∈R ).当a =1时,函数g (x )在区 间[e ― 1,e]上有两个零点,求实数b 的取值范围. 3. 设函数f (x )=ln x +(x -a )2,a ∈R .(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值; (Ⅱ)若函数f (x )在1 [,2]2 上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数f (x )的极值点. 4、已知函数2 1()(21)2ln ()2 f x ax a x x a = -++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2 ()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得 12()()f x g x <,求a 的取值范围. 5、已知函数())0(2ln 2 >-+= a x a x x f (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单 调区间; (Ⅱ)若对于任意()())1(2,0->+∞∈a x f x 都有成立,试求a 的取值范围; (Ⅲ)记g (x )=f (x )+x -b (b ∈R ).当a =1时,函数g (x )在区间[ ] e ,e 1 -上有两个零点, 求实数b 的取值范围. 6、已知函数1ln ()x f x x += . (1)若函数在区间1 (,)2 a a + (其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1 k f x x ≥+恒成立,求实数k 的取值范围.

导数各类题型方法总结(含答案)

导数各种题型方法总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0) 0302(3) 09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)023011(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

(完整word版)高二数学导数大题练习详细答案

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所 示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

5.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设2 2 ()()6g x f x x '=+- ,试证明:对任意两个不相 等正数12x x 、,不等式121238|()()|||27 g x g x x x ->-恒成立.

导数大题解题步骤

导数大题 一、知识准备 1、导数定义:x x f x x f x f x ?-?+=→?)()(lim )(0' 2、导数的计算: (1)基本初等函数的导数公式: ①若C x f =)((C 为常数),则0)('=x f ②若a x x f =)(,则1')(-?=a x a x f ③若x x f sin )(=,则x x f cos )('= ④若x x f cos )(=,则x x f sin )('-= ⑤若x e x f =)(,则x e x f =)(' ⑥若x a x f =)(,则a a x f x ln )('= ⑦若x x f ln )(=,则x x f 1)('= . ⑧若x x f a log )(=,则a x x f ln 1)('= (2)导数的运算法则: ①[])()()()('''x g x f x g x f ±=± ②[])()()()()()(''' x g x f x g x f x g x f ?+?=? ③)()()()()()()(2''' x g x g x f x g x f x g x f ?-?=?? ???? (3)复合函数求导:[])())(())(('''x g x g f x g f ?= 3、导数在研究函数中的应用 (1)函数单调性与导数的关系: 一般的,函数的单调性与其导数的正负有如下关系 在某个区间[]b a ,内:①若0)('>x f ,那么函数)(x f y =在[]b a ,上单调递增 ②若0)('<x f ,那么函数)(x f y =在[]b a ,上单调递减 (2)函数极值(局部比较大小)与导数的关系: 求函数)(x f y =极值的方法:首先求出当0)(=x f 时的解0x ,若无解则无极值,若有解也不一定有极值,所以要进行以下判断 ①若在0x 左侧0)('<x f ,右侧0)(' >x f ,那么)(0x f 是极小值 ②若在0x 左侧0)('>x f ,右侧0)('<x f ,那么)(0x f 是极大值 ②若在0x 左侧和右侧的)('x f 同号,那么)(0x f 不是)(x f 的极值 (3)函数最值(整体比较大小)与导数的关系: 求)(x f y =在区间[]b a ,上的最大值与最小值的步骤:

导数大题经典练习及答案.pdf

导数大题专题训练 1.已知f(x)=xlnx-ax,g(x)=-x2-2, (Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围; (Ⅱ)当a=-1时,求函数f(x)在[m,m+3](m>0)上的最值;(Ⅲ)证明:对一切x∈(0,+∞),都有lnx+1>成立. 2、已知函数.(Ⅰ)若曲线y=f (x)在点P(1,f (1))处的切线与直线y=x+2垂直,求函数y=f (x)的单调区间;(Ⅱ)若对于都有 f (x)>2(a―1)成立,试求a的取值范围;(Ⅲ)记g (x)=f (x)+x―b(b∈R).当a=1时,函数g (x)在区间[e―1,e]上有两个零点,求实数b的取值范围. 3.设函数 f (x)=lnx+(x-a)2,a∈R.(Ⅰ)若a=0,求函数 f (x)在[1,e]上的最小值; (Ⅱ)若函数 f (x)在上存在单调递增区间,试求实数a的取值范围; (Ⅲ)求函数 f (x)的极值点. 4、已知函数. (Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的

取值范围. 5、已知函数 (Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间; (Ⅱ)若对于任意成立,试求a的取值范围; (Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间上有两个零点,求实数b的取值范围. 6、已知函数. (1)若函数在区间(其中)上存在极值,求实数a的取值范围; (2)如果当时,不等式恒成立,求实数k的取值范围. 1.解:(Ⅰ)对一切恒成立,即恒成立.也就是在恒成立;令,则, 在上,在上,因此,在处取极小值,也是最小值, 即,所以. (Ⅱ)当,,由得. ①当时,在上,在上

高二数学导数大题练习(详细答案)

高二数学导数大题练习 (详细答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所 示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为,23 若函数 ]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(, x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

(word完整版)高考导数解答题中常见的放缩大法

(高手必备)高考导数大题中最常用的放缩大法 相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论 ⑴sin ,(0,)x x x π<∈,变形即为 sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>. 将这些不等式简单变形如下: ex x ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。 例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(?≤>++=若对任意的设恒成立,求a 的取值范围。 放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x 高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩 (放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ??<-> ???,()11ln 012x x x x ??>-<< ??? , ) ln 1x x <>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102 x x x x +≤--<<,()()21ln 102 x x x x +≥-> (放缩成类反比例函数)1ln 1x x ≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+ 第二组:指数放缩

导数练习题(含答案)

导数练习题 1.已知函数f (x )=ax 3 +bx 2 +cx 在x =±1处取得极值,在x =0处的切线与直线3x +y =0平行. (1)求f (x )的解析式; (2)已知点A (2,m ),求过点A 的曲线y =f (x )的切线条数. 解 (1)f ′(x )=3ax 2 +2bx +c , 由题意可得???? ? f ′(1)=3a +2b +c =0,f ′(-1)=3a -2b +c =0, f ′(0)=c =-3, 解得???? ? a =1, b =0, c =-3. 所以f (x )=x 3 -3x . (2)设切点为(t ,t 3-3t ),由(1)知f ′(x )=3x 2-3,所以切线斜率k =3t 2 -3, 切线方程为y -(t 3 -3t )=(3t 2 -3)(x -t ). 又切线过点A (2,m ),代入得m -(t 3 -3t )=(3t 2 -3)(2-t ),解得m =-2t 3 +6t 2 -6. 设g (t )=-2t 3 +6t 2 -6,令g ′(t )=0, 即-6t 2 +12t =0,解得t =0或t =2. 当t 变化时,g ′(t )与g (t )的变化情况如下表: 作出函数草图(图略),由图可知: ①当m >2或m <-6时,方程m =-2t 3 +6t 2 -6只有一解,即过点A 只有一条切线; ②当m =2或m =-6时,方程m =-2t 3 +6t 2 -6恰有两解,即过点A 有两条切线; ③当-60得1 e ≤x <2;令f ′(x )<0,得2

相关文档
最新文档