应力腐蚀

应力腐蚀
应力腐蚀

第二节应力腐蚀开裂

(此处缺内容)

应力腐蚀开裂是危害性最大的局部腐蚀形态破坏形式之一,在腐蚀过程中,若有微裂纹形成,其扩展速度比其它类型的局部腐蚀速度要快几个数量级,SCC是一种“灾难性的腐蚀”如桥梁坍塌,飞机失事,油罐爆炸,管道泄漏都造成了巨大的生命和财产损失。此外,如核电站,船只,锅炉,石油化工也都发生过应力腐蚀断裂的事故。

二,应力腐蚀开裂的特征。

(一)引起应力腐蚀开裂的往往是拉应力。

这种拉应力的来源可以是:

1,工作状态下构件所承受的外加载荷形成的抗应力。

2,加工,制造,热处理引起的内应力。

3,装配,安装形成的内应力。

4,温差引起的热应力。

5,裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。

(二)每种合金的应力腐蚀开裂只对某些特殊介质敏感。

一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。

而且介质中的有害物质浓度往往很低,如大气中微量的H2S和NH3可分别引起钢和铜合金的应力腐蚀开裂。空气中少量的NH3是鼻子嗅不到的,却能引起黄铜的氨脆。19世纪下半叶,英军在印度生产的弹壳每到雨季就会发生破裂。由于不了解真正的原因,当时给了个不恰当的名字叫“季脆”(原因是黄铜弹壳(1)应力加上印度大气中含有微量NH3)。再如奥氏体不锈钢在含有几个ppm氯离子的高纯水中就会出现应力腐蚀开裂。再如低碳钢在硝酸盐溶液中的“硝脆”,碳钢在强碱溶液中的“碱脆”都是给定材料和特定环境介质结合

后发生的破坏。氯离子能引起不锈钢的应力腐蚀开裂,而硝酸根离子对不锈钢不起作用,反之,硝酸根离子能引起低碳钢的应力腐蚀开裂,而氯离子对低碳钢不起作用。

(三)应力腐蚀开裂是材料在应力和环境介质共同作用下经过一段时间后,萌生裂纹,裂纹扩展到临界尺寸,此时由于裂纹尖端的应力强度因子K1达到材料的断裂韧性K1c,发生失稳断裂。即应力腐蚀开裂过程分为三个阶段:裂纹萌生,裂纹扩展,失稳断裂。

1,裂纹的萌生。

裂纹源多在保护膜破裂处,而膜的破裂可能与金属受力时应力集中与应变集中有关,此外,金属中存在孔蚀,缝隙腐蚀,晶间腐蚀也往往是SCC 裂纹萌生处。萌生期长短,少则几天,长达几年,几十年,主要取决于环境特征与应力大小。

2,裂纹扩展。

应力腐蚀开裂的裂纹扩展过程有三种方式。应力腐蚀开裂裂纹的扩展速率

d a/d t与裂纹尖端的应力强度因子K1的

关系具有图示的三个阶段特征。在第一

阶段da/dt随K1降低而急剧减少。当

K1降到Kiscc以下时应力腐蚀开裂裂纹

不再扩展,因此Kiscc时评定材料应力

腐蚀开裂倾向的指标之一。在第二阶

段,裂纹扩展与应力强度因子K1大小无

关,主要受介质控制。在这阶段裂纹出

现宏观和微观分枝(图)。但在宏观上,

裂纹走向与抗应力方向是垂直的。第三

阶段为失稳断裂,纯粹由力学因素K1

控制,da/dt随K1增大迅速增加直至断

裂。

(四)应力腐蚀开裂属于脆性断裂。即使塑性很高的材料也是如此。其断口呈多种形貌。有沿晶断,准解理,韧(2)等。

三,应力腐蚀开裂机制。

应力腐蚀开裂现象很多,目前尚未有统一的见解,不同学派的观点可能从电化学,断裂力学,物理冶金进行研究而强调了它们的作用。

(一)电化学理论。

1,活性通道理论。

该理论认为,在金属或合金中有一条易于腐蚀的基本上是连续的通

道,沿着这条活性通道优先发生阳极溶解。活性通道可以是晶界,亚

晶界或由于塑性变形引起的阳极区等。电化学腐蚀就沿着这条通道进

行,形成很窄的裂缝裂纹,而外加应力使裂纹尖端发生应力集中,引

起表面膜破裂,裸露的金属成为新的阳极,而裂纹两侧仍有保护膜为

阴极,电解质靠毛细管作用渗入到裂纹尖端,使其在高电流密度下加

速裂尖阳极溶解。该理论强调了在拉应力作用下保护膜的破裂与电化

学活化溶解的联合作用。

2,快速溶解理论。

该理论认为活性通道可能预先是不存在的,而是合金表面的点蚀坑,沟等缺陷,由于应力集中形成裂纹,裂纹一旦形成,其尖端的应力集中很大,足以使其尖端发生塑性变形到一个塑性,该塑性具有很大的溶解速度。这种理论适用于自纯化金属,由于裂纹两侧纯化膜存在,更显示裂纹尖端的快速溶解,随着裂纹向前发展,裂纹两侧的金属重新发生纯化(再纯化),只有当裂纹中纯化膜的破裂和再纯化过程处于某种同步条件下才能使裂纹向前发展(如果纯化太快就不会产生裂纹进一步腐蚀,若再纯化太慢,裂纹尖端将变圆,形成活性较低的蚀孔。

3,膜破裂理论。

该理论认为金属表面有一层保护膜(吸附膜,氧化膜,腐蚀产物膜),在应力作用下,被露头的滑移台阶撕破,使表面膜发生破裂(图b)局部暴露出活性裸金属,发生阳极溶解,形成裂纹(图c)。同时外部保护膜得到修补,对于自纯化金属裂纹两侧金属发生再纯化,这种再纯化一方面使裂纹扩展减慢,一方面阻止裂纹向横向发展,只有在应力作用下才能向前发展。

4,闭塞电池理论。

该理论是在活性通道理论的基础上发展起来的。腐蚀就先沿着这些活性通道进行,应力的作用在于将裂纹拉开,以免被腐蚀产物堵塞,但是闭塞电池理论认为,由于裂纹内出现闭塞电池而使腐蚀加速(这类似于缝隙腐蚀)即在裂纹内由于裂纹内金属想要发生水解:FeCl2+2H2O→Fe(OH)2+2HCl,使Ph值下降,甚至可能产生氢,外部氢扩散到金属内部引起脆化。闭塞电池作用是一个随催化腐蚀过程,在拉应力作用下使裂纹不断扩展直至断裂。

(二)吸氢变脆理论。

该理论是从一些塑性很好的合金在发生应力腐蚀开裂时具有脆性断裂的

特征提出的(变脆是否由氢脆引起?)该理论认为裂纹的形成与发展主要与裂纹尖端氢被引入晶格有关,如奥氏体不锈钢在裂纹尖端,Cr阳极氧化生成CrO3使其酸度增大。2Cr+3H2O→Cr2O3+6H++6e。当裂纹尖端的电位比氢的平衡电位负时,氢离子有可能在裂纹尖端被还原,变成吸附的氢原子,向金属内部扩展,从而形成氢脆。

(三)应力吸附破裂理论。

该理论认为由于环境中某些破坏性组分对金属表面内表面的吸附,削弱了金属原子间的结合力,在抗拉力作用下引起破裂。

四,影响应力腐蚀开裂的因素——见表。

五,应力腐蚀开裂控制方法。

由于应力腐蚀涉及到环境介质,应力,材料三个方面,因此防止应力腐蚀也应从这三方面入手。

(一)降低和消除应力。

1,改进结构设计:应力腐蚀开裂常发生在应力集中处,在

结构设计时应减少应力集中。

(此处缺页!!!)

(四)涂层保护。

主要是有机高分子涂层,如环氧树脂涂层,有机硅涂层,从而使金

属表面和环境隔离开了,避免产生应力腐蚀。

(五)合理选材和改善材质。

选材应避免金属或合金在易发生应力腐蚀的环境中使用(见前面讲

的表)如对于接触海水的热交换器采用普通低碳钢可能比不锈钢更

好。

减少材料中的杂质,提高纯度对减少应力腐蚀开裂也有好处。

第三节腐蚀疲劳

腐蚀疲劳指交变应力与腐蚀共同作用下发生的断裂现象。腐蚀疲劳所造成的破坏要比单纯的交变应力引起的破坏(机械疲劳)(简称疲劳)或单纯的腐蚀作用造成的破坏严重的多,腐蚀疲劳是一些金属构件发生突然断裂的主要原因,如船舶推进器,温轮机温轮叶片,汽车的弹簧,泵轴,油田抽油杆等经常出现这种破坏。

一,腐蚀疲劳特征。

1,机械疲劳有疲劳极限而腐蚀疲劳则不存在疲劳极限(图)只有

条件疲劳极限(在规定的周次下,不发生疲劳断裂的应力)2,腐蚀疲劳也是由裂纹萌生,裂纹扩展和失稳断裂三个阶段。

疲劳裂纹扩展速度da/d N与裂纹尖

端的应力强度因子幅△K thcf。在第二阶段疲劳裂纹扩展速度

da/d N与裂纹尖端应力强度因子幅△K呈指数关系,可用Paris

公式表示 da/d N=C(△K)'h。第三阶段,当Kmax接近K1时,

da/d N随△K增高迅速扩大,直至失稳断裂。

3,腐蚀疲劳裂纹萌生期比机械疲劳裂纹萌生期短。

4,腐蚀疲劳的门槛值△K thcf(在可纯化介质中)或在规定条件的△K thcf(在不纯化介质中,金属总是以一定速度腐蚀着)一般

都比空气介质中的△K thcf小。

5,与应力腐蚀开裂不同,纯金属也会发生腐蚀疲劳(应力腐蚀开裂只有合金才会发生)且不需要像应力腐蚀开裂那样材料---

环境的特殊组合。

6,在空气介质中,对于碳钢和低合金钢σ-1/σb=0.5,但在腐蚀介质中σ-1并不随σb增加而增加。(图)

7,腐蚀疲劳在活化区和纯化区都能发生(应力腐蚀开裂发生在纯化—活化过渡区)

8,断口既有腐蚀特征,又有疲劳特征。由于腐蚀作用大部分断口已经被腐蚀产物覆盖。因而断口数模糊,又有疲劳特征,如有

疲劳(3)

二,腐蚀疲劳机制。

腐蚀疲劳机理与应力腐蚀开裂机理原本相同,现以电化学理论中的快速溶解理论说明之。图中A在腐蚀介质中形成的点蚀坑蚀腐蚀疲劳裂纹源。B在应力作用下蚀坑优先发生滑移,形成滑移台阶。C滑移台阶处发生溶解。D在反方向应力作用下,形成裂纹,反复不断加载使裂纹不断扩展。

三,影响腐蚀疲劳的因素。

(一)力学因素的影响。

1,应力循环参数f和R。

(1)f——应力循环频率,当f很高时,腐蚀作用不明显,以

机械疲劳为主;当f很低时,与静拉伸作用相似,只有在某一

范围内的f最易发生腐蚀疲劳。

(2)R——应力循环不对称系数,R值低,反映材料疲劳性能,

R=1,静拉伸。

2,应力循环波形:正弦波,正锯齿波对腐蚀疲劳影响大,而方波,负锯齿波影响小。

3,应力集中:表面缺口等缺陷易产生疲劳裂纹,对腐蚀疲劳影响较大,但对裂纹扩展影响较小。

(二)环境因素。

1,温度。温度越高,材料耐腐蚀疲劳性能下降。

2,介质的腐蚀性。介质腐蚀性越强,腐蚀疲劳强度越低。

3,外加电流:因外加电流引起阴极极化可使腐蚀疲劳裂纹扩展速度将低。但当阴极极化过电流太大,以至有氢吸附。

显然会加速腐蚀疲劳过程,尤其是高强度钢。阳极极化可

以提高不锈钢和在氢化物介质中碳钢的腐蚀疲劳强度,但

却加速活化状态碳钢的腐蚀疲劳。

(三)材料因素。

1,材料耐蚀性。

耐蚀性好的材料,如钛,铜及其合金,不锈钢等对腐蚀疲劳的

敏感性较小,而耐蚀性差的金属,如铝合金,镁合金对腐蚀疲

劳敏感性较大。

2,材料的组织结构:提高强度的热处理组织有降低腐蚀疲劳倾向。

3,表面残余应力状态:残余压应力提高腐蚀疲劳强度,而残余拉应力降低腐蚀疲劳强度。

四,防止腐蚀疲劳措施。

1,通过表面涂,镀层改善材料的抗蚀性。

2,使用缓蚀剂。

3,阴极保护。

4,合理选材,提高零件表面光洁度。

五,氢脆,应力腐蚀开裂和腐蚀疲劳的关系。

氢脆,应力腐蚀开裂和腐蚀疲劳都是在介质和力学因素共同作用下产生的腐蚀破坏,它们既有联系也有差别。应力腐蚀开裂和氢脆有许多共同之处,如都是在恒定的拉应力作用,在腐蚀介质中,经过一定时间以后产生的开裂行为。它们之间的关系如下图所示。只有当应力腐蚀开裂时

的阴极过程析出氢气,且对于断裂起决

定作用时,仅是一种氢脆现象。而腐蚀

疲劳和前二者之间的主要差别是应力

(负荷)类型不同,腐蚀疲劳是交变应

力,而氢脆和应力腐蚀开裂是恒定拉应

力。虽然它们都是裂纹萌生和扩展过程,但是其裂纹扩展图不同,在腐蚀疲劳断口上有明显腐蚀疲劳条件。

第四节磨损腐蚀

在腐蚀介质中,由于介质与金属相对运动或金属与金属之间的相对运动从而引起金属表面的物质不断丢失的现象。磨损腐蚀简称磨蚀。造成这种腐蚀损坏的介质通常是流动的。包括气体,水溶液,液态有机物,液态金属以及含有固体微粒或气泡的液体,尤其是悬浮在液体中的固体微粒特别有害。根据磨损腐蚀的机理不同,由机械力和电化学共同作用会形成湍流腐蚀,空泡腐蚀和微动腐蚀。

一,湍流腐蚀。

流动的液体按流速大小分为层流和湍流。层流流速慢,液体质点运动迹线有条不紊,而湍流流速较快,液体流动质点互相混杂,由湍流导致的腐蚀称为湍流腐蚀。

(一)湍流腐蚀机理。

1,湍流加速了阴极极化剂的供应量。

2,当流速达到湍流时,湍流液体击穿金属表面的边界层,对金属表面产生一个切应力,其大小Γρ=1/2 fv2ρ,式中

f为摩擦系数,v为平均流速,这个切应力能够把已形成

的腐蚀产物从金属表面刮去,并让液体带走。如果液体中

含有固体微粒就会使金属表面磨损腐蚀更加严重。

磨损腐蚀与一般机械磨损不同,前者金属以水化金属离子形式

溶解,后者则以粉末形式而脱落。

(二)产生湍流腐蚀的构件特征。

湍流腐蚀大都发生在设备或构件的某些特定部位,这些特定部位有管道截面突然变化的地方或流体突然改变方向处。这是因为湍流常发生在这些部位。如冷凝器,换热器的入口端,液体由大口径管进入小口径管时,此处便形成了湍流。形状不规则也是引起湍流的一个重要条件,如泵(4)机叶片,都易形成湍流腐蚀。在U形管道拐弯部位它是由高速流体或含有固体微粒,气泡的高速流体不断冲击金属表面所造成的腐蚀时湍流腐蚀的一种特例,又称冲击腐蚀。

(三)影响湍流腐蚀的因素。

1,金属:由惰性元素组成的合金是耐腐蚀的,其抗湍流腐蚀的性能视其耐磨损能力而定,通常硬度越高,耐磨损,抗磨蚀能力强。

2,表面膜:金属表面抗湍流腐蚀性能与表面膜的性质,成膜速度和膜的自修复能力有关。如18—8不锈钢在氢化物介质中能形成稳定的纯化膜,其耐湍流腐蚀性能比在还原性介质中强,钛在许多介质中能形成稳定的氢化膜,故多用来制造在氯化物,海水中抗湍流腐蚀的设备。

3,流速:对许多金属表面为流速越大湍流腐蚀速度越大,如图所示的曲线为磨蚀速度与流体速度关系。

当流速大于某一速度时,腐蚀速度大大增加,这一速度可称为临界速度。

因为大于这速度切应力使纯化膜去除,从而使裸区与膜区

构成电偶腐蚀。但是提高流速不一定都能使腐蚀速度增

加。如不锈钢在中性含氧的海水中,增大流速有利于氧的

输入,从而促进纯化膜形成,反而使腐蚀速度下降。

(四)控制湍流腐蚀的措施。

1,材料:选择既耐蚀又耐磨材料或纯化膜稳定材料。

2,介质:添加侵蚀剂,减少流体中的固体微粒。

3,设计:在几何形状上减少易产生湍流的部分,或增加湍流腐蚀部位厚度。

4,电化学保护。

二,空泡腐蚀。

空泡腐蚀又称气蚀,是由于金属表面的液体中的气泡产生和破裂,从而造成金属表面粗化,最终导致丧失使用性能的一种破坏。

(一)气蚀的机理。

流体力学又一个很著名的公式,即伯努利方程。

p+ρu2/2=K (常数)

(p—流体静压力,ρ—流体密度,u—流体速度)

流体的流速u越高,流体静压力越低。当它的静压力低于流体

的蒸汽压力时,于是流体中就有气泡产生,气泡中的主要是水

蒸气以及少量从水中析出的气体。当液体从低压区进入高压区

时,气泡破裂。同时产生很大的冲击波,冲击波对金属表面施

加的压力超过140Mpa足以破坏金属表面膜,甚至造成金属表

面产生塑性变形。空泡腐蚀过程如下图所示。

1,在金属表面膜上形成气泡。

2,气泡破裂使膜破坏。

3,暴露出的金属基体腐蚀并重新成膜。

4,在该处容易形成新的气泡。

5,气泡破后,膜再次破坏。

6,裸区腐蚀并重新成膜。

上述步骤反复进行,在表面形成空穴甚至出现裂纹。

可以看出气蚀也是高速流体与腐蚀共同作用产生的,只是构件

的几何外形成了高速负压区,产生气泡。如船舶螺旋推进器转

轮叶片,泵叶轮容易产生这种气蚀。

(二)抑制气蚀的方法。

1,提高表面光洁度,减少气泡形核率。

2,采用塑性好的高分子涂层,吸收冲击波能量。

3,采用阴极保护增加阴极过电位,使之(5)氢气泡,对冲击波也有缓冲作用。

4,选用抗气蚀好的材料,不锈钢抗气蚀性好。

三,微动腐蚀。

微动腐蚀指两个受压的相互接触的表面,由于相对滚动或往复滑动造成的一种破坏形式。表面常呈麻点或沟纹,其周围往往有氢化物,亦称微振腐蚀,摩擦氧化。如常常发生在振动的轴承,螺纹连接处,铆接处,压配合处等部位,由这个定义可知产生微动腐蚀有三个条件:1,往复相对运动;2,有氧(大气)(并不是在水溶液);3,受到压应力。

(一)微动腐蚀机理有磨损—氧化和氧化—磨损二种。如图。

1,磨损—氧化理论认为:金属表面是凹凸不平的,受压的两金属表面接触时,凸起的部分处于粘着和焊接状态,在相对运动时接触点破坏,金属颗粒脱落下来,由于摩擦生热,颗粒被氧化,这些较硬的氧化物颗粒在微动腐蚀中起磨料作用,强化了机械磨损过程。该过程反复进行,导致金属损失。

2,氧化—磨损理论认为:多数金属表面本来就存在氧化膜,在往复运动中,突出部分氧化膜被擦落,变成氧化物颗粒裸露金属重新氧化,这一过程反复进行,导致金属损伤。

上述两种情况都可能存在。

(二)控制微动腐蚀的措施。

1,防止接触面发生相对移动或滚动。如拧紧紧固件,两紧固件间加垫片。

2,降低摩擦系数,减小摩擦(摩擦热),加润滑剂,镀低熔点金属涂层(锌,镉等)。

3,提高表面强度,使接触面凸出部分不易焊合,表面强化。镀硬金属,氮化等。

金属管道腐蚀防护基础知识

编号:SY-AQ-09483 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 金属管道腐蚀防护基础知识 Basic knowledge of metal pipeline corrosion protection

金属管道腐蚀防护基础知识 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 1.什么叫金属腐蚀? 金属腐蚀是金属与周围介质发生化学、电化学或物理作用成为金属化合物而受破坏的一种现象。 2.金属管道常见的腐蚀按其作用原理可分为哪几种? 金属管道常见的腐蚀按其作用原理可分为化学腐蚀和电化学腐蚀两种。 3.常用的防腐措施有哪几种? 常用的防腐措施有涂层、衬里、电法保护和缓蚀剂。 4.什么叫化学腐蚀? 化学腐蚀是指金属表面与非电解质直接发生纯化学作用而引起的破坏。化学腐蚀又可分为气体腐蚀和在非电解质溶液中的腐蚀。 5.什么叫电化学腐蚀? 电化学腐蚀是指金属与电解质因发生电化学反应而产生破坏的

现象。 6.缝隙腐蚀是如何产生的? 许多金属构件是由螺钉、铆、焊等方式连接的,在这些连接件或焊接接头缺陷处可能出现狭窄的缝隙,其缝宽(一般在 0.025~0.1mm)足以使电解质溶液进入,使缝内金属与缝外金属构成短路原电池,并且在缝内发生强烈的腐蚀,这种局部腐蚀称为缝隙腐蚀。 7.什么是点腐蚀? 点腐蚀是指腐蚀集中于金属表面的局部区域范围内,并深入到金属内部的孔状腐蚀形态。 8.点蚀和坑蚀各有什么特征? 点蚀:坑孔直径小于深度;坑蚀:坑孔直径大于深度。 9.什么是应力腐蚀,应力腐蚀按腐蚀机理可分为几种? 由残余或外加拉应力导致的应变和腐蚀联合作用所产生的材料破坏过程称为应力腐蚀。应力腐蚀按腐蚀机理可分为:(1)阳极溶解(2)氢致开裂。

应力腐蚀断裂精编版

应力腐蚀断裂精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

应力腐蚀断裂 一.概述 应力腐蚀是材料、或在静(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于用钢、黄铜、高强度铝合金和中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显着。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。而且介质中的有 害物质浓度往往很低,如大气中微量的H 2S和NH 3 可分别引起钢和铜合金的应力腐蚀

金属的应力腐蚀和氢脆断裂

第六章金属的应力腐蚀和氢脆断裂 §6.1应力腐蚀 一、应力腐蚀及其产生条件 1、定义与特点 (1)定义 (2)特点 特定介质(表6-1) 低碳钢、低合金钢——碱脆、硝脆 不锈钢——氯脆 铜合金——氨脆 2、产生条件 应力:外应力、残余应力; 化学介质:一定材料对应一定的化学介质; 金属材料:化学成分、显微组织、强化程度等。 二、应力腐蚀 1、机理(图6-1) 滑移——溶解理论(钝化膜破坏理论)

a)应力作用下,滑移台阶露头且钝化膜破裂(在表面或裂纹面); b)电化学腐蚀(有钝化膜的金属为阴极,新鲜金属为阳极); c)应力集中,使阳极电极电位降低,加大腐蚀;d)若应力集中始终存在,则微电池反应不断进行,钝化膜不能恢复。则裂纹逐步向纵深扩展。(该理论只能很好地解释沿晶断裂的应力腐蚀)2、断口特征 宏观:有亚稳扩展区,最后瞬断区(与疲劳裂纹相似);断口呈黑色或灰色。 微观:显微裂纹呈枯树枝状;腐蚀坑;沿晶断裂和穿晶断裂。(见图6-2,和p2) 三、力学性能指标 1、临界应力场强度因子K ISCC 恒定载荷,特定介质,测K I~t f曲线。 将不发生应力腐蚀断裂的最大应力场强度因子,称为应力腐蚀临界应力场强度因子。 2、裂纹扩展速度da/dt K I>K ISCC,裂纹扩展,速率da/dt Da/dt~ K I|曲线上的三个阶段(初始、稳定、失稳)由(图6-7,P152)可以估算机件的剩余寿命。 四、防止应力腐蚀的措施 1、合理选材; 2、减少拉应力; 3、改善化学介

质;4、采用电化学保护,使金属远离电化学腐蚀区域。 §6-2 氢脆 由于氢和应力的共同作用,而导致金属材料产生脆性断裂的现象,称为氢脆断裂(简称氢脆) 一、氢在金属中存在的形式 内含的(冶炼和加工中带入的氢);外来的(工作中,吸H)。 间隙原子状,固溶在金属中; 分子状,气泡中; 化学物(氢化物)。 二、氢脆类型及其特征 1、氢蚀(或称气蚀) 高压气泡(对H,CH4) 宏观断口:呈氧化色,颗粒状(沿晶); 微观断口:晶界明显加宽,沿晶断裂。 2)白点(发裂) 氢的溶解度↓,形成气泡体积↑,将金属的局部胀裂。 宏观:断面呈圆形或椭圆形,颜色为银白色。甚至有白线。 3)氢化物 形成氢化物(凝固、热加工时形成);或(应力作用下,元素扩散而形成)。 氢化物很硬、脆,与基体结合不牢。

金属材料的应力腐蚀

金属材料的应力腐蚀 金属材料的应力腐蚀开裂,是指在静拉伸力和腐蚀介质的共同作用下导致腐蚀开裂的现象。它与单纯由应力造成的破坏不同,这种腐蚀在极低的应力条件下也能发生;它与单纯由腐蚀引起的破坏也不同,腐蚀性极弱的介质也能引起腐蚀开裂。它往往是没有先兆的进展迅速的突然断裂,容易造成严重的事故。因此它是一种危害性极大的破坏形式。 按照裂纹发展过程的电化学反应,可以把应力腐蚀分为两个基本类别:阳极反应敏感型和阴极反应敏感型。 阳极反应敏感型应力腐蚀,是指这类应力腐蚀裂纹的形成和发展过程是以裂纹处金属的阳极溶解为基础的,裂纹的成长速度也由金属阳极溶解速度决定。 阴极反应敏感型应力腐蚀,是指这类应反应过程中由于阴极吸氢而造成的脆性破坏,它也称为氢脆型应力腐蚀,也称氢脆。 通常说的应力腐蚀,指的是阳极反应敏感型应力腐蚀。金属材料发生应力腐蚀的特征,可从四个方面说明 1、应力 产生应力俯视的应力主要是其中的静态部分,它可以是外加载荷或装配力(例如拧螺栓的力、胀接力等)引起的应力,也可以是构件在加工、热处理、焊接等过程中产生的内应力。不管来源如何,导致应力腐蚀开裂的应力必须有拉伸应力的成分,压缩应力是不会引起应力腐蚀开裂的。此外,这种应力通常是比较轻微的。如果不是在腐蚀

环境中,这样小的应力是不会使构件发生机械性的破坏。构成破坏的应力值要根据材料、腐蚀介质等具体情况来确定。 2、腐蚀介质 产生应力腐蚀的材料和介质并不是任意的,只有二者是某种组合时才会发生应力腐蚀。引起普通钢应力腐蚀的腐蚀介质有:氢氧化物溶液;含有硝酸盐、碳酸盐、硫化氢的水溶液;海水,硫酸-硝酸混合液;融化的锌、锂;热的三氯化铁溶液;液氨。引起奥氏体不锈钢应力腐蚀的介质有:酸性和中性的氯化物溶液;海水;熔融氯化物;热的氟化物溶液;日的氢氧化物溶液。 3、材料 一般认为极纯的金属不产生应力腐蚀破坏,只有在合金或含有杂质的金属中才会发生。 4、破坏过程 a.孕育阶段。这是在应力腐蚀裂纹产生前的一段时间,为裂纹的成核作准备。 b.裂纹稳定扩展阶段。在应力和腐蚀介质的联合作用下,裂纹缓慢扩展 c.裂纹失稳扩展阶段。这是最后的机械性破坏。 另外,金属材料的应力腐蚀破裂还有一个特点是金属的开裂与金属本身厚度无关。常见的厚度大腐蚀也慢(均匀腐蚀)的情况在这里不适用。因此,靠增加金属厚度来延缓应力腐蚀破裂几乎是无效的。

管道的应力腐蚀断裂参考文本

管道的应力腐蚀断裂参考 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月 管道的应力腐蚀断裂参考文本

使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 四川省的天然气管线由于介质未处理好,在被输送的天然气中H2S大大超过规走的含量,曾发生多次爆破事故。 据国外文献介绍,美国1955年第一次发生由于氢脆而产生的氢应力破坏,六十年代出现了其他形式的应力腐蚀断裂,以后随着时间的延续,这类破坏事故越来越多,而应力腐蚀断裂也越来越多地为管道工作者所关注,并成为研究的课题。 应力腐蚀断裂简称为SCC,这系由英文名词Stress Corrosion CracKing而来的,其定义为:在应力和介质联合作用下,裂纹的形成和扩展的过程叫做应力腐蚀,由于应力腐蚀而产生的断裂称为应力腐蚀断裂。 当原始缺陷的长度2a小时临界裂纹长度2ac时,管线是不会断裂的’但由于疲劳或(和)环境的作用,裂纹长度可以增长,当原始缺陷长度逐渐增长,最后达到2ac时”则管道产生断

应力腐蚀

1.应力腐蚀的机理:阳极溶解和氢致开裂机理 阳极溶解机理应力腐蚀断裂必须首先发生选择性腐蚀,而金属的腐蚀又受图4所示的阳极极化曲线的影响。以不锈钢为例,增加介质中Cl-含量,降低介质中O2含量及pH值,都会使图4a中阳极极化曲线从左向右移动,这四根曲线分别对应于蚀坑或裂纹区(图4b)的不同位置。应力的主要作用在于使金属发生滑移或使裂纹扩展,这两种力学效应都可破坏钝化膜,从而使阳极过程得以恢复,促进局部腐蚀。钝化膜破坏以后,可以再钝化。若再钝化速度低于钝化膜破坏速度,则应力与腐蚀协同作用,便发生应力腐蚀断裂。 氢致开裂机理或称氢脆机理,是应力腐蚀断裂的第二种机理。这种机理承认SCC必须首先有腐蚀,但是,纯粹的电化学溶解,在很多情况下,既不易说明SCC速度,也难于解释SCC的脆性断口形貌。氢脆机理认为,蚀坑或裂纹内形成闭塞电池,局部平衡使裂纹根部或蚀坑底部具备低的pH值,这是满足阴极反应放氢的必要条件。这种氢进入金属所引起的氢脆,是SCC的主要原因。这种机理取决于氢能否进入金属以及金属是否有高度的氢脆敏感性。高强度钢在水溶液中的SCC以及钛合金在海水中的SCC是氢脆引起的。

2.应力腐蚀开裂的断口形貌:穿晶断口开裂图

3.氢鼓泡产生机理,文字图 通过实验和理论分析研究了氢鼓泡形核、长大和开裂的过程. 在充氢试样中发现直径小于100 nm未开裂的孔洞, 它们是正在长大的氢鼓泡, 也发现已开裂的鼓泡以及裂纹多次扩展导致破裂的鼓泡.分析表明, 氢和空位复合能降低空位形成能, 从而使空位浓度大幅度升高, 这些带氢的过饱和空位很容易聚集成空位团.H在空位团形成的空腔中复合成H2就使空位团稳定, 成为氢鼓泡核.随着H 和过饱和空位的不断进入, 鼓泡核不断长大, 内部氢压也不断升高.当氢压产生的应力等于被氢降低了的原子键合力时, 原子键断开, 裂纹从鼓泡壁上形核. 图5 氢鼓泡形核、长大示意图 (a) 空位V和原子氢H聚集成为空位-原子氢集团; (b) 原子氢在空位 团中复合成分子氢H2, 使其稳定, 鼓泡核形成; (c) 空位和氢不断进 入鼓泡核使其长大; (d) 当鼓泡核内氢压产生的应力等于原子键合力时, 在鼓泡壁形成裂纹 首先, 氢(H)进入金属和空位(V)复合, 使空位形成能大大降低, 从而大幅度升高空位浓度, 这些过饱和空位容易聚集成空位团. 当4个或以上的空位或空位-氢复合体(V-H)聚集成空位四面体或空位团时, 内部形成空腔, 如图5(a). 空位所带的氢在空腔中就会复合成H2, 形成氢压. 由于室温时H2不能分解成H, 故含H2的空位团在室温是稳定的, 它就是鼓泡核, 如图5(b). 随着H和空位不断进入鼓泡核, 就导致鼓泡在充氢过程中不断长大, 同时氢压不断升高, 如图5(c). 当鼓泡中的氢压在内壁上产生的应力等于被氢降低了的原子键合力时, 原子键断裂, 裂纹沿鼓泡壁形核, 如图5(d). 随着氢的不断进入, 裂纹扩展, 直至鼓泡破裂4.氢进入金属材料的途径P129 5.氢致脆断类型:可逆和不可逆,第一类和第二类

金属材料应力腐蚀裂纹的探讨

/ 实验教学 / - 131 - 2013年2月下 第06期(总第300期) 10.3969/j.issn.1671-489X.2013.06.131 金属材料应力腐蚀裂纹的探讨 陶勇 四川建筑职业技术学院 四川德阳 618000 摘 要 金属被环境介质的化学以及电化学作用而受破坏过程即腐蚀。根据工程实情,对应力腐蚀裂纹的形成等问题展开研究,对设计中怎样更有效地实施措施以防止金属材料应力腐蚀的现象发生以及在生产实践中怎样处理金属材料应力腐蚀裂纹的问题进行探究。关键词 金属材料;应力腐蚀;裂纹 中图分类号:T G111.91 文献标识码:B 文章编号:1671-489X(2013)06-0131-02Discussion of Metal Material Stress Corrosion Crack //Tao Yong Abstract Corrosion means the process which metal is damaged by the environmental medium through chemical and electrochemical action. According to the actual project situation, with the help of the study of stress corrosion crack issues, we have explored the methods about how to deal with such problems effectively and prevent the crack in the design.Key words Metal material; stress corrosion; crack 1 应力腐蚀概论 应力腐蚀指的是金属材料或结构处于静载拉应力与一定的腐蚀环境一起作用下所导致发生的脆性破裂。1.1 金属材料应力腐蚀裂纹 金属材料于一定的腐蚀环境中,被应力作用,因着金属本身微观径路在设限范围内产生腐蚀而呈现裂纹的现象称应力腐蚀裂纹。应力腐蚀裂纹的特征是金属外表为脆性机械断裂。裂纹只产生于金属的部分区域,由内向外发展,通常是与作用力保持垂直状态。金属材料应力腐蚀裂纹同简单因应力导致的破坏不一样,其腐蚀在极其微弱的应力条件下也可以产生;金属材料应力腐蚀裂纹同单一因腐蚀造成的破坏也不一样,其腐蚀性最为微弱的介质也可以导致腐蚀裂纹。而处于严重的全面腐蚀状况下,则不易发生应力腐蚀裂纹现象。应力腐蚀外表没有变化,裂纹发展速度极快并且很难意料,因此可以说是一种具有极大危害性的破坏形式。它的破坏往往是无法意料的,就发展速度而言,能够达到孔蚀的数百万倍。导致设备发生渗漏现象及至爆炸,是所有腐蚀形态中最具危害的一种。1.2 氢脆理论 依据裂纹发展阶段的电化学反应,可将应力腐蚀划分成阳极和阴极两个反应敏感型。具体说明:1)应力腐蚀阳极反应敏感指的是此类应力腐蚀裂纹的产生与发展阶段都是受裂纹处金属的阳极溶解制约的,裂纹的发展快慢也是由金属阳极溶解的快慢决定;2)应力腐蚀阴极反应敏感指的是此类应反应阶段中因阴极吸氢而导致的脆性破坏,其也称之为氢脆型应力腐蚀。而氢脆裂纹指的是金属材料在应力作用下,因为腐蚀反应所产生的氢为金属所吸收出现氢蚀脆化导致的裂纹。 金属材料并非是在各种腐蚀环境中均出现应力腐蚀裂纹。不同的金属材料的应力腐蚀均需一定的腐蚀环境。因各金属材料适用范围的逐渐扩大,腐蚀环境的类型也呈现数量 增加的趋势[1]。 2 金属材料发生应力腐蚀的特征 通常所讲的应力腐蚀,即阳极反应敏感应力腐蚀。对于金属材料发生应力腐蚀的特征,可从4个方面来加以说明。2.1 金属材料发生应力腐蚀裂纹必须是拉应力 只有处于应力(特别是拉应力)的状态下,才会发生应力腐蚀裂纹。发生应力腐蚀的应力属于其中的静态部分,它既可能是外加载荷或者装配力(包括拧螺栓、胀接力等)引发的应力,也可能是构件在制造、热处理、焊接等加工阶段中发生的内应力。不论来源怎样,造成应力腐蚀裂纹的应力一定包含拉伸应力的成分,压缩应力是不能引发应力腐蚀裂纹的。而且,此种应力往往是很轻微的,若不是在腐蚀环境条件中,此弱小的应力是不能够让构件产生机械性破坏的。促成破坏的应力值要依据材料、腐蚀介质等实际情况来定[2]。2.2 促成一定金属材料产生应力腐蚀的环境介质是特定的 发生应力腐蚀的材料与介质并非任意的,只在两者处于某种组合时才能产生应力腐蚀。引发一般钢应力腐蚀的腐蚀介质包括的溶液有:氢氧化物;含有硝酸、碳酸盐、硫化氢的水;海水,硫酸与硝酸混合;融化的锌、锂;热状态的三氯化铁;液体氨。引发奥氏体不锈钢应力腐蚀介质包括的溶液有:具有酸性、中性的氯化物;海水;热融的氯化物;热状态的氟化物、氢氧化物[3]。2.3 金属材料 通常极纯的金属不会发生应力腐蚀破坏,只是处于合金或者包含杂质的金属中才能够产生。因为金属材料与腐蚀环境互相作用的状况不尽相同,金属材料应力腐蚀裂纹也都不尽相同。裂纹或沿晶粒边缘发生;或延伸到晶粒内部而又明显分枝;裂纹或与晶粒边缘、晶粒内部都没有关系。2.4 破坏过程 金属材料应力腐蚀裂纹,往往在没有意料的状况下突然 (下转P134)

应力腐蚀断裂

应力腐蚀断裂 一.概述 应力腐蚀 是材料、或在静 (主要是拉应力 )和腐蚀的共同作用下产生的失效现 象。 它常出现于用钢、黄铜、高强度铝合金和中,凝汽器管、矿山用钢索、飞机紧 急刹车用高压气瓶内壁等所产生的应力腐蚀也很显着。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜 被腐蚀而受 到破坏 , 破坏的表面和未破坏的表面分别形成阳极和阴极 , 阳极处的金属 成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电 流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹, 裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还 能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应 力腐蚀, 不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合 避免使用对应力腐蚀敏感的材料 , 可以采用抗应力腐蚀开裂的不锈钢系列 工作状态下构件所承受的外加载荷形成的抗应力。 加工,制造,热处理 引起的内应力。 装配,安装形成的内应力。 温差引起的热应力。 裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要 的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开 裂,合金比纯金属更易发生应力腐蚀开裂。 下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金 可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。而且介质中的有害物 质浓度往往很低,如大气中微量的 H 2S 和NH 可分别引起钢和铜合金的应力腐蚀开裂。 空气中少量NH 是鼻子嗅不到 而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响 理选材, 如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构 件,减 少。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。 采用金属或 非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见也 可减小或停止应力 腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究, 并分析比较应力腐蚀断裂 其他环境作用条件下发生失效的特征。,由于应力腐蚀的 测试方法与本文中重点分析之处 结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1. 2. 3 . 4 .

腐蚀的分类及特点

[分享] 腐蚀的分类及特点 特点, 腐蚀, 分类 - 腐蚀的分类及特点腐蚀的分类及特点 1 点蚀 点蚀又称坑蚀和小孔腐蚀。点蚀有大有小,一般情况下,点蚀的深度要比其直径大的多。点蚀经唱法生在表面有钝化膜或保护膜的金属上。 由于金属材料中存在缺陷、杂质和溶质等的不均一性,当介质中含有某些活性阴离子(如Cl-)时,这些活性阴离子首先被吸附在金属表面某些点上,从而使金属表面钝化膜发生破坏。一旦这层钝化膜被破坏又缺乏自钝化能力时,金属表面就发生腐蚀。这是因为在金属表面缺陷处易漏出机体金属,使其呈活化状态,而钝化膜处仍为钝态,这样就形成了活性—钝性腐蚀电池,由于阳极面积比阴极面积小得多,阳极电流密度很大,所以腐蚀往深处发展,金属表面很快就被腐蚀成小孔,这种现象被称为点蚀。 在石油、化工的腐蚀失效类型统计中,点蚀约占20%~25%。流动不畅的含活性阴离子的介质中容易形成活性阴离子的积聚和浓缩的条件,促使点蚀的生成。粗糙的表面比光滑的表面更容易发生点蚀。 PH值降低、温度升高都会增加点蚀的倾向。氧化性金属离子(如Fe3+、Cu2+、Hg2+等)能促进点蚀的产生。但某些含氧阴离子(如氢氧化物、铬酸盐、硝酸盐和硫酸盐等)能防止点蚀。 点蚀虽然失重不大,但由于阳极面积很小,所以腐蚀速率很快,严重时可造成设备穿孔,使大量的油、水、气泄漏,有时甚至造成火灾、爆炸等严重事故,危险性很大。点蚀会使晶间腐蚀、应力腐蚀和腐蚀疲劳等加剧,在很多情况下点蚀是这些类型腐蚀的起源。 2 缝隙腐蚀 在电解液中,金属与金属或金属与非金属表面之间构成狭窄的缝隙,缝隙内有关物质的移动受到了阻滞,形成浓差电池,从而产生局部腐蚀,这种腐蚀被称为缝隙腐蚀。缝隙腐蚀常发生在设备中法兰的连接处,垫圈、衬板、缠绕与金属重叠处,它可以在不同的金属和不同的腐蚀介质中出现,从而给生产设备的正常运行造成严重障碍,甚至发生破坏事故。对钛及钛合金来说,缝隙腐蚀是最应关注的腐蚀现象。介质中,氧气浓度增加,缝隙腐蚀量增加;PH值减小,阳极溶解速度增加,缝隙腐蚀量也增加;活性阴离子的浓度增加,缝隙腐蚀敏感性升高。但是,某些含氧阴离子的增加会减小缝隙腐蚀量。 3 应力腐蚀 材料在特定的腐蚀介质中和在静拉伸应力(包括外加载荷、热应力、冷加工、热加工、焊接等所引起的残余应力,以及裂缝锈蚀产物的楔入应力等)下,所出现的低于强度极限的脆性开裂现象,称为应力腐蚀开裂。 应力腐蚀开裂是先在金属的腐蚀敏感部位形成微小凹坑,产生细长的裂缝,且裂缝扩展很快,能在短时间内发生严重的破坏。应力腐蚀开裂在石油、化工腐蚀失效类型中所占比例最高,可达50%。 应力腐蚀的产生有两个基本条件:一是材料对介质具有一定的应力腐蚀开裂敏感性;二是存在足够高的拉应力。导致应力腐蚀开裂的应力可以来自工作应力,也可以来自制造过程中产生的残余应力。据统计,在应力腐蚀开裂事故中,由残余应力所引起的占80%以上,而由工作应力引起的则不足20%。 应力腐蚀过程一般可分为三个阶段。第一阶段为孕育期,在这一阶段内,因腐蚀过程局部化

管道的应力腐蚀断裂.docx

管道的应力腐蚀断裂 四川省的天然气管线由于介质未处理好,在被输送的天然气中 H2S大大超过规定的含量,曾发生多次爆破事故。 据国外文献介绍,美国 1955 年第一次发生由于氢脆而产生的氢应力破坏,六十年代出现了其他形式的应力腐蚀断裂,以后随着时间的延续,这类破坏事故越来越多,而应力腐蚀断裂也越 来越多地为管道工作者所关注,并成为研究的课题。 应力腐蚀断裂简称为SCC,这系由英文名词StressCorrosionCracKing而来的,其定义为:在应力和介质联 合作用下,裂纹的形成和扩展的过程叫做应力腐蚀,由于应力腐蚀而产生的断裂称为应力腐蚀断裂。 当原始缺陷的长度2a 小时临界裂纹长度2ac 时,管线是不会断裂的,但由于疲劳或( 和 ) 环境的作用,裂纹长度可以增长,当原始缺陷长度逐渐增长,最后达到2ac 时,则管道产生断裂。这里只将讨论后者,即在环境和应力相互作用下引起的应力腐蚀 断裂。一、应力腐蚀的机理 为说明应力腐蚀需先简单的介绍腐蚀反应。大家知道,钢铁 放在潮湿的空气中,就会生锈,锈不断脱落,就会导致截面减小 和重量减轻,这称为钢铁受到了腐蚀。腐蚀是一种电化学过程, 它又可分为阳极过程和阴极过程,这二者是共存的。 金属原子是由带正电的金属离子,对钢来说,就是二价的铁离子 F2+和周围带负电的电子云 ( 用 e- 来表示)构成的,如下所

示: Fe→ Fe2++2e-上式是一个可逆反应。当铁遇到水,铁离子Fe2+ 和水化合的倾向比 Fe2+与 e- 结合成金属的倾向还要强,因此金 属铁遇到水后就会发生如下反应: 上式放出电子e- ,故称为阳极反应。 阳极反应所放出的电子必须通过阴极过程( 即吸收电子的过 程) 被取走,式的反应才能继续存在,否则该式将是可逆的。 一种常见吸收电子的阴极过程是吸氧过程,见下式: O2+2H2O+4e→- 4OH-氢氧根 OH-和铁离子F e2+结合,就会产生铁锈,即 Fe2O3 2Fe2++60H-→ Fe2O3·3H2O综合阳极过程和阴极过程,即联合上两式,可写出下式: 4Fe+nH2O+3O2→ 2Fe2O3·nH2O 由上式可以看出,钢管生锈的条件为第一要接触水( 或潮湿的空气 ) ,第二要接触空气,以提供 O2前者是阳极过程,后者是阴极过程。 实验表明,和腐蚀介质相接触的阳极金属介面上会形成一层 致密的复层,即纯化膜,它能阻碍阳极金属进一步溶解。但金属

金属设备的应力腐蚀及预防措施

金属/设备的应力腐蚀及预防措施 一、应力腐蚀的机理和特点 1.应力腐蚀----金属/设备在拉应力和腐蚀介质同时作用下产生脆性破裂,叫应力腐蚀破裂。 2.应力腐蚀破裂的裂缝形态----主要有二种: a.沿晶界发展,称晶间破裂。 b.裂缝穿过晶粒,称穿晶破裂。 也有混合型,主逢为晶间型,支缝或尖端为穿晶型。 3.应力腐蚀的特征---- a.必须存在拉应力(外加载核、热应力、冷/热加工或焊接后的残余应力等),若存在压应力则可抑制这种腐蚀。 b.发生应力腐蚀开裂(SCC)必须同时满足材料、环境、应力三者的特定条件。也就是说一般只发生在一定的体系,如奥氏体不锈钢/CI-体系,碳钢/NO-3体系,铜合金/NH+4体系等。根据介质主要成分为氯化物、氢氧化物、硝酸盐、氨、含氧水及硫化物等,而分别称为氯裂(氯脆)、碱裂(碱脆)、硝裂(硝脆)、氨裂(氨脆)、氧裂(氧脆),还有硫化物应力开裂等。 c. 应力腐蚀开裂与单纯由机械应力造成的开裂不同,它在极低的负荷应力下也能产生开裂。 d. 应力腐蚀开裂与单纯由腐蚀引起的开裂也不同,腐蚀性极弱的介质也能引起应力腐蚀开裂。其全面腐蚀常常很轻,而且没有变形预兆,即发生突然断裂,应力腐蚀是工业生产中危害性最大的一种恶性

腐蚀类型。 4.应力腐蚀的机理----应力腐蚀的机理很复杂,按照左景伊提出的理论,破裂的发生和发展可区分为三个阶段: a.金属表面生成钝化膜或保护膜。 b. 钝化膜或保护膜局部破裂,产生孔蚀或裂缝源。 c.裂缝内发生加速腐蚀,在拉应力作用下,以垂直于应力的方向深入金属内部。裂缝多半有分枝,裂缝端部尖锐,端部的扩张速度很快,断口具有脆性断裂的特征。 二、应力腐蚀试验方法 根据应力的加载方法不同,应力腐蚀试验方法主要可分为以下四类: 恒变形法----给予试样一定的变形,对其在试验环境中的开裂敏感性进行评定 恒载荷法(SSCC)----方法有拉伸试验、弯梁试验、C形环试验、双悬臂梁试验,常用拉伸试验,即把单轴拉伸型的试样进行H2S水溶液应力腐蚀试验,试验介质为%HAc+5%NaCl+饱和H2S水溶液,试验在恒负荷拉伸应力腐蚀试验机上进行。试验时按不同的应力级别(取材料屈服强度的百分比)分别对试样加载,经过一定时间后发生应力腐蚀开裂,记录其断裂时间。最长试验周期为720小时,把试样在720小时不发生断裂视为合格。通过试验达到二个目的:(1)检测材料在一定的应力级别下是否很好地抵抗应力腐蚀开裂;(2)可以测定材料的“临界拉伸应力σth”,对同样的材料分别施加不同的应力级别,试

应力腐蚀

应力腐蚀 (一)应力腐蚀现象 金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象,称为应力腐蚀断裂。 应力腐蚀断裂并不是金属在应力作用下的机械性破坏与在化学介质作用下的腐蚀性破坏的迭加所造成的,而是在应力和化学介质的联合作用下,按持有机理产生的断裂。其断裂抗力比单个因素分别作用后再迭加起来的要低很多。由拉伸应力和腐蚀介质联合作用而引起的低应力脆性断裂称为应力腐蚀(常用英文的三个字头SCC表示)。不论是韧性材料还是脆性材料都可能产生应力腐蚀断裂。 应力腐蚀断裂一般都是在特定的条件下产生的: 1.只有在拉伸应力作用下才能引起应力腐蚀开裂(近来有研究说压应力下也可能产生)。这种拉应力可以是外加载荷造成的应力;也可以是各种残余应力,如焊接残余应力,热处理残余应力和装配应力等。一般情况下,产生应力腐蚀时的拉应力都很低,如果没有腐蚀介质的联合作用,机件可以在该应力下长期工作而不产生断裂。 2.产生应力腐蚀的环境总是存在特定腐蚀介质,这种腐蚀介质一般都很弱,如果没有拉应力的同时作用,材料在这种介质中腐蚀速度很慢。产生应力腐蚀的介质一般都是特定的,也就是说,每种材料只对某些介质敏感,而这种介质对其它材料可能没有明显作用,如黄铜在氨气氛中,不锈钢在具有氯离子的腐蚀介质中容易发生应力腐蚀,但反应过来不锈钢对氨气,黄铜对氯离子就不敏感。 3.一般只有合金才产生应力腐蚀,纯金属不会产生这种现象.合金也只有在拉伸应力与特定腐蚀介质联合作用下才会产生应力腐蚀断裂。 常见合金的应力腐蚀介质: 碳钢:荷性钠溶液,氯溶液,硝酸盐水溶液,H2S水溶液,海水,海洋大气与工业大气 奥氏体不锈钢:氯化物水溶液,海水,海洋大气,高温水,潮湿空气(湿度90%),热NaCl,H2S水溶液,严重污染的工业大气(所以不锈钢水压试验时氯离子的含量有很严格的要求)。 马氏体不锈钢:氯化的,海水,工业大气,酸性硫化物 航空用高强度钢:海洋大气,氯化物,硫酸,硝酸,磷酸

材料的应力腐蚀

材料应力腐蚀 材料在应力和腐蚀环境的共同作用下引起的破坏叫应力腐蚀。这里需强调的是应力和腐蚀的共同作用。材料应力腐蚀具有很鲜明的特点,应力腐蚀破坏特征,可以帮助我们识别破坏事故是否属于应力腐蚀,但一定要综合考虑,不能只根据某一点特征,便简单地下结论。影响应力腐蚀的因素主要包括环境因素、力学因素和冶金因素。 原理 应力腐蚀是指在拉应力作用下,金属在腐蚀介质中引起的破坏。这种腐蚀一般均穿过晶粒,即所谓穿晶腐蚀。应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂。 应力腐蚀一般认为有阳极溶解和氢致开裂两种。常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极 处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。

影响 应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。一般应力腐蚀都属于脆性断裂。应力腐蚀的裂纹扩展速率一般为10- 6~10-3 mm/min,而且存在孕育期,扩展区和瞬断区三部分。 容易发生应力腐蚀的设备发生这种腐蚀的主要设备有热交换器、冷却器、蒸汽发生器、送风机、干燥机和锅炉 特点 (1)造成应力腐蚀破坏的是静应力,远低于材料的屈服强度,而且一般是拉伸应力(近年来,也发现在不锈钢中可以有压应力引起)。这个应力可以是外加应力,也可以是焊接、冷加工或热处理产生的残留拉应力。最早发现的冷加工黄铜子弹壳在含有潮湿的氨气介质中的腐蚀破坏,就是由于冷加工造成的残留拉应力的结果。假如经过去应力退火,这种事故就可以避免。 (2)应力腐蚀造成的破坏,是脆性断裂,没有明显的塑性变形。

浅谈金属材料的应力腐蚀问题

龙源期刊网 https://www.360docs.net/doc/85365676.html, 浅谈金属材料的应力腐蚀问题 作者:陶勇 来源:《学习导刊》2013年第11期 【摘要】金属被环境介质的化学以及电化学作用而受破坏过程即腐蚀。根据工程实情,对应力腐蚀裂纹的形成等问题展开研究,对设计中怎样更有效地实施措施防止金属材料应力腐蚀的现象发生以及在生产实践中怎样处理金属材料应力腐蚀裂纹的问题进行了探究。 【关键词】金属材料;应力腐蚀 1.应力腐蚀概论 应力腐蚀指的是金属材料或结构处于静载拉应力与一定的腐蚀环境一起作用下所导致发生的脆性破裂。 1.1 金属材料应力腐蚀裂纹 金属材料在一定的腐蚀环境中,被应力作用,因金属本身微观径路在设限范围内产生腐蚀而呈现裂纹的现象称应力腐蚀裂纹。应力腐蚀裂纹的特征是金属外表为脆性机械断裂。裂纹只产生于金属的部分区域,由内向外发展,通常是与作用力保持垂直状态。金属材料应力腐蚀裂纹同简单因应力导致的破坏不一样,其腐蚀在极其微弱的应力条件下也可以产生;金属材料应力腐蚀裂纹同单一因腐蚀造成的破坏也不一样,其腐蚀性最为微弱的介质也可以导致腐蚀裂纹。而处于严重的全面腐蚀状况下,则不易发生应力腐蚀裂纹现象。应力腐蚀外表没有变化,裂纹发展速度极快并且很难意料,因此可以说是一种具有极大危害性的破坏形式。 1.2 氢脆理论 依据裂纹发展阶段的电化学反应,可将应力腐蚀划分成阳极和阴极两个反应敏感型。具体说明如下:1)应力腐蚀阳极反应敏感指的是此类应力腐蚀裂纹的产生与发展阶段都是受裂纹处金属的阳极溶解制约的,裂纹的发展快慢也是由金属阳极溶解的快慢决定。2)应力腐蚀阴极反应敏感指的是此类应反应阶段中因阴极吸氢而导致的脆性破坏,其也称之为氢脆型应力腐蚀。而氢脆裂纹指的是金属材料在应力作用下,因为腐蚀反应所产生的氢为金属所吸收出现氢蚀脆化导致的裂纹。 2.金属材料发生应力腐蚀的特征 我们通常所讲的应力腐蚀,即阳极反应敏感应力腐蚀。对于金属材料发生应力腐蚀的特征,我们可从以下四个方面来加以说明。 2.1 金属材料发生应力腐蚀裂纹必须是拉应力

应力腐蚀断裂

应力腐蚀断裂 一.概述 应力腐蚀是材料、机械零件或构件在静应力(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于锅炉用钢、黄铜、高强度铝合金和不锈钢中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显着。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少应力集中。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见电化学保护也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即

金属设备的应力腐蚀及预防措施样本

金属/设备应力腐蚀及防止办法 一、应力腐蚀机理和特点 1.应力腐蚀----金属/设备在拉应力和腐蚀介质同步作用下产生脆性破裂,叫应力腐蚀破裂。 2.应力腐蚀破裂裂缝形态----重要有二种: a.沿晶界发展,称晶间破裂。 b.裂缝穿过晶粒,称穿晶破裂。 也有混合型,主逢为晶间型,支缝或尖端为穿晶型。 3.应力腐蚀特性---- a.必要存在拉应力(外加载核、热应力、冷/热加工或焊接 后残存应力等),若存在压应力则可抑制这种腐蚀。 b.发生应力腐蚀开裂(SCC)必要同步满足材料、环境、应 力三者特定条件。也就是说普通只发生在一定体系,如 奥氏体不锈钢/CI-体系,碳钢/NO-3体系,铜合金/NH+4 体系等。依照介质重要成分为氯化物、氢氧化物、硝酸 盐、氨、含氧水及硫化物等,而分别称为氯裂(氯脆)、 碱裂(碱脆)、硝裂(硝脆)、氨裂(氨脆)、氧裂(氧脆), 尚有硫化物应力开裂等。 c. 应力腐蚀开裂与单纯由机械应力导致开裂不同,它在 极低负荷应力下也能产生开裂。 d. 应力腐蚀开裂与单纯由腐蚀引起开裂也不同,腐蚀性 极弱介质也能引起应力腐蚀开裂。其全面腐蚀经常很轻,

并且没有变形预兆,即发生突然断裂,应力腐蚀是工业 生产中危害性最大一种恶性腐蚀类型。 4.应力腐蚀机理----应力腐蚀机理很复杂,按照左景伊提出理论,破裂发生和发展可区别为三个阶段: a.金属表面生成钝化膜或保护膜。 b. 钝化膜或保护膜局部破裂,产生孔蚀或裂缝源。 c.裂缝内发生加速腐蚀,在拉应力作用下,以垂直于应 力方向进一步金属内部。裂缝多半有分枝,裂缝端部尖 锐,端部扩张速度不久,断口具备脆性断裂特性。 二、应力腐蚀实验办法 依照应力加载办法不同,应力腐蚀实验办法重要可分为如下四类: 1.恒变形法----予以试样一定变形,对其在实验环境中开裂敏感性进行评估 2.恒载荷法(SSCC)----办法有拉伸实验、弯梁实验、C形环实验、双悬臂梁实验,惯用拉伸实验,即把单轴拉伸型 试样进行H2S水溶液应力腐蚀实验,实验介质为 0.5%HAc+5%NaCl+饱和H2S水溶液,实验在恒负荷拉 伸应力腐蚀实验机上进行。实验时按不同应力级别(取 材料屈服强度比例)分别对试样加载,通过一定期间后 发生应力腐蚀开裂,记录其断裂时间。最长实验周期为 720小时,把试样在720小时不发生断裂视为合格。通

管道的应力腐蚀断裂(2021新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 管道的应力腐蚀断裂(2021新版)

管道的应力腐蚀断裂(2021新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 四川省的天然气管线由于介质未处理好,在被输送的天然气中H2 S大大超过规定的含量,曾发生多次爆破事故。 据国外文献介绍,美国1955年第一次发生由于氢脆而产生的氢应力破坏,六十年代出现了其他形式的应力腐蚀断裂,以后随着时间的延续,这类破坏事故越来越多,而应力腐蚀断裂也越来越多地为管道工作者所关注,并成为研究的课题。 应力腐蚀断裂简称为SCC,这系由英文名词StressCorrosionCrac King而来的,其定义为:在应力和介质联合作用下,裂纹的形成和扩展的过程叫做应力腐蚀,由于应力腐蚀而产生的断裂称为应力腐蚀断裂。 当原始缺陷的长度2a小时临界裂纹长度2ac 时,管线是不会断裂的,但由于疲劳或(和)环境的作用,裂纹长度可以增长,当原始缺陷长度逐渐增长,最后达到2ac 时,则管道产生断裂。这里只将讨论后者,即在环境和应力相互

应力腐蚀断裂

一.概述 应力腐蚀是材料、机械零件或构件在静应力(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于锅炉用钢、黄铜、高强度铝合金和不锈钢中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显著。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少应力集中。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见电化学保护也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。而且

相关文档
最新文档