薄膜材料及其制备技术

薄膜材料及其制备技术
薄膜材料及其制备技术

课程设计

实验课程名称电子功能材料制备技术

实验项目名称薄膜材料及薄膜技术

专业班级

学生姓名

学号

指导教师

薄膜材料及薄膜技术

薄膜技术发展至今已有200年的历史。在19世纪可以说一直是处于探索和预研阶段。经过一代代探索者的艰辛研究,时至今日大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位,各种材料的薄膜化已经成为一种普遍趋势。其中包括纳米薄膜、量子线、量子点等低维材料,高K值和低K值介质薄膜材料,大规模集成电路用Cu布线材料,巨磁电阻、厐磁电阻等磁致电阻薄膜材料,大禁带宽度的“硬电子学”半导体薄膜材料,发蓝光的光电半导体材料,高透明性低电阻率的透明导电材料,以金刚石薄膜为代表的各类超硬薄膜材料等。这些新型薄膜材料的出现,为探索材料在纳米尺度内的新现象、新规律,开发材料的新特性、新功能,提高超大规

模集成电路的集成度,提高信息存储记录密度,扩大半导体材料的应用范围,提高电子元器件的可靠性,提高材料的耐磨抗蚀性等,提供了物质基础。以至于将薄膜材料及薄膜技术看成21世纪科学与技术领域的重要发展方向之一。

一、薄膜材料的发展

在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。

自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。生物体生命现象的重要过程就是在这些表面上进行的。细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。细胞膜的这些结构和功能带来了生命,带来了神奇。

二、薄膜材料的分类

目前,对薄膜材料的研究正在向多种类、高性能、新工艺等方面发展,其基础研究也在向分子层次、原子层次、纳米尺度、介观结构等方向深入,新型薄膜材料的应用范围正在不断扩大。当前薄膜科学与技术得到迅猛发展的主要原因是,新型薄膜材料的研究工作,始终同现代高新技术相联系,并得到广泛的应用,常用的有:超导薄膜、导电薄膜、电阻薄膜、半导体薄膜、介质薄膜、绝缘薄膜、钝化与保护薄膜、压电薄膜、铁电薄膜、光电薄膜、磁电薄膜、磁光薄膜等。近10年来,新型薄膜材料在以下几个方面的发展更为突出:

(1)金刚石薄膜

金刚石薄膜的禁带宽,电阻率和热导率大,载流子迁移率高,介电常数小,击穿电压高,是一种性能优异的电子薄膜功能材料,应用前景十分广阔。

金刚石薄膜有很多优异的性质:硬度高、耐磨性好、摩擦系数高、化学稳定性好、热导率高、热膨胀系数小,是优良的绝缘体。金刚石薄膜属于立方晶系,面心立方晶胞,每个晶胞含有8个C原子,每个C原子采取sp3杂化与周围4个C原子形成共价键,牢固的共价键和空间网状结构是金刚石硬度很高的原因。

利用它的高导热率,可将它直接积在硅材料上成为既散热又绝缘的薄层,是高频微波器件、超大规模集成电路最理想的散热材料。利用它的电阻率大,可以制成高温工作的二极管,微波振荡器件和耐高温高压的晶体管以及毫米波功率器件等。

金刚石薄膜制备的基本原理是:在衬底保持在800~1000℃的温度范围内,化学气相沉积的石墨是热力学稳定相,而金刚石是热力学不稳定相,利用原子态氢刻蚀石墨的速率远大于金刚石的动力学原理,将石墨去除,这样最终在衬底上沉积的是金刚石薄膜。金刚石薄膜的许多优良性能有待进一步开拓,我国已将金刚石薄膜纳入863新材料专题进行跟踪研究并取得了很大进展。

(2)铁电薄膜

铁电薄膜的制备技术和半导体集成技术的快速发展,推动了铁电薄膜及其集成器件的实用化。铁电材料已经应用于铁电动态随机存储器(FDRAM)、铁电场效应晶体管( FEET)、铁电随机存储器( FFRAM)、IC卡、红外探测与成像器件、超声与声表面波器件以及光电子器件等十分广阔的领域。铁电薄膜的制作方法一般采用溶胶-凌胶法、离子束溅射法、磁控溅射法、有机金属化学蒸汽沉积法、准分子激光烧蚀技术等。已经制成的晶态薄膜有铌酸锂、铌酸钾、钛酸铅、钛酸钡、钛酸锶、氧化铌和锆钛酸铅等,以及大量的铁电陶瓷薄膜材料。

(3)氮化碳薄膜

美国伯克利大学物理系的M.L.Cohen教授以b-Si3N4晶体结构为出发点,预言了一种新的C-N化合物b-Si3N4,Cohen计算出b-Si3N4b-C3N4是一种晶体结构类似于b-Si3N4,具有非常短的共价键结合的C-N化合物,其理论模量为4.27Mbars,接近于金刚石的模量4.43 Mbars。随后,不同的计算方法显示b-Si3N4具有比金刚石还高的硬度,不仅如此,b-Si3N4还具有一系列特殊的性质,引起了科学界的高度重视,目前世界上许多著名的研究机构都集中研究这一新型物质。

b-Si3N4的制备方法主要有激光烧蚀法、溅射法、高压合成、等离子增强化学气相沉积、真空电弧沉积、离子注入法等多种方法。在CNx膜的诸多性能中,最吸引人的可能超过金刚石的硬度,尽管现在还没有制备出可以直接测量其硬度的CNx晶体,但对CNx膜硬度的研究已有许多报道。

(4)半导体薄膜复合材料

以非晶硅氢合金薄膜(a—Si:H)和非晶硅基化物薄膜(a—SiGe:H、a—SiC:H、a—SiN:H等)为代表。它有良好的光电特性,可以应用于太阳能电池,其特点是:廉价、高效率和大面积化。为了改善这些器件的性能,又研制了多晶硅膜、微晶硅膜及纳米晶硅薄膜。这些器件已列入各国发展计划中,如日本的阳光计划,欧洲的焦耳—热量计划,美国的百万屋顶计划,中国的973和863计划,并已发展成为高新技术产业,另一项有发展前途的是Cu(1nGa)Se2(小面积效率>18.8%)及口为16.4%的CdTe薄膜太阳电池也列入国家863计划。这类半导体薄膜复合材料,特别是硅薄膜复合材料已开始用于低功耗、低噪声的大规模集成电路中,以减小误差,提高电路的抗辐射能力。

(5)超晶格薄膜材料

随着半导体薄膜层制备技术的提高,当前半导体超晶格材料的种类已由原来的砷化镓、镓铝砷扩展到铟砷、镓锑、铟铝砷、铟镓砷、碲镉、碲汞、锑铁、锑锡碲等多种。组成材料的种类也由半导体扩展到锗、硅等元素半导体,特别是今年来发展起来的硅、锗硅应变超晶格,由于它可与当前硅的前面工艺相容和集成,格外受到重视,甚至被誉为新一代硅材料。

半导体超晶格结构不仅给材料物理带来了新面貌,而且促进了新一代半导体器件的产生,除上面提到的可制备高电子迁移率晶体管、高效激光器、红外探测器外,还能制备调制掺杂的场效应管、先进的雪崩型光电探测器和实空间的电子转移器件,并正在设计微分负阻效应器件、隧道热电子效应器件等,它们将被广泛应用于雷达、电子对抗、空间技术等领域。

(6)纳米复合薄膜材料

随着纳米材料的出现,纳米薄膜(涂层)技术也得到相应的发展。时至今日,已从单一材料的纳米薄膜转向纳米复合薄膜的研究,薄膜的厚度也由数微米发展到数纳米的超薄膜。

纳米复合薄膜是指由特征维度尺寸为纳米数量级(1~100nm)的组元镶嵌于不同的基体里所形成的复合薄膜材料,有时也把不同组元构成的多层膜如超晶格称为纳米复合薄膜,它具有传统复合材料和现代纳米材料两者的优越性。

到目前为止,概括起来纳米复合材料可分为三种类型:①0-0复合,即不同

成分、不同相或不同种类的纳米粒子复合而成的纳米固体,通常采用原位压块、相转变等方法实现,结构具有纳米非均匀性,也称为聚集型;②0-2复合,即把纳米粒子分散到二维的薄膜材料中,它又可分为均匀弥散和非均匀弥散两类,称为纳米复合薄膜材料。有时,也把不同材质构成的多层膜如超晶格也称为纳米复合薄膜材料。③0-3复合,即纳米粒子分散在常规三维固体中。另外,介孔固体亦可作为复合母体通过物理或化学方法将纳米粒子填充在介孔中,形成介孔复合的纳米复合材料。

纳米复合薄膜是一类具有广泛应用前景的纳米材料,按用途可分为两大类,即纳米复合功能薄膜和纳米复合结构薄膜。前者主要利用纳米粒子所具有的光、电、磁方面的特异性能,通过复合赋予基体所不具备的性能,从而获得传统薄膜所没有的功能。而后者主要通过纳米粒子复合提高机械方面的性能。由于纳米粒子的组成、性能、工艺条件等参量的变化都对复合薄膜的特性有显著的影响,因此可以在较多自由度的情况下人为地控制纳米复合薄膜的特性。

组成复合薄膜的纳米粒子可以是金属、半导体、绝缘体、有机高分子等材料,而复合薄膜的基体材料可以是不同于纳米粒子的任何材料。人们采用各种物理和化学方法先后制备了一系列金属/绝缘体、半导体/绝缘体、金属/半导体、金属/高分子、半导体/高分子等纳米复合薄膜。特别是硅系纳米复合薄膜材料得到了深入的研究,人们利用热蒸发、溅射、等离子体气相沉积等各种方法制备了Si/SiOx、Si/a-Si:H、Si/SiNx、Si/SiC等纳米镶嵌复合薄膜。尽管目前对其机制不十分清楚,却有大量实验现象发现在此类纳米复合薄膜中观察到了强的从红外到紫外的可见光发射。由于这一类薄膜稳定性大大高于多孔硅,工艺上又可与集成电路兼容,因而被期待作为新型的光电材料应用于大规模光电集成电路。

由于纳米复合薄膜的纳米相粒子的量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道效应等使得它们的光学性能、电学性能、力学性能、催化性能、生物性能等方面呈现出常规材料不具备的特性。因此,纳米复合薄膜在光电技术、生物技术、能源技术等各个领域都有广泛的应用前景。现以硅系纳米复合薄膜材料为例介绍它们的特性及其应用。

三、纳米复合薄膜的制备技术

膜的方法进行适当的改进,控制必要的参数就可以获得纳米复合薄膜,比较

常见的制备方法有等离子体化学气相沉积技术(PCVD)、溶胶-凝胶法(sol-gel)和溅射法(Sputtering)热分解化学气相沉积技术(CVD)等。

(1)等离子体化学气相沉积技术(PCVD)

PCVD是一种新的制膜技术,它是借助等离子体使含有薄膜组成原子的气态物质发生化学反应而在基板上沉积薄膜的一种方法,特别适合于半导体薄膜和化合物薄膜的合成,被视为第二代薄膜技术。

PCVD技术是通过反应气体放电来制备薄膜的,这就从根本上改变了反应体系的能量供给方式,能够有效地利用非平衡等离子体的反应特征。当反应气体压力为101~102Pa时,电子温度比气体温度约高1~2个数量级,这种热力学非平衡状态为低温制备纳米薄膜提供了条件。由于等离子体中的电子温度高达104K,有足够的能量通过碰撞过程使气体分子激发、分解和电离,从而大大提高了反应活性,能在较低的温度下获得纳米级的晶粒,且晶粒尺寸也易于控制。所以被广泛用于纳米镶嵌复合膜和多层复合膜的制备,尤其是硅系纳米复合薄膜的制备。

PCVD装置虽然多种多样,但基本结构单元往往大同小异。如果按等离子体发生方法划分,有直流辉光放电、射频放电、微波放电等几种。目前,广泛使用的是射频辉光放电PCVD装置,其中又有电感耦合和电容耦合之分。实验使用的钟罩型电容耦合辉光放电PCVD 装置,射频频率为13.586MHz,电极间矩为2.5cm。电容耦合辉光放电装置的最大优点是可以获得大面积均匀的电场分布,适于大面积纳米复合薄膜的制备。关于微波放电的ECR法由于能够产生长寿命自由基和高密度等离子体已引起了广泛兴趣,但尚处于积极研究阶段。因此,可以说射频放电的电感耦合和平行板电容耦合是目前最常用的PCVD装置。

(2)溶胶-凝胶法(sol-gel)

溶胶-凝胶法是60年代发展起来的一种制备玻璃、陶瓷等无机材料的新方法。近年来有许多人利用该方法制备纳米复合薄膜。其基本步骤是先用金属无机盐或有机金属化合物在低温下液相合成为溶胶,然后采用提拉法(dip-coating) )或旋涂法(spin-coating)使溶液吸附在衬底上,经胶化过程(gelating)成为凝胶,凝胶经一定温度处理后即可得到纳米晶复合薄膜,目前已采用sol-gel法得到的纳米镶嵌复合薄膜主要有Co(Fe,Ni,Mn)/SiO2,CdS(ZnS,PbS)/SiO2。由于

溶胶的先驱体可以提纯且溶胶-凝胶过程在常温下可液相成膜,设备简单,操作方便。因此,溶胶-凝胶法是常见的纳米复合薄膜的制备方法之一。

(3)溅射法(Sputtering)

溅射镀膜法是利用直流或高频电场使惰性气体发生电离,产生辉光放电等离子体,电离产生的正离子和电子高速轰击靶材,使靶材上的原子或分子溅射出来,然后沉积到基板上形成薄膜。美国B.G.Potter和德国慕尼黑工大Koch研究组都采用这种方法制备纳米晶半导体镶嵌在介质膜内的纳米复合薄膜。Baru等人利用Si和SiO2组合靶进行射频磁控溅射获得Si/SiO2纳米镶嵌复合薄膜发光材料。溅射法镀制薄膜原则上可溅射任何物质,可以方便地制备各种纳米发光材料,是应用较广的物理沉积纳米复合薄膜的方法。

(4)热分解化学气相沉积技术(CVD)

CVD技术主要是利用含有薄膜元素的一种或几种气相化合物或单质在衬底表面上进行化学反应生成薄膜的方法。其薄膜形成的基本过程包括气体扩散、反应气体在衬底表面的吸附、表面反应、成核和生长以及气体解吸、扩散挥发等步骤。CVD内的输运性质(包括热、质量及动量输运)、气流的性质(包括运动速度、压力分布、气体加热、激活方式等)、基板种类、表面状态、温度分布状态等都影响薄膜的组成、结构、形态与性能。利用该方法可以制备氧化物、氟化物、碳化物等纳米复合薄膜。W.A.P.Classen等人报道SiO2或Si3N4基板上用CVD 法可以得到纳米尺寸的硅孤鸟状晶粒。我们用CVD法成功地制备了Si/SiC纳米复合薄膜材料。我们实验使用的常压化学相沉积设备反应装置的特点是反应气体通过匀速移动的喷头直接喷到基板上,可以精确控制反应温度和反应时间来控制晶粒的大小,从而获得纳米复合薄膜材料。

由于PVD、CVD等方法工艺复杂,成本昂贵,不宜用于大面积制备纳米复合薄膜,因此近十多年来,国外对电沉积法制备纳米晶体材料进行了较多研究,国内近几年也开始了这方面的研究。电沉积法因设备简单、工艺成熟、低温且参数可控等突出优点而逐渐受到重视。电沉积方法经历了直流、脉冲及选择性喷射电沉积的发展,目前已能制备出各种厚度的薄膜。已研究的电沉积纳米材料有镍、铜、钴等,其中镍及镍基合金的复合沉积是最受关注的,已沉积的材料有Ni-P、Ni-Fe、Ni-Cu、Ni-Mo、Ni-SiC、Ni-Al2O3、Ni-ZrO2等。在基体上电沉积薄金

属层(厚度100μm以下)以改善表面性能是电沉积技术最广泛的应用。电沉积的纳米结构薄层,具有高耐磨、耐蚀性的同时,又具有高的硬度及与基体极好的结合力,可作为理想的保护性镀层;所具有的低磨损率和较低的摩擦系数,可用于要求高耐磨性的同时又要求低摩擦系数的场合,如刀具材料、汽车发动机和液压活塞的表面涂层等。

四、学习薄膜技术的意义

如今材料、能源、信息工程是近代社会在物质上的三大支柱,有人还说材料是能源、信息工程的基础。而材料研究至今所面临的问题是扩大资源,提高质量,改进性能与合理使用。如何提高质量,改进性能,目前集中注意到两个方面:一个是材料表面的研究,已经发展为材料表面技术新领域,另一个是研究材料内部的结构如非晶、微晶、高完整性结晶等问题。材料表面技术日益受到重视的原因是近代技术对材料多方面性能的要求,已远非一种材料所能满足。再者,薄膜制作和微细加工工艺不断创新,特别是各种薄膜在高新技术中的应用更加普及至使互联网中采集、处理信息及通信网络设备中,都需要数量巨大的元器件、电子回路、集成电路等,制造这些都要采用薄膜技术可以说,薄膜技术和薄膜材料已成为构筑高新技术产业的基本要素。

在科学日新月异的今天,真空薄膜技术与薄膜材料越来越发挥其无可替代的作用。无论在民用或军事上,我们都可以发现它的影子。在民用上,它在微电子行业上的作用越发突出,并出现一系列以薄膜技术与薄膜材料为根基的高科技新产品,而以太阳能薄膜为代表的一系列光学薄膜,在利用太阳能等新能源方向上给人们以新的希望,防腐薄膜等耐腐蚀薄膜使我们的产品更加耐用,为我们的飞机保驾护航;在军事上,以薄膜技术与薄膜材料为基础的新一代隐形技术,防腐蚀技术以及导弹追踪技术则给予我们更加巩固的国防。

在真空薄膜技术与薄膜材料的研究上,中国取得了很大的成就,但由于我国科研起步较晚,使得我国在薄膜技术的研究上与国外先进技术相比有一定差距。作为马上就要进入社会的一代人,我们必须扎实学习薄膜技术及相关知识,为祖国的社会主义现代化做贡献,努力追平与国外的差距,甚至超越。

五、薄膜材料的前景

新型薄膜材料对当代高新技术起着重要的作用,是国际上科学技术研究的热门学科之一。开展新型薄膜材料的基础研究直接关系到信息技术、微电子技术、计算机科学等领域的发展方向和进程。新型薄膜的发展依赖于人们对先进薄膜材料、先进的成膜技术和薄膜结构的控制,以及对薄膜的物理、化学行为的深入研究。

迄今,人们已经设计和开发出了多种不同结构和不同功能的薄膜材料,这些材料在化学分离、化学传感器、人工细胞、人工脏器、水处理等许多领域具有重要的潜在应用价值,被认为将是21世纪膜科学与技术领域的重要发展方向之一。

Tio2薄膜的制备(DOC)

新能源综合报告 实验题目:Tio2薄膜的制备和微细加工 学院:物理与能源学院 专业:新能源科学与工程 学号:1350320 汇报人: 指导老师:王哲哲

一、预习部分(课前完成) 〔目的〕: 1、用溶胶-凝胶法制备Tio2光学薄膜。 2、学习紫外掩膜辐照光刻法制备Tio2微细图形。 3、微细图形结构及形貌分析。 〔内容〕 1、了解溶胶凝胶制备薄膜的原理。 2、了解常见的微细加工的方法。 3、充分调研文献资料,确定实验方案。 4、实验制备和数据分析。 ①、制备出感光性的Tio2薄膜凝胶,掌握制备工艺。 ②、对Tio2凝胶薄膜进行紫外掩膜辐照。 ③、制备出Tio2微细图形并进行热处理。 ④、测试Tio2微细图形的结构和形貌特征,处理并分析数据。〔仪器〕:(名称、规格或型号) 紫外点光源、马沸炉、提拉机、光学显微镜、磁力搅拌器、紫外可见光分光光度计、提供制备Tio2材料的前驱物,溶剂等。 二、实验原理 1、Tio2的基本性质 Tio2俗称太白粉,它主要有两种结晶形态:锐钛型和金红石型,其中锐钛型二氧化碳活性比金红石型二氧化钛高。

特点:它是一种n型半导体材料,晶粒尺寸介于1~100 nm,TiO2比表面积大,表面活动中心多,因而具有独特的表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等,呈现出许多特有的物理、化学性质。 应用:在涂料、造纸、陶瓷、化妆品、工业催化剂、抗菌剂、环境保护等行业具有广阔的应用前景,TiO2半导体光催化剂因光催化效率高、无毒、稳定性好和适用范围广等优点而成为人们研究的热点。 纳米TiO2的制备方法: 物理制备方法:主要有机械粉碎法、惰性气体冷凝法、真空蒸发法、溅射法等; 物理化学综合法:又可大致分为气相法和液相法。目前的工业化应用中,最常用的方法还是物理化学综合法。 2、溶胶-凝胶法的基本概念 溶胶:是指微小的固体颗粒悬浮分散在液相中,并且不停地进行布朗运动的体系。由于界面原子的Gibbs自由能比内部原子高,溶胶是热力学不稳定体系。 溶胶分类:根据粒子与溶剂间相互作用的强弱,通常将溶胶分为亲液型和憎液型两类。 凝胶:是指胶体颗粒或高聚物分子互相交联,形成空间网状结构,在网状结构的孔隙中充满了液体(在干凝胶中的分散介质也可以是气体)的分散体系。对于热力学不稳定的溶胶,增加体系中粒子间结合所须克服的能量可使之在动力学上稳定。

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

薄膜的材料及制备工艺

薄膜混合集成电路的制作工艺 中心议题:多晶硅薄膜的制备 摘要:本文主要介绍了多晶硅薄膜制备工艺,阐述了具体的工艺流程,从低压化学气相沉积(LPCVD),准分子激光晶化(ELA),固相晶化(SPC)快速热退火(RTA),等离子体增强化学反应气相沉积(PECVD等,进行详细说明。 关键词:低压化学气相沉积(LPCVD);准分子激光晶化(ELA); 快速热退火(RTA)等离子体增强化学反应气相沉积(PECVD) 引言 多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成本制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶硅薄膜的制备工艺可分为两大类:一类是高温工艺,制备过程中温度高于600℃,衬底使用昂贵的石英,但制备工艺较简单。另一类是低温工艺,整个加工工艺温度低于600℃,可用廉价玻璃作衬底,因此可以大面积制作,但是制备工艺较复杂。 1薄膜集成电路的概述

在同一个基片上用蒸发、溅射、电镀等薄膜工艺制成无源网路,并组装上分立微型元件、器件,外加封装而成的混合集成电路。所装的分立微型元件、器件,可以是微元件、半导体芯片或单片集成电路。 2物理气相沉积-蒸发 物质的热蒸发利用物质高温下的蒸发现象,可制备各种薄膜材料。与溅射法相比,蒸发法显著特点之一是在较高的真空度条件下,不仅蒸发出来的物质原子或分子具有较长的平均自由程,可以直接沉积到衬底表面上,且可确保所制备的薄膜具有较高纯度。 3 等离子体辅助化学气相沉积--PECVD

传统的CVD技术依赖于较高的衬底温度实现气相物质间的化学反应与薄膜沉积。PECVD在低压化学气相沉积进行的同时,利用辉光放电等离子体对沉积过程施加影响。促进反应、降低温度。 降低温度避免薄膜与衬底间不必要的扩散与化学反应;避免薄膜或衬底材料结构变化与性能恶化;避免薄膜与衬底中出现较大的热应力等。 4低压化学气相沉积(LPCVD)

光学薄膜技术第三章--薄膜制造技术

第三章薄膜制造技术 光学薄膜可以采用物理汽相沉积(PVD)和化学液相沉积(CLD)两种工艺来获得。CLD工艺简单,制造成本低,但膜层厚度不能精确控制,膜层强度差,较难获得多层膜,废水废气对环境造成污染,已很少使用。 PVD需要使用真空镀膜机,制造成本高,但膜层厚度能够精确控制,膜层强度好,目前已广泛使用。 PVD分为热蒸发、溅射、离子镀、及离子辅助镀等。 制作薄膜所必需的有关真空设备的基础知识 用物理方法制作薄膜,概括起来就是给制作薄膜的物质加上热能或动量,使它分解为原子、分子或少数几 个原子、分子的集合体(从广义来说,就是使其蒸发),并使它们在其他位置重新结合或凝聚。 在这个过程中,如果大气与蒸发中的物质同时存在,那就会产生如下一些问题: ①蒸发物质的直线前进受妨碍而形成雾状微粒,难以制得均匀平整的薄膜; ②空气分子进入薄膜而形成杂质; ③空气中的活性分子与薄膜形成化合物; ④蒸发用的加热器及蒸发物质等与空气分子发生反应形成 化合物,从而不能进行正常的蒸发等等。 因此,必须把空气分子从制作薄膜的设备中排除出去,这个 过程称为抽气。空气压力低于一个大气压的状态称为真空, 而把产生真空的装置叫做真空泵,抽成真空的容器叫做真空 室,把包括真空泵和真空室在内的设备叫做真空设备。制作 薄膜最重要的装备是真空设备. 真空设备大致可分为两类:高真空设备和超高真空设备。二 者真空度不同,这两种真空设备的抽气系统基本上是相同 的,但所用的真空泵和真空阀不同,而且用于真空室和抽气 系统的材料也不同,下图是典型的高真空设备的原理图,制 作薄膜所用的高真空设备大多都属于这一类。 下图是超高真空设备的原理图,在原理上,它与高真空设备 没有什么不同,但是,为了稍稍改善抽气时空气的流动性, 超高真空设备不太使用管子,多数将超高真空用的真空泵直 接与真空室连接,一般还要装上辅助真空泵(如钛吸气泵) 来辅助超高真空泵。 3.1 高真空镀膜机 1.真空系统 现代的光学薄膜制备都是在真空下获得的。普通所说的 真空镀膜,基本都是在高真空中进行的。 先进行(1)然后进行(2)。因为所有的(超)高真空泵只有在真空室的压力降低到一定程度时才能进行工作, 而且在高真空泵(如油扩散泵)中,要把空气之类的分子排出,就必须使排气口的气体压力降低到一定程 度。 小型镀膜机的真空系统 低真空机械泵+高真空油扩散泵+低温冷阱

纳米薄膜材料的制备方法

纳米薄膜材料的制备方法 摘要纳米薄膜材料是一种新型材料,由于其特殊的结构特点,使其作为功能材料和结构材料都具有良好的发展前景。本文综述了近几年来国内外对纳米薄膜材料研究的最新进展,包括对该类材料的制备方法、微结构、电、磁、光特性以及力学性能的最新研究成果。关键词纳米薄膜;薄膜制备; 微结构;性能 21 世纪,由于信息、生物技术、能源、环境、国防 等工业的快速发展, 对材料性能提出更新更高的要求,元器件的小型化、智能化、高集成、高密度存储和超快传输等要求材料的尺寸越来越小,航空航天、新型军事装备及先进制造技术使材料的性能趋于极端化。因此, 新材料的研究和创新必然是未来的科学研究的重要课题和发展基础,其中由于纳米材料的特殊的物理和化学性能, 以及 由此产生的特殊的应用价值, 必将使其成为科学研究的热点[1]。 事实上, 纳米材料并非新奇之物, 早在1000 多年以前, 我国古代利用蜡烛燃烧的烟雾制成碳黑作为墨的原料, 可能就是最早的纳 米颗粒材料;我国古代铜镜表面的防锈层, 经验证为一层纳米氧化锡颗粒构成的薄膜,这大概是最早的纳米薄膜材料。人类有意识的开展纳米材料的研究开始于大约50 年代,西德的Kanzig 观察到了BaTiO3 中的极性微区,尺寸在10~ 100纳米之间。苏联的G. A. Smolensky假设复合钙钛矿铁电体中的介电弥散是由于存Kanzig微区导致成分布不均匀引起的。60 年代日本的Ryogo Kubo在金属超微粒子理论中发现由于金属粒子的电子能级不连续,在低温下, 即当费米

能级附近的平均能级间隔> kT 时, 金属粒子显示出与块状物质不同的热性质[ 4]。西德的H. Gleiter 对纳米固体的制备、结构和性能进行了细致地研究[ 5]。随着技术水平的不断提高和分析测试技术手段的不断进步, 人类逐渐研制出了纳米碳管, 纳米颗粒,纳米晶体, 纳米薄膜等新材料, 这些纳米材料有一般的晶体和非晶体材料不具备的优良特性, 它的出现使凝聚态物理理论面临新的挑战。80 年代末有人利用粒度为1~ 15nm 的超微颗粒制造了纳米级固体材料。纳米材料由于其体积和单位质量的表面积与固体材料的差别,达到一定的极限, 使颗粒呈现出特殊的表面效应和体积效应,这些因素都决定着颗粒的最终的物理化学性能,如随着比表面积的显著增大,会使纳米粒子的表面极其活泼,呈现出不稳定状态,当其暴露于空气中时,瞬间就被氧化。此外, 纳米粒子还会出现特殊的电、光、磁学性能和超常的力学性能。 纳米薄膜的分类 纳米薄膜具有纳米结构的特殊性质, 目前可以分为两类: ( 1)含有纳米颗粒与原子团簇基质薄膜; ( 2) 纳米尺寸厚度的薄膜, 其厚度接近电子自由程和Denye 长度, 可以利用其显著的量子特性和统计特性组装成新型功能器件。例如, 镶嵌有原子团的功能薄膜会在基质中呈现出调制掺杂效应, 该结构相当于大原子超原子膜材料具有三维特征; 纳米厚度的信息存贮薄膜具有超高密度功能, 这类集成器件具有惊人的信息处理能力; 纳米磁性多层膜具有典型的周期性调制结构, 导致磁性材料的饱和磁化强度的减小或增强。对这

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

薄膜制备技术基础(原著第4版)

薄膜制备技术基础(原著第4版) 作者:[日]麻蒔立男 出版社:化学工业出版 出版日期:2009年5月 开本:16开 册数:1册 光盘数:0 定价:39.8元 优惠价:36元 进入20世纪,书籍已成为传播知识、科学技术和保存文化的主要工具。随着科学技术日新月异地发展,传播知识信息手段,除了书籍、报刊外,其他工具也逐渐产生和发展起来。但书籍的作用,是其他传播工具或手段所不能代替的。在当代, 无论是中国,还是其他国家,书籍仍然是促进社会政治、经济、文化发展必不可少的重要传播工具。 详细介绍: 第1章薄膜技术 1 1生物计算(bio computing)和薄膜技术 1 2医用微型机械 1 3人工脑的实现(μ Electronics)

1 4大型显示的实现 1 5原子操控 1 6薄膜技术概略 参考文献 第2章真空的基础 2 1真空的定义 2 2真空的单位 2 3气体的性质 2 3 1平均速率 Va 2 3 2分子直径δ 2 3 3平均自由程 L 2 3 4碰撞频率 Z 2 4气体的流动和流导 2 4 1孔的流导 2 4 2长管的流导(L/a≥100) 2 4 3短管的流导 2 4 4流导的合成 2 5蒸发速率 参考文献 第3章真空泵和真空测量 3 1真空泵 3 1 1油封式旋片机械泵 3 1 2油扩散泵 3 1 3吸附泵 3 1 4溅射离子泵 3 1 5升华泵 3 1 6冷凝泵 3 1 7涡轮泵(分子泵)和复合涡轮泵3 1 8干式机械泵 3 2真空测量仪器——全压计 3 2 1热导型真空计 3 2 2电离真空计——电离规 3 2 3磁控管真空计 3 2 4盖斯勒(Geissler)规管 3 2 5隔膜真空计 3 2 6石英晶振真空计 3 2 7组合式真空规 3 2 8真空计的安装方法 3 3真空测量仪器——分压计 3 3 1磁偏转型质谱仪 3 3 2四极质谱仪 3 3 3有机物质质量分析IAMS法 参考文献 第4章真空系统

(完整版)纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性[ 1 ] ,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切[ 2 ] [ 3 ] 。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法 纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶化和蒸发,蒸汽达到周围的气体就会被冷凝或发生化学反应形成超微粒。 2 化学制备方法 化学法是指通过适当的化学反应, 从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法[5][6]、化学气相冷凝法、溶胶-凝胶法、水热法、沉淀法、冷冻干燥法等。化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。

纳米薄膜材料

题目:纳米薄膜材料 姓名:王鹏飞 学号: 201006050012 系别:化学系 专业:化学工程与工艺 年级班级: 2010级1班 2013年 6月24日

纳米薄膜材料 摘要:纳米薄膜材料是一种新型材料,由于其特殊的结构特点,时期作为功能材料和结构材料都具有良好的发展前景。本文综述了近几年来国内外纳米薄膜材料研究的最新进展,包括对该类材料的制备方法、及其应用领域。 关键词:纳米薄膜;薄膜制备;性能 1.引言 21世纪,由于信息、生物技术、能源、环境、国防等工业的快速发展,对材料性能提出更新更高的要求,元器件的小型化、智能化、高集成、高密度存储和超快传输等要求材料的尺寸越来越小,航空航天、新型军事装备及先进制造技术使材料的性能趋于极端化。因此,新材料的研究和创新必然是未来的科学研究的重要课题和发展基础,其中由于纳米材料的特殊的物理和化学性能,以及由此产生的特殊的应用价值,必将使其成为科学研究的热点[1]。 事实上,纳米材料并非新奇之物,早在 1000 多年以前,我国古代利用蜡烛燃烧的烟雾制成碳黑作为墨的原料,可能就是最早的纳米颗粒材料;我国古代铜镜表面的防锈层,经验证为一层纳米氧化锡颗粒构成的薄膜,这大概是最早的纳米薄膜材料。人类有意识的开展纳米材料的研究开始于大约50年代,西德的 Kanzig 观察到了 BaTiO3 中的极性微区,尺寸在 10~100 纳米之间[2]。苏联的 G. A. Smolensky 假设复合钙钛矿铁电体中的介电弥散是由于存在 Kanzig 微区导致成分布不均匀引起的[3]。60 年代日本的Ryogo Kubo 在金属超微粒子理论中发现由于金属粒子的电子能级不连续,在低温下,即当费米能级附近的平均能级间隔δ﹥kT 时,金属粒子显示出与块状物质不同的热性质[4]。西德的 H. Gleiter 对纳米固体的制备、结构和性能进行了细致地研究[5]。 随着技术水平的不断提高和分析测试技术手段的不断进步,人类逐渐研制出了纳米碳管,纳米颗粒,纳米晶体,纳米薄膜等新材料,这些纳米材料有一般的晶体和非晶体材料不具备的优良特性,它的出现使凝聚态物理理论面临新的挑战。80 年代末有人利用粒度为 1~15nm 的超微颗粒制造了纳米级固体材料。

三维纳米材料制备技术综述

三维纳米材料制备技术综述 摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。 关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法 1.引言 随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。 当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。 纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

纳米膜的制备方法

纳米薄膜材料的制备 金属0802 3080702039 陈岑 一、纳米膜 纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。 纳米膜分离技术是近年来发展起来的膜分离技术,是指膜的纳米级分离过程。其通过截留相对分子量为300~100000(被分离物料粒径相当于0.3~100纳米)的膜进行分离、纯化,包括了纳滤和部分超滤技术所能分离的量程范围,也是一种以压力为驱动的膜分离过程。由于纳米膜分离技术的截断物质相对分子量范围比反渗透大,而比部分超滤小,因此,纳米膜分离技术可以截留能通过超滤膜的部分溶质,而让不能通过反渗透膜的物质通过,从而有助于降低目的截留溶质的损失。这种技术具有操作方便、处理效率高、无污染、安全和节能等诸多优点。 二、纳米膜的制备方法 1.模板法 2.分子束外延法 3.真空蒸发法 4.化学气相沉积法 5.其他方法 1.模板法合成纳米薄膜: 纳米颗粒的形成一般可分为两个阶段: 第一是晶核的生成。 第二是晶核的长大 要制备粒径均匀,结构相同的纳米颗粒,相当于让烧杯中天文数字的原子同时形成大小一样的晶核,并且同时长大到相同的尺寸。因此为了得到尺寸可控,无团聚的纳米颗粒,必须找到有效的“窍门”,来干预化学反应的过程。 2.分子束外延法 分子束外延(MBE)技术主要是一种可以在原子尺度上精确控制外延厚度、掺杂和界面平整度的超薄层薄膜制备技术。 所谓“外延”就是在一定的单晶体材料衬底上,沿着衬底的某个指数晶面向外延伸生长一层单晶薄膜。 所谓“外延”就是在一定的单晶体材料衬底上,沿着衬底的某个指数晶面向外延伸生长一层单晶薄膜。

常见纳米材料的制备技术

东华大学研究生课程论文封面 教师填写: 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名: 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

常见纳米材料的制备技术 1 概述 纳米材料是指材料的任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料,广义来讲,数百纳米的尺度亦可称为纳米材料。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能,纳米材料的性能往往由量子力学决定。按照纳米材料的空间形态可以将其分为4类:三维尺寸均为纳米量级的纳米粒子或人造原子被称为零维纳米材料;纳米纤维为一维纳米材料;纳米膜(片、层)可以称为二维纳米材料;而有纳米结构的材料可以称为三维纳米材料。目前只有纳米粉末实现了工业化生产(如碳酸钙、氧化锌等),静电纺纳米纤维的产量能够满足实验的需求,其它纳米材料基本上还处于实验室研究阶段[1]。 2 常见的纳米材料 2.1 零维纳米材料 指空间中三个维度的尺寸均在纳米尺度,如纳米尺度颗粒、原子团簇等。纳米球全称“原子自组装纳米球固体润滑剂”,是具有二十面体原子团簇结构的铝基合金,是一种新型纳米/非晶合金固体抗磨自修复剂,采用急冷方法制备抗磨剂粉体,在合金从液体到固体的凝固过程中,形成纳米晶/非晶的复合结构,利用粒度控制的方法对抗磨剂粉末进行超微细化处理而成。该材料具有高硬度、高强度,并具有一定的韧性等性能,在多种减摩自修复机制的综合作用下呈现优良的减摩和抗磨性能,可以起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。 2.2 一维纳米材料 一维纳米材料指空间中有二维处于纳米尺度的材料,如纳米纤维、纳米棒、碳纳米管等。 静电纺纳米纤维是目前唯一一种能够连续制备纳米纤维的技术,它是利用高压电场力将纤维从导电溶液中抽拔出来,在抽拔过程中纤维被拉伸变细、溶剂挥

二维纳米薄膜材料概述

二维纳米材料概述 -----纳米薄膜概述 班级:材料科学与工程103班 姓名:卢忠 学号:201011601322 摘要纳米科学技术是二十世纪八十年代末期诞生并快速崛起的新科技,而其二维纳米结构——纳米薄膜在材料应用以及前景上都占据着重要的地位。纳米薄膜材料是一种新型的薄膜材料,由于其特殊的结构和性能,它在功能材料和结构材料领域都具有良好的发展前景。本论文着重介绍纳米薄膜的制备方法、特性以及研究前景。纳米薄膜材料性能较传统的薄膜材料有更加明显的优势,特别是纳米磁性多层膜、颗粒膜作为一种新型的复合材料将是今后的研究方向。 关键词:纳米;薄膜材料

目录 一.薄膜材料定义 (1) 二.纳米薄膜的分类 (1) 三.纳米薄膜的制备方法 (2) 四.纳米薄膜特性 (4) 五.应用及前景 (6) 参考文献

一.薄膜材料定义:纳米薄膜是指尺寸在纳米量级的晶粒构成的薄膜或将纳米晶粒薄膜镶嵌于某种薄膜中构成的复合膜,以及层厚在纳米量级的单层或多层薄膜,通常也称作纳米颗粒薄膜和纳米多层薄膜。 二.纳米薄膜的分类 1.纳米薄膜,按用途分为两大类:纳米功能薄膜和纳米结构薄膜。 纳米功能薄膜:主要是利用纳米粒子所具有的光、电、磁方面的特性,通过复合使新材料具有基体所不具备的特殊功能。 纳米结构薄膜:主要是通过纳米粒子复合,提高材料在机械方面的性能。 2.按膜的功能分 纳米磁性薄膜 纳米光学薄膜 纳米气敏膜 纳滤膜、纳米润滑膜 纳米多孔膜 LB(Langmuir Buldgett)膜 SA(分子自组装)膜 3.按膜层结构分类 单层膜如热喷涂法的表面膜等 双层膜如在真空气相沉积的反射膜上再镀一层 多层膜指双层以上的膜系 4.按膜层材料分 金属膜,如Au、Ag等 合金膜,如Cr-Fe、Pb-Cu等 氧化物薄膜 非氧化物无机膜 有机化合物膜

薄膜材料制备原理、技术及应用知识点

薄膜材料制备原理、技术及应用知识点1 一、名词解释 1. 气体分子的平均自由程:自由程是指一个分子与其它分子相继两次碰撞之间,经过的直线路程。对个别分子而言,自由程时长时短,但大量分子的自由程具有确定的统计规律。气体分子相继两次碰撞间所走路程的平均值。 2. 物理气相沉积(PVD):物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 3. 化学气相沉积(CVD):化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。 4. 等离子体鞘层电位:等离子区与物体表面的电位差值ΔV p即所谓的鞘层电位。 在等离子体中放入一个金属板,由于电子和离子做热运动,而电子比离子的质量小,热速度就比离子大,先到达金属板,这样金属板带上负电,板附近有一层离子,于是形成了一个小局域电场,该电场加速了离子,减速电子,最终稳定了以后,就形成了鞘层结构,该金属板稳定后具有一个电势,称为悬浮电位。 5. 溅射产额:即单位入射离子轰击靶极溅出原子的平均数,与入射离子的能量有关。 6. 自偏压效应:在射频电场起作用的同时,靶材会自动地处于一个负电位下,导致气体离子对其产生自发的轰击和溅射。 7. 磁控溅射:在二极溅射中增加一个平行于靶表面的封闭磁场,借助于靶表面上形成的正交电磁场,把二次电子束缚在靶表面特定区域来增强电离效率,增加离子密度和能量,从而实现高速率溅射的过程。 8. 离子镀:在真空条件下,利用气体放电使气体或被蒸发物部分离化,产生离子轰击效应,最终将蒸发物或反应物沉积在基片上。结合蒸发与溅射两种薄膜沉积技术而发展的一种PVD方法。 9. 离化率:被离化的原子数与被蒸发气化的原子数之比称为离化率.一般离化装置的离化率仅为百分之几,离化率较高的空心阴极法也仅为20~40% 10. 等离子体辅助化学气相沉积(PECVD)技术:是一种用等离子体激活反应气体,促进在基体表面或近表面空间进行化学反应,生成固态膜的技术。等离子体化学气相沉积技术的基本原理是在高频或直流电场作用下,源气体电离形成等离子体,利用低温等离子体作为能量源,通入适量的反应气体,利用等离子体放电,使反应气体激活并实现化学气相沉积的技术。 11. 外延生长:在单晶衬底(基片)上生长一层有一定要求的、与衬底晶向相同的单晶层,犹如原来的晶体向外延伸了一段,故称外延生长。 12. 薄膜附着力:薄膜对衬底的黏着能力的大小,即薄膜与衬底在化学键合力或物理咬合力作用下的结合强度。 二、填空: 1、当环境中元素的分压降低到了其平衡蒸气压之下时,元素发生净蒸发。反之,元素发生净沉积。 2、在直流放电系统中,气体放电通常要经过汤生放电阶段、辉光放电阶段和弧光放电阶段三个放电过程,其中溅射法制备薄膜主要采用辉光放电阶段所产生的大量等离子体来形成溅射。 3、溅射仅是离子轰击物体表面时发生的物理过程之一,不同能量的离子与固体表面相互作用的过程不同,不仅可以实现对物质原子的溅射,还可以在固体表面形成沉积现象和离子注入现象。 4、溅射法所采有的放电气体多为Ar气,主要原因是惰性气体做为入射离子时,物质溅射产额高,从经济方面考虑,多使用Ar做为溅射气体。 5、直流溅射要求靶材具有良好的导电性,否则靶电流过小,靶电压过高,而射频溅射方法以交流电源提供高频电场,高频电场可经由其它阻抗形式进入沉积室,不再要求电极一定是导电体,使溅射过程摆脱对靶材导电性的要求。 6、磁控溅射存在的缺点。 1 微观永远大于宏观你永远大于人类今天永远大于永远■■■■■■■■纯属个人行为,仅供参考■■■■■■■■勿删■■■■■■■■■

一维纳米材料的制备概述

学年论文 ` 题目:一维纳米材料的制备方法概述 学院:化学学院 专业年级:材料化学2011级 学生姓名:龚佩斯学号:20110513457 指导教师:周晴职称:助教

2015年3月26日 成绩 一维纳米材料制备方法概述 --气相法、液相法、模板法制备一维纳米材料 材料化学专业2011级龚佩斯 指导教师周晴 摘要:一维纳米材料碳纳米棒、碳纳米线等因其独特的用途成为国内外材料科学家的研究热点。然而关于如何制备出高性能的一维纳米材料正是各国科学家所探究的问题。本文概述了一维纳米材料的制备方法:气相法、液相法、模板法等。 关键词:一维纳米材料;制备方法;气相法;液相法;模板法 Abstract: the nanoscale materials such as carbon nanorods and carbon nanowires have become the focus of intensive research owing to their unique applications. but the question that how to make up highqulity one-dimentional nanostructure is discussing by Scientists all around the world. This parper has reviewed the preparation of one dimention nanomaterials ,such as vapor-state method, liqulid -state method ,template method and so on. Key words: one-dimention nanomaterials ; preparatinal method ; vapor-state method liqulid-state method ; template method 纳米材料是基本结构单元在1nm ~100nm之间的材料,按其尺度分类包括零维、一维、二维纳米材料。自80年代以来,零维纳米材料不论在理论上和实践中均取得了很大的进展;二维纳米材料在微型传感器中也早有应用。[1]一维纳米材料因其特殊的结构效应在介观物理、纳米级结构方面具有广阔的应用前景,它的制备研究为器件的微型化提供了材料基础。本文主要概述了近年来文献关于一维纳米材料的制备方法。 1 一维纳米材料的制备方法 近几年来,文献报导了制备一维纳米材料的多种方法,如溶胶-凝胶法、气相-溶液-固相法、声波降解法、溶剂热法、模板法、化学气相沉积法等。然而不同制备方法的纳米晶体生长机制各异。本文按不同生长机制分类概述,主要介绍气相法、液相法、模板法三大类制备方法。 1.1 气相法 在合成一维纳米结构时,气相合成可能是用得最多的方法。气相法中的主要机

薄膜制备新技术及应用

河南工业职业技术学院Henan Polytechnic Institute 毕业设计 题目薄膜制备新技术及应用 系别光电工程系 专业 班级 姓名 学号 指导教师 日期 2011.10

目录 目录 (2) 1 真空蒸发沉积 (3) 2溅射沉积 (4) 3 分子束外延 (5) 4 脉冲激光沉积 (5) 5 化学气相沉积 (7) 5.1 金属有机化合物化学气相沉积 (7) 5.2 等离子体增强化学气相沉积 (8) 6 溶胶2凝胶工艺 (8) 7 结束语 (9)

1 真空蒸发沉积 真空蒸发沉积是制备光学薄膜最常用的方法 ,目前也被广泛地用作制备光 电薄膜。它的基本原理是把被蒸发材料加热到蒸发温度 ,使之蒸发沉积到衬底上形成所需要的膜层。早期做法是用电阻加热法 (R 法) 来制备金属膜或介质膜 ,常用的不外乎 ZnS ,MgF2 ,Na3AlF6 等极有限的几种材料 ,由于其机械性能较 差 ,不耐磨、抗激光损伤强度低 ,所以严重地限制了它的使用 ,更无法满足激光器件 (如耐磨擦、抗高功率等) 的要求。 为适应激光的发展而产生的电子束蒸发法(EB法) 开创了蒸发镀膜的新领 域 ,即用其来蒸发氧化物材料即得所谓的“硬膜”。由于氧化物材料 , 如ZrO2 ,TiO2 ,Ta2O5 ,SiO2 等熔点高又耐磨 ,所以得到的膜层与用热蒸发镀制的“软膜”相比 ,其化学性能和物理性能都要稳定得多。上蒸镀时 ,是用电子束的动能将其熔化 ,被蒸发的气体分子又获得了一定的动能 ,所以膜的致 密度、粘附力均得到提高 ,抗激光破坏的阈值也得到改善。但是采用上述蒸发镀膜所获得的薄膜一般呈柱状结构 ,还不够十分致密 ,所以膜层很容易吸附大气中诸如水蒸汽、H2 和 O2等 ,这将导致薄膜性能发生改变。 除了上述传统的热蒸发沉积及电子束蒸发以外 ,日本京都大学教Takag等于 1972 年发明了离化团簇束沉积 ( ICBD 技术 ,ICBD 是一种非平衡条件)下 的真空蒸发与离子束相结合的薄膜沉积技术 ,是一种可在室温条件下获得高质 量薄膜甚至单晶膜的沉积方法。ICB 膜生长有以下 3 个主要特点:①离化原子团的荷质比小 ,能在低能量获得高的沉积速率 ; ②容易控制离化原子团的能量和离子含量 ,在低温衬底上容易获得附着力强的薄膜 ; ③离化原子团和衬底碰撞时 ,增加了原子的迁移率 ,改善了膜的结晶状态。 20 多年来 , Katagi 等就 ICB 机制包括原子团的形成、原子团的尺寸、强度和离化条件及其薄膜生长机理进行了广泛的研究。ICB 技术已被用于制备各种功能薄膜 , 其中包括半导体、金属、介质、光学涂层、光电材料、热电材料、磁性材料及有机材料等。除日本、美国外 ,俄国和韩国等学者也开展了ICB 方法的研究。在国内 ,北京大学、南京大学、复旦大学、武汉大学和一些科研院所也已掌握了 ICB技术 ,开展多种薄膜材料的研究工作。例如 , Yamada等在 Si (111) 和 Si (100) 衬底上用 ICB 外延方法制备了 400 nm 的

相关文档
最新文档