气相色谱法与液相色谱法的特点

气相色谱法与液相色谱法的特点

气相色谱和液相色谱各有其优缺点和应用范围:

气相色谱采用气体作为流动相,由于物质在气相中的流速比在液相中快得多,气体又比液体的渗透性强,因而相比液相色谱,气相色谱柱阻力小,可以采用长柱,例如毛细管柱,所以分离效率高。

由于气相色谱毋需使用有机溶剂和价格昂贵的高压泵,因此气相色谱仪的价格和运行费用较低,且不易出故障。

能和气相色谱分离相匹配的检测器种类很多,因而可用于各种物质的分离与检测。特别是当使用质谱仪作为检测器时,气相色谱很容易把分离分析与定性鉴定结合起来,成为未知物质剖析的有力工具。

气相色谱不能分析在柱工作温度下不汽化的组分,例如,各种离子状态的化合物和许多高分子化合物

气相色谱也不能分析在高温下不稳定的化合物,例如蛋白质等。

液相色谱则不能分析在色谱条件下为气体的物质,但却能分离不挥发、在某溶剂中具有一定溶解度的化合物,例如高分子化合物、各种离子型化合物以及受热不稳定的化合物(蛋白质、核酸及其它生化物质)。

高效液相色谱的发展及其应用

高效液相色谱的发展及其应用 摘要:了解高效液相色谱[1]的发展历史,知道高效液相色谱的组成结构、操作 原理以及方法等等。掌握它的分类方法,通过比较得出高效液相色谱分析方法的优点与缺点。明确高效液相色谱的应用,最终分析结果。 关键词:高效液相色谱;发展历史;应用 高效液相色谱是以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。 1、高效液相色谱的发展历史 1.1高效液相色谱的历史 高效液相色谱作为色谱分析法的一个分支,是在二十世纪60年代末期,在经典液相色谱法和气相色谱法的基础上,发展起来的新型分离分析技术。1960年中后期,气相色谱理论和实践的发展,以及机械、光学、电子等技术上的进步,液相色谱开始活跃。到60年代末期把高压泵和化学键合固定相用于液相色谱就出现了高效液相色谱。 1.2高效液相色谱与其它色谱的比较[2] 1.2.1与经典液相色谱的比较 经典液相色谱法使用粗粒多孔固定相,装填在大口径、长玻璃柱管内,流动相仅靠重力流经色谱柱,溶质在固定相的传质、扩散速度缓慢,柱入口压力低,柱效低,分析时间冗长。 高效液相色谱法使用了全多孔微粒固定相,装填在小口径、短不锈钢柱内,流动相通过高压输液泵进入高柱压的色谱柱,溶质在固定相的传质,扩散速度大大加快,从而在短的分析时间内获得高柱效和高分离能力。 1.2.2与气相色谱法的比较 高效液相色谱法与气相色谱法有许多相似之处。气相色谱法具有选择性高、分离效率高、灵敏度高,分析速度快的特点,但它仅适于分析蒸气压低、沸点低的样品,而不适用于分析高沸点有机物、高分子和热稳定性差的化合物以及生物活性物质,因而使其应用受到限制。在全部有机化合物中仅有20%的样品适用于气相色谱分析。高效液相色谱法却恰可弥补气相色谱法的不足之处,可对80%的有机化合物进行分离和分析。 2、高效液相色谱 2.1高效液相色谱的特点 2.1.1高效液相色谱的优点 1.分辨率高于其它色谱法,可选择固定相和流动相以达到最佳分离效果; 2.速度快,十几分钟到几十分钟可完成; 3.重复性高、样品不被破坏、易回收; 4.高效相色谱柱可反复使用; 5.自动化操作,分析精确度高;

气相色谱定量分析方法

归一化法 归一化法有时候也被称为百分法(percent),不需要标准物质帮助来进行定量。它直接通过峰面积或者峰高进行归一化计算从而得到待测组分的含量。其特点是不需要标准物,只需要一次进样即可完成分析。 归一化法兼具内标和外标两种方法的优点,不需要精确控制进样量,也不需要样品的前处理;缺点在于要求样品中所有组分都出峰,并且在检测器的响应程度相同,即各组分的绝对校正因子都相等。归一化法的计算公式如下: 当各个组分的绝对校正因子不同时,可以采用带校正因子的面积归一化法来计算。事实上,很多时候样品中各组分的绝对校正因子并不相同。为了消除检测器对不同组分响应程度的差异,通过用校正因子对不同组分峰面积进行修正后,再进行归一化计算。其计算公式如下: 与面积归一化法的区别在于用绝对校正因子修正了每一个组分的面积,然后再进行归一化。注意,由于分子分母同时都有校正因子,因此这里也可以使用统一标准下的相对校正因子,这些数据很容易从文献得到。 当样品中不出峰的部分的总量X通过其他方法已经被测定时,可以采用部分归一化来测定剩余组分。计算公式如下: 内标法 选择适宜的物质作为预测组分的参比物,定量加到样品中去,依据欲测定组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入量进行定量分析的方法叫内标法。特点是标准物质和未知样品同时进样,一次进样。内标法的优点在于不需要精确控制进样量,由进样量不同造成的误差不会带到结果中。缺陷在于内标物很难寻找,而且分析操作前需要较多的处理过程,操作复杂,并可能带来误差。 一个合适的内标物应该满足以下要求:能够和待测样品互溶;出峰位置不和样品中的组分

重叠;易于做到加入浓度与待测组分浓度接近;谱图上内标物的峰和待测组分的峰接近。内标法的计算公式推导如下: 式中,Ai,As分别为待测组分和内标物的峰面积;Ws,W分别为内标物和样品的质量;Gwi/s是待测组分对于内标物的相对质量校正因子(此值可自行测定,测定要求不高时也可以由文献中待测组分和内标物组分对苯的相对质量校正因子换算求出)。 内加法 在无法找到样品中没有的合适的组分作为内标物时,可以采用内加法;在分析溶液类型的样品时,如果无法找到空白溶剂,也可以采用内加法。内加法也经常被称为标准加入法。 内加法需要除了和内标法一样进行一份添加样品的处理和分析外,还需要对原始样品进行分析,并根据两次分析结果计算得到待测组分含量。和内标法一样,内加法对进样量并不敏感,不同之处在于至少需要两次分析。下面我们用一个实际应用的例子来说明内加法是如何工作的: 题:在分析某混合芳烃样品时,测得样品中苯的面积为1100,甲苯的面积为2000,(其它组分面积略)。精确称取40.00g该样品,加入0.40g甲苯后混合均匀,在同一色谱仪上进混合后样品测到苯的面积为1200,甲苯的面积为2400,试计算甲苯的含量。 分析:本题的分析过程是一个典型的内加法操作,其中内加物为甲苯,待测组分为甲苯和苯。 解:1. 由于进样量并不准确,因此两次分析的谱图很难直接进行对比。为了取得可以对比的一致性,我们通过数字计算调整两次分析苯的峰面积相等。此时由于两次分析苯峰面积相等,因此可以断定两次分析待测样品的进样量是相等的。需要注意的是:此时两次分析的总的进样量并不相等,添加后样品比原始样品调整后的进样量中,多了添加的内标物的量。调整可以用原始样品谱图为依据,也可以用添加后样品谱图为依据。但是通常采用原始样品作为依据以便计算最终结果时比较简单。注意:选用的依据不同,中间计算结果会产生差异,但不会影响最终结果。依据的谱图一旦选定,计算就应该围绕此依据进行。 在以原始样品谱图为依据的情况下,调整添加后样品谱图中甲苯的峰面积如下: 对比两次分析,甲苯的面积增加为2200-2000=200。在两次分析待测样品量相同的情况下,内加物面积的增加来自于内加量。也就是说,由于内加物的加入,导致了内加物峰面积的增

气相色谱法基本原理及其应用

安徽建筑大学 现代水分析技术论文 专业:xx级市政工程 学生姓名:xxx 学号:xxx 课题:气相色谱法基本原理及其应用指导教师:xxx xx年xx月xx日

气相色谱法基本原理及其应用 xx (安徽建筑工业学院环境与能源工程学院,合肥,230601) 摘要:气相色谱法是分离混合物中各组分的一种有效的手段,其中气相色谱仪是20世纪50年代末在多数科学家的共同努力下诞生的。本文针对气相色谱法的起源与发展历程、工作原理与特点、在环境水污染物分析领域的应用进行了详细的概述,并列举了饮用水中挥发性有机物的气相色谱检测方法,同时提出了该方法新的发展前景。它的发展已在环境监测、水污染控制领中得到了广泛的应用。 关键词:气相色谱法;发展历程;工作原理;水污染物分析 1.气相色谱法的起源与发展历程 (1)气相色谱法的起源 色谱的发现首先认识到这种分离现象和分离方法大有可为的是俄国的植物学家Tswett。Tswett于1903年在波兰华沙大学研究植物叶子的组成时,将叶绿素的石油醚抽提液倒入装有碳酸钙吸附剂的玻璃管上端,然后用石油醚进行淋洗,结果不同色素按吸附顺序在管内形成一条不同颜色的环带,就像光谱一样。1906年,Tswett在德国植物学杂志上发表的一篇论文中首次把这些彩色环带命名为“色谱图”,玻璃管称为“色谱柱”,碳酸钙称为“固定相”,石油醚称为“流动相”。Tswett开创的方法叫做“液-固色谱法”[1-2],这就是色谱法的起源。 1941年,英国科学家Martin和Synge在研究液-液分配色谱时,预言可以使用气体作流动相,即气-夜色谱法。他们在1941年发表的论文中写到“流动相不一定是液体,也可以是蒸气,如以永久性气体带动挥发性混合物,在色谱柱中通过装有浸透不挥发性溶剂的固体时,可以得到很好的分离”[3]。1950年,Martin和James使用硅藻土助滤剂做载体,硅油为固定相,用气体流动相对脂肪酸进行精细分离,这就是气^液分配色谱的起源。后来,他们在1952年的Biochemical Journal上又连续发表了3篇论文[4-6],叙述了用气相色谱分离低碳数脂肪酸、挥发性胺和吡啶类同系物的方法,这标志着气相色谱法正式进入历史舞台。当时在石油化工的分析中,正当传统的分析方法无能为力时,气相色谱法就像及时雨一样,成为化学分析的得力助手。从此,科学家对气相色谱法的研究逐步展开。 (2)气相色谱法的发展 在历史上,气相色谱法的发展总是和气相色谱仪器的发展密不可分。每一种气相色谱新技术的出现,往往都伴随着气相色谱仪器的改进。因此,了解气相色谱法的发展历史可以从气相色谱仪的发展入手。历史上最早的气相色谱仪1947年由捷克色谱学家Jaroslav Janak发明的。该仪器以C为流动相、杜马测氮管为检测器测定分离开的气体体积。在样品和CA 进入测氮管之前,通过KOH溶液吸收掉CA,按时间记录气体体积的增量。这台仪器虽然简陋,但对当时的气相色谱研究起到了巨大的推动作用。Jaroslav Janak发明的气相色谱仪也有一些明显的不足:它只能测室温下为气体的样品, 样品中的CA不能被测定,而且没有实现自动化。20世纪50年代末,它逐渐被更先进的气相色谱仪所取代。W55年,第一台商品化气相色谱仪诞生,标志着气相色谱仪的发展进入了崭新的时代。 现代气相色谱仪主要由5个系统组成,即气路系统、进样系统、分离系统、温度控制系统与检测记录系统。气路系统与温控系统自气相色谱诞生以来很少有突破性的进展。气路系统主要朝自动化方向发展,20世纪90年代出现了采用电子压力传感器和电子流量控制器,通过计算机实现压力和流量自动控制的电子程序压力流量控制系统,这是气路系统的一大进步[7]。温控系统则基本朝着精细、快速、自动化方向发展。相比之下,进样系统、分离系统与检测记录系统是气相色谱仪的核心组成系统,它们的每一次变革和进步都推动着气相色谱的

高效液相色谱法的应用

高效液相色谱法在药物分析中的应用与进展 摘要:主要介绍了高效液相色谱法在药物鉴别、药物杂质检查、药物含量测定等方面具体应用以及展望了高效液相色谱法在药物分析中的应用前景。 关键词:高效液相色谱法;HPLC;药物分析;联用技术 Abstract:Mainly introduced the high performance liquid chromatography in drug discrimination, drug impurity test, determination of the content and concrete application and the prospect of the high performance liquid chromatography in pharmaceutical analysis application prospect. Keywords: high performance liquid chromatography,HPLC ,pharmaceutical analysis,hyphenated techniques 引言: 高效液相色谱法(High Performance Liquid Chromatography \ HPLC)又称“高压液相色谱”、“高速液相色谱”、“高分离度液相色谱”、“近代柱色谱”等。高效液相色谱是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。HPLC在国内和国外的药物分析领域的应用范围很广,发展速度也很快,尤其在我国,近十几年来HPLC方法越来越受到重视。HPLC 在药物的分析中的应用主要是鉴别、有关物质的检查、有效成分及含量的测定[1];本文对高效液相色谱法(HPLC)技术在药物分析中的应用进行概述并展望其应用前景。 1 在药物分析中的应用 1.1 在药物鉴别中的应用 在HPLC 法中,药物组分的保留时间与其结构和性质有着直接的关系,不同的药物由于结构和性质的差异在色谱图上的出峰顺序不同,是定性的重要参数,

气相色谱在环境分析中的应用(精)

气相色谱法在环境分析中的应用 摘要:气相色谱法是一种很常见的环境分析检测方法,我们也经常将它应用在水、大气、固废等环境检测中。我们以检测非甲烷烃为例来进行探究和学习,(非甲烷烃是一种对人体健康有害的气体)因此我们利用带有双柱双氢火焰离子化检测器的气相色谱仪(岛津GC2014型)和自己所学的知识来对此进行气相色谱检测。并且通过这次检测来了解和复习流动相、检测器、色谱柱以及温度等色谱条件是如何选择以及定性、定量分析方法。 关键词:非甲烷总烃;气相色谱法;定性、定量分析; 1.非甲烷总烃 非甲烷烃(NMHC通常是指除甲烷以外的所有可挥发的碳氢化合物(其中主要是C2~C8,又称非甲烷总烃。主要包括烷烃、烯烃、芳香烃和含氧烃等组分。大气中的非甲烷总烃超过一定浓度,除直接对人体健康有害外,在一定条件下经日光照射还能产生光化学烟雾,对环境和人类造成危害[1]。 监测环境空气和工业废气中的NMHC有许多方法,但目前多数国家采用气相色谱法。由于直接测定NMHC所用仪器价格昂贵,因此我们采用双柱双氢火焰离子化检测器气相色谱法分别测出总烃和甲烷的含量,两者之差为NMHC的含量。在规定的条件下所测得的NMHC是于气相色谱氢火焰离子化检测器有明显响应的除甲烷外碳氢化合物总量,以碳计[2]。 目前我国基本采用气相色谱法测定非甲烷总烃, 按进样的不同有活性炭吸附一热解吸法及针筒采样一手动进样法,采用活性炭吸附一热解吸法[3]易受到活性炭吸附效率的影响,而针筒采样——手动进样法[4]则重复性较差、易熄火。而我们采用气袋采样—气体自动进样器进样分析气体中非甲烷总烃,而这样也最令人满意。此方法操作简单、重复性好、效率高、干扰少,且可用于其他挥发性有机物,如苯系物等的测定。 2.利用气相色谱法检测非甲烷总烃

气相色谱法的基本知识及应用

高效液相色谱法(HPLC) 概述: 色谱法是一种应用范围相当广泛的分离分析技术,它已有近百年的发展史。 二十世纪五、六十年代石油及石油化工的突起促使了GC技术大发展,而七、八十年代生命科学、生化、制药工业的发展推动了HPLC的迅速发展。 目前除分析化学外,生物化学,石油化学,有机化学,无机化学等学科都普遍采用色谱技术。现代高效液相色谱仪,以其高效,快速和自动化等特点成为当代分析仪器中发展最快的仪器。HPLC已成为操作方便、准确、快速并能解决困难分离问题的强有力的分析手段。 适用范围广: 已知有机物中仅20%不经预先化学处理,可用GC分析;而其余80%有机物可用HPLC分析。HPLC适于分离生物、医学大分子和离子化合物,不稳定的天然产物,种类繁多的其它高分子及不稳定化合物。 第一课色谱法概述 色谱法是一种重要的分离分析方法,它是利用不同物质在两相中具有不同的分 配系数(或吸附系数、渗透性),当两相作相对运动时,这些物质在两相中进行多次反 复分配而实现分离。在色谱技术中,流动相为气体的叫气相色谱,流动相为液体的叫 液相色谱。固定相可以装在柱内,也可以做成薄层。前者叫柱色谱,后者叫薄层色谱。 根据色谱法原理制成的仪器叫色谱仪,目前,主要有气相色谱仪和液相色谱仪。 色谱法的创始人是俄国的植物学家茨维特。1905年,他将从植物色素提取的石油 醚提取液倒人一根装有碳酸钙的玻璃管顶端,然后用石油醚淋洗,结果使不同色素得 到分离,在管内显示出不同的色带,色谱一词也由此得名。这就是最初的色谱法。后 来,用色谱法分析的物质已极少为有色物质,但色谱一词仍沿用至今,在50年代,色 谱法有了很大的发展。1952年,詹姆斯和马丁以气体作为流动相分析了脂肪酸同系物 并提出了塔板理论。1956年范第姆特总结了前人的经验,提出了反映载气流速和柱效 关系的范笨姆特方程,建立了初步的色谱理论。同年,高莱(Golay)发明了毛细管拄, 以后又相继发明了各种检测器,使色谱技术更加完善。50年代末期,出现了气相色谱 和质谱联用的仪器,克服了气相色谱不适于定性的缺点。则年代,由于检测技术的提 高和高压泵的出现,高效液相色谱迅远发展,使得色谱法的应用范围大大扩展。目前 ,由于高效能的色谱往、高灵敏的检测器及微处理机的使用,使得色谱法已成为一种 分析速度快、灵敏度高、应用范围广的分析仪器。 在这里主要介绍气相色谱分析法。同时也适当介绍液相色谱法。气相色谱法的 基本理论和定性定量方法也适用于液相色谱法。其不同之处在液相色谱法中介绍。 第二课气相色谱仪 典型的气相色谱仪具有稳定流量的载气,将汽化的样品由汽化室 带入色谱柱,在色谱柱中不同组分得到分离,并先后从色谱柱中流出, 经过检测器和记录器,这些被分开的组分成为一个一个的色谱峰。色 谱仪通常由下列五个部分组成:

高效液相色谱的原理与发展

高效液相色谱的原理与发展 高效液相色谱是目前应用最多的色谱分析方法,对复杂样品中的分析物具有极高的分离效率,在环境监测、药物鉴别、石油化工、食品安全等广泛应用。本文从仪器原理、仪器结构、液相色谱发展、应用范围等方面,简要介绍高效液相色谱法在不同领域的应用情况及对前景进行展望,以期为相关研究人员提供参考。 高效液相色谱法具有下列主要优点:①应用了颗粒极细、规则均匀的固定相,传质阻抗小,柱效高,分离效率高;②采用高压输液泵输送流动相,流速快,一般试样的分析需数分钟,复杂试样分析在数十分钟内即可完成③广泛使用了高灵敏检测器,大大提高了灵敏度。高效液相色谱仪是由高压输液系统、进样器、色谱柱、检测器、工作站等几部分组成。 一、原理 高效液相色谱的原理是以液体为流动相,采用高压输液系统,样品溶液经进样器进入流动相,被流动相载入固定相内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中做相对运动时,经过反复多次的吸附—解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器进行检测。 二、结构 贮液器主要用来提供足够数量的符合要求的流动相以完成分析工作,对于贮液器的要求:①必须有足够的容积,以备重复分析时保证供液;②脱气方便;③能耐一定的压力;④所选用的材质对所使用

的溶剂都是惰性的。 贮液器一般是以不锈钢、玻璃、聚四氟乙烯或特种塑料聚醚醚酮衬里为材料,容积一般为0.5-2L。 所有流动相放入贮液罐之前都必须用0.45微米滤膜过滤,除去流动相中的杂质,防止输液管道或者进样阀出现阻塞现象。 所有流动相在使用前必须脱气。因为色谱柱是带压力操作的,而检测器是在常压下工作的。若流动相所含有的空气不除去,则流动相通过柱子时其中的气泡受到压力而收缩,流出柱子后到检测器时因常压而将气泡释放出来,造成检测器噪声较大,基线不稳,仪器不能正常工作,在梯度洗脱时尤为突出。 高压输液泵是高效液相色谱仪的关键部件,其作用是将流动相以稳定的流速或压力输送到色谱分离系统。对于带有自动脱气装置的色谱仪,流动相先经过脱气装置再输送到色谱柱。 ①高压输液泵的要求 A.泵体材料耐化学腐蚀; B.耐高压,且能在高压下连续工作8h-24h; C.输液平稳,脉动小,流动重复性与准确度高; D.耐用且维护方便,更换部件方便、容易。 ②高压输液泵类型 高压输液泵一般可分为恒压泵和恒流泵两大类。恒流泵在一定操作条件下可输出恒定体积流量的流动相。恒压泵又称气动放大泵,是输出恒定压力的泵,其流量随色谱系统阻力变化而变化。

高效液相色谱在生物制药中的应用

高效液相色谱在生物制药中的应用 高效液相色谱法是近35年发展起来的一项高效、快速的分离分析技术,是现代分离测试的重要手段[1]。高效液相色谱法已经被广泛用在各种领域,它是以经典的液相色谱为基础,引入气相色谱的理论与实验方法,将流动相改为高压输送,并采用高效固定相及在线检测等手段,发展而成的分析、分离方法。以其灵敏度高、选择性好,可分析微量组成甚至痕量样品等特点,成为医药分析领域发展最快、应用最广的现代分析技术之一。于此同时,高效液相色谱法成为环境污染物检测技术及化工产品质量检验中的标准方法。鉴于其简便、快速、灵敏、准确的特点,目前,在医药、卫生、食品、环保等各个领域已得到广泛应用。随着色谱技术的不断发展,在世界许多科学领域中,色谱法已成为世界许多科学领域中普及的一种分离分析手段,色谱仪也呈多样化、高精化、自动化、联用技术化等方向发展。高效液相色谱仪具有柱效高、分析速度快、流动相和被测组分的体积流量小等特点,广泛应用于临床工作[2]。 1.高效液相色谱的介绍 高效液相色谱仪一般都具备贮液器、高压泵、梯度洗提装置(用双泵)、进样器、色谱柱、检测器、恒温器、记录仪等主要部件。高效液相色谱法有以下五个特点:①高压:流动相为液体,流经色谱柱受到的阻力比较大,为了能够快速的通过柱子,必须对流动相加很高的高压。②高效:分离效能高。可选择固定相和流动相以达到最佳分离效果,比工业精馏塔和气相色谱的分离效能高出许多倍。③高灵敏度:紫外检测器可达0.01ng,进样量在uL数量级。④应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别是强极性、热稳定性差、高沸点、大分子化合物的分离分析,显示出优势。⑤分析速度快、载液流速快:分析所需时间一般小于1小时,和传统经典液体色谱法相比速度快得多。高效液相色谱有5种类型: 1、吸附色谱(Adsorption Chromatography) 2、分配色谱(Partition Chromatography) 3、离子色谱(Ion Chromatography) 4、体积排阻色谱(Size Exclusion Chromatography)

气相色谱法的应用

气相色谱法的应用 气相色谱法在石油工业中的应用 ⑴石油气的分析石油气(C1~C4)的成分分析,目前都采用气相色谱法。以25%丁酮酸乙酯为固定液,6201担体,柱长12.15m,内径4mm,柱温12℃,氢为载气,流速25ml/nin,热导池电桥电流120~150mA, C1~C4各组分得较好的分离见图10。图10 石油在丁酮酸乙酯柱上的分离1-空气;2-乙烷;3-乙烯;4-二氧化碳;5-丙烷;6-丙烯;7-异丁烷8-乙炔;9-正丁烷;10-正丁烯;11-异丁烯12- 反丁烯-2,3;13- 顺丁烯-2,4;14-丁二烯北京化工研究院近期研究出用多孔氧化铝微球色谱固定相,对C1~C4烃分离很好,柱长2m,内径2mm,内填充0.3%阿皮松L,改性?-Al2O3,微球120~130目;柱温85℃,氮为载气,流速15ml/min,氢火焰离子化检测器。分离谱见图11. 此外吉林化学工业公司研究院还研制了石墨化炭黑和改性石墨化炭黑色谱固定相分离C1~C4烃。⑵石油馏的的分析气相色谱法分析石油馏分的效能与分析速度是精密分馏等化学方法所不能比拟的。如一根60m长、内径0.17mm的弹性石英毛细管柱,内涂OV-101,在程序升温条件下(柱温40~90℃)进样0.6?1,分流比150:1,分析了65~165℃大港直馏气油。用一根30m长、内径0.25mm 毛细管柱,涂PEG1500,柱温80℃,汽化100℃,氮为载气,分流比100:1,汽油中微量芳香烃得到很好的分离(见图12)。图11 低级烃类的气相色谱分离图1-CH4;2-C2H6;3-C2 H4;4-C3 H8;5-C2 H2;6-C8 H6;7-iC4 H10;8-nC4 H10;9-丙二烯;10-丁烯-1;11-iC5 H12 12--i C4 H6;13- 反丁烯-2;14- 顺丁烯-2;15-丁二烯16-丙炔图12汽微量芳烃的油中色谱分离1-苯;2-甲苯;3-乙苯;4-对二甲苯;5-一间二甲苯; 6-邻二甲苯 气相色谱法在环境科学中的应用 我国在环境科学研究、监督检测中,广泛使用气相色谱法测定大气和水中痕量胡害物质。 ⑴大气中微量-氧化碳的分析 汽车尾气中含有一氧化碳,工业锅炉和家用煤炉燃烧不完全放出一氧化碳,都污染环境。大气中痕量一氧化碳常用转化法没定。国产SP-2307色谱仪具有转化装置,使CO转化为CH4。CO+3H2Ni催化/380℃→CH4+H2O 色谱柱固定相可用5A筛分子,GDX-104,Porpak Q等,以分子筛为例,13X或5A分子筛60~80目(先经500~550℃活化2小时)以氢气载气, 57ml/nin;氢焰检测器;空气400ml/min;尾吹氮气80ml/min。柱长2m,内径2mm,柱温36℃,检测室130℃,转化炉380v;进样量1mm。可测大气中ppm级一氧化碳。

高效液相色谱分析法在各领域的应用及发展前景

高效液相色谱分析法在各领域的应用及发展前景 摘要:高效液相色谱分析是一种高效、快速、准确的分离分析方法,在石油化工、生命科学、环境、医药及食品安全等领域有着广泛的应用。本文旨在简要介绍液相色谱分析法在不同领域的应用情况,并从使用频度、应用范围、检测效率、检测准确度及在本领域分析方法中的重要性等角度进行阐述。 关键词:高效液相色谱仪;石油化工;食品安全 中图分类号: O657.7+2 文献标识码:A 高效液相色谱在20世纪70年代获得迅猛的发展,是一种常规的分离技术色品分析仪的应用最广是在化学领域上,食品与环境的领域上也出现多方面的应用。其中,化合物的分析就包括高分子化合物,离子型化合物,热不稳定化合物以及生活性的化合物等都可以用不同的方式进行离子交换色谱和离子色谱,体积排除法,亲和色谱法等,进行离子分析。 一、高液相色谱分析仪发展现状 随着高效液相色谱分析仪的转换,高效液相色谱仪器成为国际分析化学界发展较快的学科,高效液相色谱是由液相系统组成,分别是检测器,色谱柱,记录仪等三个方面的部分组成,为了取得更好的效果,科研工作者需要提升准确度以及精确度和灵敏度显示科研工作的重要性。 经常采用薄层色谱法(TLC)和气相色谱法(OC)进行含量测定,而液相色谱法(LC)只是用于对组分标样的测定和分离的可能性研究。色谱法是一

种分类和混合的开发技术,是在1913年由俄国植物学家在实验中发现并且命名的技术,将植物的叶色素和石油醚,通过装有白色的碳酸钠颗粒的玻璃管,再用石油醚进行全面的冲洗,玻璃管的内壁出现不同颜色的色带,随着冲洗剂的不断转变,色带以不同的颜色进行冲洗,不同的色带以不同的速度向下移动并且分离,色谱法由此得名。 二、色谱分析仪的使用及工作原理 色谱柱通称为不锈钢柱,内装填充剂,常用的是硅胶作为填料,用于正相色谱,化学键固定相,根据色谱化学键的固定相,可以用来作为反相或者是反高的要求。输液系统要为 HPLC仪器提供流量恒定、准确、无脉冲的流动相,同时还要提供精度好、准确度高的多元溶剂梯度。早在2003年国家标准中就已经规定了液相色谱法检测食品中糖精钠和安赛蜜的检测方法,在质检机构中已经将之作为一种常规检验项目的基本检测方法来进行操作。近几年随着色谱柱填充制备技术的高速发展,已经可以一次性分离糖精钠、安赛蜜、苯甲酸、山梨酸、脱氢乙酸、柠檬黄、日落黄、胭脂红。 (一)、高效液相色谱仪的工作原理 储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附- 解吸的分配过程高的要求。 储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内,由于样品溶液中的各组分在两相

高效液相色谱的应用与发展前景

高效液相色谱的应用呵发展前景 液相色谱分析是指流动相为液体的色谱技术,是色谱法中最古老的一种,但通过 改进填料的粒度及柱压,在经典的液相柱色谱的基础上引入了气相色谱的塔板理论,在技术上采用了高压输液泵,高效固定相和高灵敏度的检测器,实现了分析速度快. 分离效率高和操作自动化,这种色谱技术被称为高效液相色谱法(HighperformanceliquidchromatographyHPLC) HPLC的出现不过三十多年的时间,但这种分离分析技术的发展十分迅猛,目前应用也十分广泛。其仪器结构和流程也多种多样。典型的高效液相色谱仪结构。高效液相色谱仪一般都具备贮液器、高压泵、梯度洗提装置(用双泵)、进样器、色谱柱、检测器、恒温器、记录仪等主要部件。 高效液相色谱更适宜于分离、分析高沸点、热稳定性差、有生理活性及相对分子量比较大的物质,因而广泛应用于核酸、肽类、内酯、稠环芳烃、高聚物、药物、人体代谢产物、表面活性剂,抗氧化剂、杀虫剂、除莠剂的分析等物质的分析。 对于高效液相色谱的发展前景应该是非常乐观的,现在的社会的发展节奏很快,各个领域对于分析检验的需求很多,而分析检验中,HPLC所占的比重是不言而喻的,已成化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。所以她的发展情景很乐观。理由有几点 1,随着科技的发展,技术的日臻完善,较之以前色谱分析的方法有了很大程度的提高,很多科学家在对于一些分析上的难点有了新的突破,这样一个 不断完善的技术在以后的社会发展中一定会扮演着一个重要的角色。 2,最近,一些先进的检测仪器成功的用在了高效液相色谱分析法上,使得高效液相色谱的应用更广泛,并充分利用高效快速.选择性好.灵敏度高等优 点,建立更加系统的成分分析方法.通过与质谱联用.梯度洗脱.柱切换技 术.配合先进的检测技术,以及与分子生物学.现代分子药理学相结合,必

气相色谱法

气相色谱法测定丁醇中少量甲醇含量 一、实验目的 1. 掌握用外标法进行色谱定量分析的原理和方法。 2. 了解气相色谱仪氢火焰离子检测器FID的性能和操作方法。 3. 了解气相色谱法在产品质量控制中的应用。 4. 学习气相色谱法测定甲醇含量的分析方法。 二、实验原理 在丁醇生产的过程中,不可避免地有甲醇产生。甲醇是无色透明的具有高度挥发性的液体,是一种对人体有害的物质。甲醇在人体内氧化为甲醛、甲酸,具有很强的毒性,对神经系统尤其是视神经损害严重,人食入 5 g 就会出现严重中毒,超过 12. 5 g 就可能导致死亡,在白酒的发酵过程中,难以将甲醇和乙醇完全分离,因此国家对白酒中甲醇含量做出严格规定。根据国家标准(GB10343-89),食用酒精中甲醇含量应低于0.1g?L-1(优级)或0.6 g?L-1(普通级)。 气相色谱法是一种高效、快速而灵敏的分离分析技术,具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品被气化后,在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 外标法是在一定的操作条件下,用纯组分或已知浓度的标准溶液配制一系列不同含量的标准溶液,准确进样,根据色谱图中组分的峰面积(或峰高)对组分含量作标准曲线。在相同操作条件下,依据样品的峰面积(或峰高),从标准曲线上查出其相应含量。利用气相色谱可分离、检测丁醇中的甲醇含量,在相同的操作条件下,

浅谈高效液相色谱的应用与发展

浅谈高效液相色谱的应用与发展 Peishan Zou 摘要:高效液相色谱分析是一种高效、快速、准确的分离分析方法。本文旨在从仪器原理、仪 器结构、应用范围、检测效率、检测准确度等方面简要介绍液相色谱分析法,及在不同领域的 应用情况和本领域分析方法中的重要性等角度进行阐述。着重对高效液相色谱的发展现状进行 总结,并根据发展趋势而延伸,预测未来液相色谱仪的技术发展路线。 关键词:高效液相色谱;应用;发展现状;发展趋势 1. 高效液相色谱的发展历史简况 色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。 液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。 高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱法(High Pressure Liquid Chromatography,HPLC)。 高效液相色谱法是目前各种色谱模式中应用最广的一个领域,在化合物的分析方面,世界上约有80% 的化合物,如括高分子化合物、离子型化合物、热不稳定化合物以及有生物活性的化合物都可以用不同模式的HPLC(如正相 HPLC、反相 HPLC、离子交换色谱和离子色谱、体积排除色谱、亲合色谱等等)进行分离分析[1]。 站在当今世界科技前沿的液相色谱用户现在又有了新的需求。首先是改进生产力的需求,因为大量的样品需要在很短的时间内完成;其次是在生化样品及天然产物样品的分析中,样品的复杂性对分离能力提出了更高的要求;第三是在与质谱等检测技术联用时,也提出了更高的要求。由此,UPLC(超高效液相色谱)概念得以提出,将HPLC的极限作为自己的起点。 2.高效液相色谱仪的原理与构造

气相色谱分析实例

永久性气体色谱分析 1.方法原理 以13X或5A分子筛为固定相,用气固色谱法分析混合气中的氧、氮、甲烷、一氧化碳,用纯物质对照进行定性,再用峰面积归一化法计算各个组分的含量。 2.仪器和试剂 ①仪器气相色谱仪,备有热导池检测器;皂膜流量计;秒表。 ②试剂13X或5A分子筛(60~80目);使用前预先在高温炉内,于350℃活化4h后备用。纯氧气、氮气、甲烷、一氧化碳装入球胆或聚乙烯取样袋中。氢气装在高压钢瓶内。3.色谱分析条件 固定相:13X或5A分子筛(60~80目);不锈钢填充柱管φ4mm×2m;柱温:室温。 载气:氢气,流量30mL/min 检测器:热导池检测器,桥流200mA;衰减1/2~1/8,检测室温度:室温。 气化室:室温,进样量用六通阀进样,定量管0.5mL。 4.定性分析 记录各组分从色谱柱流出的保留时间,用纯物质进行对照。 5.定量分析 由谱图中测得各个组分的峰高和半峰宽计算各组分的峰面积。已知氧、氮、甲烷、一氧化碳的相对摩尔校正因子分别为2.50、2.38、2.80、2.38。再用峰面积归一法就可计算出各个组分的体积百分数(%)。

白酒中主要成分的色谱分析 1.方法原理 白酒的主要成分为醇、酯和羟基化合物,由于所含组分较多,且沸点范围较宽,适合用程序升温气相色谱法进行分离,并用氢火焰离子化检测器进行检测。 为分离白酒中的主要成分可使用填充柱或毛细管柱,常用的填充柱固定相为GDX-102;16%邻苯二甲酸二壬酯+7%吐温-60/硅烷化101白色载体(60~80目);10%聚乙二醇20M/有机载体402(80~100目);15%吐温-60+15%司班-60/6201红色载体(60~80目)等。也可使用以聚乙二醇20M或FFAP交联制备的石英弹性毛细管柱。 2.仪器和试剂 ①仪器带有分流进样器和氢火焰离子化检测器的气相色谱仪、皂膜流量计、微处理机。 ②试剂氮气、氢气、压缩空气,与白酒中主要成分对应的醛、醇、酯的色谱纯标样。 3.色谱分析条件 色谱柱:冠醚+FFAP交联石英弹性毛细管柱φ0.25mm×30m,固定液液膜厚度df=0.5um。程序升温:50℃(6min)以40℃/min升温至220℃(1min)。 载气:氮气,流量1mL/min。燃气:氢气,流量50mL/min。助燃气:压缩空气,流量500mL/min。 检测器:氢火焰离子化检测器,高阻1010Ω,衰减1/4~1/16,检测室温度200℃。 气化室:250℃,分流进样分流比1:100,进样量0.2uL。 4.定性分析 记录各组分的保留时间和保留温度,用标准样品对照。 5.定量分析 以乙酸正丁酯作内标,用内标法定量。

气相色谱法在分析中的应用(精)

-科苑论谈 气相色谱法在分析中的应用 王颖石 (黑化集团有限公司,黑龙江齐齐哈尔161041) 摘要:简述气相色谱法近年来的发展及在分析中所起到的重要作用,详细阐述气相色谱法的工作原理、方法特点、操作流程及气相色谱曲线的特点。 关键词:气相色谱;色谱柱;色谱峰;载气 前言:气相色谱法是近五十年来迅速发展起来的一种新型分离,分析技术,在石油炼制、基本有机原料、高分子、医药、原子能、冶金工业中得到了广泛的应用。对保证工业生产的正常进行和提高产品质量起到了重要的作用。在许多生产部门,气相色谱分析法逐步代替了化学分析法。当前随着我国石油化学工业的迅速发展,气相色谱法在石油、化工生产中已成为中间控制分析中的一种不可缺少的分析方法了。 近年来电子计算机和专用的微型电子计算机已和气相色谱仪联用,可自动对分析结果进行数据处理,对于提高分析速度、改善分析结果的准确性及实现生产过程高自动化起到了重要的作用。现就气相色谱法的原理、特点及流程作以详细阐述。 1气相色谱法工作原理

气相色谱的工作原理是利用试样中各组份在色谱柱中的气相和固定液相间的分配系数不同,当汽化后的试样被载体带入色谱中运行时,组份就在其中的两相间进行反复多次的分配(吸附-脱附或溶解-放出),由于固定相对各组份的吸附或溶解能力不同,(即保留作用不同),各组份在色谱柱中的运行速度也就不同,经过一定柱长后,便彼此分离,按顺序离开色谱柱,进入检测器,产生的离子流经讯号放大后,在记录仪上就描绘各组份的曲线图,称为色谱峰。根据色谱峰的峰高或峰面积就可定量测定出样品中各级份的含量。 2气相色谱法的主要特点 气相色谱法在应用中的主要特点是选择性高、分离效率高、灵敏度高、分析速度快。 2.1选择性高 选择性高是指气相色谱法对性质极为接近的物质,具有很强的分离能力。如在石油化工生产中比较难解决的碳四烯烃异构体的分离;原子能工业中氢的三种同位素:氢、氘、氚的分离;医药和生物化学中结构复杂的旋光异构体的分离。现都可采用气相色谱法来解决。 2.2分离效率高 分离效率高是指气相色谱法能分离分配系数很接近的组份一根1~2m的色谱柱,柱效率可达几千块理论塔板数,因而对组成复杂的或难以分离的物质,经过色谱柱进行反复多次的分配平衡(或吸附平衡),最终均可达到分离的目的。 2.3灵敏度高

高效液相色谱的应用与发展前景完整版

高效液相色谱的应用与 发展前景 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高效液相色谱的应用呵发展前景 液相色谱分析是指流动相为液体的色谱技术,是色谱法中最古老的一种,但通过改进填料的粒度及柱压,在经典的液相柱色谱的基础上引入了气相色谱的塔板理论,在技术上采用了高压输液泵,高效固定相和高灵敏度的检测器,实现了分析速度快.分离效率高和操作自动化,这种色谱技术被称为高效液相色谱法(HighperformanceliquidchromatographyHPLC) HPLC的出现不过三十多年的时间,但这种分离分析技术的发展十分迅猛,目前应用也十分广泛。其仪器结构和流程也多种多样。典型的高效液相色谱仪结构。高效液相色谱仪一般都具备贮液器、高压泵、梯度洗提装置(用双泵)、进样器、色谱柱、检测器、恒温器、记录仪等主要部件。 高效液相色谱更适宜于分离、分析高沸点、热稳定性差、有生理活性及相对分子量比较大的物质,因而广泛应用于核酸、肽类、内酯、稠环芳烃、高聚物、药物、人体代谢产物、表面活性剂,抗氧化剂、杀虫剂、除莠剂的分析等物质的分析。 对于高效液相色谱的发展前景应该是非常乐观的,现在的社会的发展节奏很快,各个领域对于分析检验的需求很多,而分析检验中,HPLC所占的比重是不言而喻的,已成化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。所以她的发展情景很乐观。理由有几点 1,随着科技的发展,技术的日臻完善,较之以前色谱分析的方法有了很大程度的提高,很多科学家在对于一些分析上的难点有了新的突破,这样一个不断 完善的技术在以后的社会发展中一定会扮演着一个重要的角色。

高效液相色谱法在生命科学中的应用

高效液相色谱法在生命科学中的应用 高效液相色谱在生命科学中的应用范围越来越广,高效液相色谱由于具有高选择性、高灵敏度,并可同时用于有关物质检查与含量测定的特点,已成为医药研究的有力工具。如在中草药有效成分的分离和纯度测定、人工合成药物成分的定性和定量测定、新型高效手性药物中手性对映体含量的测定以及药物代谢物的测定等方面都需要用到HPLC的不同测定方法予以解决。而目前高效液相色谱的蒸发现了它在生命科学中的重要地位。光散射检测器的应用更体现了它在生命科学中的重要地位。1天然药物分析 天然药物的来源有动物、植物和矿物之分,其中以植物类为主。由于天然药物的化学成分复杂,其有效成分,可能有一个,也可以有多个,这对于控制药品质量,建立质量标准来说比较困难,HPLC可通过对天然药物的有效成分进行分离鉴定,再测定有效成分的含量;通过指纹图谱建立识别模式,可以判定药材的质量高低。 2 天然药物及复方成药分析 复方制剂、杂质或辅料干扰因素多的品种多采用高效液相色谱法。增免扶正片系由当归、党参、黄芪(图3)等十几味天然药物精制而成,具有益气生津、活血养血、滋补肝肾、健脾开胃之功效,主要用于抗缺氧、抗疲劳、抗衰老,长期服用可扶正祛邪,提高机体免疫功能,健身强体,益寿延年。该药对心、肝、脾、肾虚、纳差、心脑血管疾病、神经衰弱、

慢性肝炎、脂肪肝等都有较好的防治作用。 由于化学药品的开发费用昂贵,而且毒副作用大,近年来人们已把目光转向自然、民族传统医药、草药、植物药等天然药物,据世界卫生组织统计,当前全世界60多亿人口中80%的人使用过天然医药。在全世界药品市场中,天然物质制成的药品已占30%,国际上植物药市场份额已达300亿美元,且每年以20%以上的速度增长。HPLC分析必定能为我国传统中医药实现现代化,走向世界提供强有力的技术支持。 3 抗生素分析 抗生素是由微生物或其他方法产生的化学物质,在高度稀释的情况下仍具有抑制或杀灭其他微生物的性能。抗生素的分离、分析和定量测定是药物分析中较困难的领域。采用较多的方法是微生物法、分光光度法和化学方法,但所需时间较长、专一性较差。 HPLC分析技术近年来在抗生素的质量控制中已广泛应用。对结构、组分等较清楚的药物,HPLC分析将逐步取代传统的生物测定。目前,各国药典中应用HPLC技术对抗生素进行质量控制的项目包括鉴别、组分分析、含量测定和相关物质测定等。 4 在鉴别中的应用 在HPLC法中,保留时间与组分的结构和性质有关,是定性的参数,可用于药物的鉴别.如中国药典收载的药物头孢羟氨苄的鉴别项下规定:在含 量测定项下记录的色谱图中,供试品主峰的保留时间应与对照品主峰的保留时间一致.头抱拉定,头孢噻酚钠等头孢类药物以及地西泮注射液,曲安奈德注射液等多种药物均采用HPLC法进行鉴别.

高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC 主要内容包括: 1.高效液相色谱法(HPLC)的概述 2. 高效液相色谱基础知识介绍(1——13楼) 3. 高压液相色谱HPLC发展概况、特点与分类 4. 液相色谱的适用性 5.应用 高效液相色谱法(HPLC)的概述 以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。 由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有5 0种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。 高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。 目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。C18(ODS)为最常使用的化学键合相。 根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相

的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。 在中药制剂分析中,大多采用反相键合相色谱法。 系统组成: (一)高压输液系统 由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。 1.贮液罐 由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。2.流动相 流动相常用甲醇-水或乙腈-水为底剂的溶剂系统。 流动相在使用前必须脱气,否则很易在系统的低压部分逸出气泡,气泡的出现不仅影响柱分离效率,还会影响检测器的灵敏度甚至不能正常工作。脱气的方法有加热回流法、抽真空脱气法、超声脱气法和在线真空脱气法等。 3.高压输液泵 是高效液相色谱仪的关键部件之一,用以完成流动相的输送任务。对泵的要求是:耐腐蚀、耐高压、无脉冲、输出流量范围宽、流速恒定,且泵体易于清洗和维修。高压输液泵可分为恒压泵和恒流泵两类,常使用恒流泵(其压力随系统阻力改变而流量不变)。 (二)进样系统 常用六通阀进样器进样,进样量由定量环确定。操作时先将进样器手柄置于采样位置(L OAD),此时进样口只与定量环接通,处于常压状态,用微量注射器(体积应大于定量环体积)注入样品溶液,样品停留在定量环中。然后转动手柄至进样位置(INJECT),使定量环接入输液管路,样品由高压流动相带入色谱柱中。 (三)色谱柱 由柱管和填充剂组成。柱管多用不锈钢制成。柱内填充剂有硅胶和化学键合固定相。在化学键合固定相中有十八烷基硅烷键合硅胶(又称ODS柱或C18柱)、辛烷基硅烷键合硅

相关文档
最新文档