卫星通信抗干扰系统

卫星通信抗干扰系统
卫星通信抗干扰系统

卫星通信抗干扰系统

一般可理解为,通信装备及系统为对抗干扰方利用电磁能和定向能控制、攻击通信电磁频谱,以提高其在通信对抗中的生存能力所采取的通信反对抗技术体系、方法和措施。

一般说,通信抗干扰的基本体系、方法、措施可分为三类:

1、信号处理。如直接序列扩频技术(DS-SS),其关键参量是作为时间函数的相位;跳频技术(FH-SS)其关键参量是作为时间函数的载频;等等。

2、空间处理。如采用自适应天线调零技术,当接收端受到干扰时,使其天线方向图零点自动指向干扰方向,以提高通信接收机的信干比。

3、时间处理。如猝发传输技术,由于通信信号在传输过程中暴露的时间很短暂,从而大大降低了被干扰方侦察、截获的概率。

通信抗干扰技术研究的就是在已知或预测敌方的干扰手段情况下,在上述技术基础上(当然不排除以后有新的技术类别)选取适当的技术手段来消除或减轻敌方干扰,而使我方需要进行的通信能够延续的一项技术。对敌方的干扰性质,强度、种类、手段、采用的体系,了解得越清楚,采取的措施越有针对性,取得的效果也越好。由于敌方的对抗手段往往是综合的、多变的,有的可能是完全新颖的,所以抗干扰的手段也必须采取多种方式的结合才能取得较好的效果。

通信抗干扰技术的特点:

1、对抗性强,技术综合性强,难度高,发展快,某种程度上说是敌我双方智慧和技术的斗争。通信的成败关系着战争的胜负,所以此技术对抗性很强。通信抗干扰有了新技术,搞对抗的就想新的对策,反过来也一样,这样就促进了技术的发展和难度的提高。

2、对技术的实用性和可靠性的要求高,通信抗干扰必须在战场上实际解决问题。指标高而不可靠或不实用是不能容忍的,其后果不堪设想。

[相关技术]通信对抗;扩频技术;抗干扰电台;卫星通信抗干扰

[技术难点]

1、提高跳频速率有利于抗干扰,但跳速提高需解决如下问题:接收机中频滤波器产生的瞬时扰动问题;发射机功率输出截止状态产生的过渡问题;频率合成器高速频率切换问题;对邻道的干扰问题;同步问题。

在短波跳频时,高速跳频的频率合成器、宽带天线、宽带功放都是技术上应当解决的问题。

2、扩频系统中常用的专用高速集成电路(例高速PN码发生器、调制器等)及数字信号处理器DSP的开发和研制生产是通信抗干扰技术突破的重要保证。

3、新型扩频码的研究和工程化。这既是发展方向,又是技术难点。

4、自适应天线对于干扰信号的抑制原理已如前述,目前已得到越来越多的应用。正在成为通信抗干扰技术的一个重要方面。但在H F/VHF/UHF实现自适应调零天线,目前尚有一定困难。

[国外概况]

在电子对抗中,谁赢得了通信的主动权,谁就可以取得战争的胜利。抗干扰通信是电子战的一部分,国外许多国家都非常重视通信抗干扰技术的发展,都投入大量人力、物力、财力进行通信抗干扰技术的研究。由于扩展频谱技术具有信号频谱宽、波形复杂、参数多变、安全隐蔽等显著特点,已成为当代通信抗干扰技术的重要发展方向和体制,也成为通信对抗技术的主要发展方向与体制。国外常用的有跳频技术、直接序列扩频技术、跳时技术、混合扩频技术等。当然还有非扩展频谱类的抗干扰技术,如自适应天线技术、猝发通信技术、纠

错编码与交织编码技术、分集技术等。我们以扩展频谱技术为主,适当结合其它方式来介绍通信抗干扰技术。

一、扩展频谱抗干扰技术

1、跳频技术(FH)

跳频技术是用扩频码序列去进行频移键控,使载波频率不断跳变而扩展频谱的一种方法。它是一种比较成熟的抗干扰技术,具有较强的抗干扰能力,已在战术通信中得到广泛的应用。

国外自六十年代起就对跳频体制的理论和技术进行了研究,七十年代即研制出实用的跳频电台,到了八十年代,跳频电台已成为世界各主要国家的重要通信装备。随着调制技术、编码技术、微电子技术、特别是DSP技术和计算机网络技术的迅速发展,跳频技术在90年代又有了新的发展,目前正向着自适应、高速、变速率和宽带的方向发展。

初期跳频电台大多采用分频段跳频,其跳频带宽也较窄,跳频速率也较低。例英国450系列UHF/SSB电台的带宽为5MHz,跳频速率仅30跳/秒。专家们分析,快速跟踪式干扰很难对中高速跳频电台进行有效干扰,可采用a.提高跳频速率;b.加大跳频带宽,既可分频段跳,也可全频段跳;c.变速跳频;d.适当增加跳频组网数目等方法来对付快速跟踪式干扰。而对于宽频段阻塞式干扰则除同上a、b外,还可采用自适应跳频的办法。例如,美国的Milstar军事星在EHF频段因频谱资源丰富,可在1GHz的频带内实现快速宽带跳频,使得现有的干扰技术无法对它实施有效的干扰。法国Thomson-CSF公司的350H系列电台和SYSTEME-3000系列中的TRC-3500电台都利用了S KYHOPPER自适应跳频模式。能有效地对付阻塞干扰和点频干扰,提高信道利用率(达50%),并改善通信质量。另外,英国Racal公司生产的Panther-H高频电台有通用定频、自适应定频和智能跳频三种方式。在智能跳频方式中可对128个频率扫描,从中选出一组静噪频率。据称这种智能跳频方式在传输质量上优于传统方式,而且比SKY HOPPER自适应跳频能力有所提高。采用跳速多变的方式,可不断打

乱敌方的侦察和跟踪部署,是有效的抗跟踪干扰措施之一。目前,国外报导的变速跳频电台多是半自动变速或有限种跳速随机可变,有些可通过随机性信令实现跳速索引。如美国Litlon公司早在80年代中期就推出多速率的7680抗干扰通信设备。法国Thomson-CSF公司1 996年推出的海军电台ERM-9000(VHF/UHF)亦具有低速和快速跳频能力。PR4G系列电台之一TRC9600机载跳频电台具有快速/中速跳频速度变换能力。南非Grinel通信公司生产的TRC-1600背负电台是一种多速率(慢、中、快)多波形抗干扰电台,该公司推出的另一种TRC-1600多模式背负电台具有可变跳频带宽(5MHz-175MHz)和可变跳速(4-33Hz(SSB),70Hz(FM/AM))功能,同时还有智能AF C(自动频率控制)、AGC(自动增益控制)等功能。瑞典Shadow技术公司于1995年推出的SFH-41型CHAMELEON跳频VHF手持电台有3个跳频速率(分别为12.5、20、50跳、秒),且跳速在任何频率上的驻留时间都很短。现有扫描器还很难锁定这样的信号,因此其防窃听、抗干扰能力更强。

功率自适应跳频是通信方对每个有效频率自适应地调整发射功率,使功率输出在满足收端正常接收的情况下达到最低,提高信号的隐蔽性,从而达到抗干扰目的,其关键技术是宽带、大动态范围的可变增益功率放大器。以色列Yadiran通信公司的HF-6000自适应HF /SSB跳频电台,可在全频段自适应跳频,其跳速在15-20跳/秒范围可变。具有自适应射频功率输出,自动化信道频率选择,机内自动建立链路等功能。

此外,跳频空闲信道搜索跳频(跳频FCS)是一种新的跳频自适应技术。法国Thomson-CSF公司的新型战术通信系列电台PR4G在1 996年的改进中增加了跳频空闲信道搜索功能,这种方式在每次通话前对全部信道进行空闲信道检测,即使大部分频率被干扰,仍可保持通信。

分跳频(DFH)技术是一种新的跳频技术,美国Lockheed Sande rs公司1995出品的HF增强型相关跳频电台(CHESS)是一种能保障低截收和检测概率及高抗干扰能力的高速短波跳频系统。它是新一代短波扩展频谱技术的代表。跳速5000跳/秒,信道探测每秒开销200

个频率,其余4800个频率用于传数据。无纠错时最高数据率可达19. 2kbit/s。当以4.8kbit/s速率发射时,电台误码率为1×10-5。

2、直接序列扩频技术(DS)

直接序列扩频是一种真正对抗的抗干扰体制,它将有用信号在很宽的频带上进行扩展,使单位频带内的功率变小,即信号的功率谱密度变低,通信可在信道噪声和热噪声的背景下,用很低的信号功率谱进行通信,使信号淹没的噪声里,敌方不容易发现信号。该技术的特点是信号隐蔽性好,截获概率低,并能抗多径干扰,而且容易实现码分多址体制。

直接序列扩频技术在卫星通信,例跟踪与数据中继卫星系统、微波通信、数字蜂窝通信中结合CDMA多址技术及军用电台中得到了广泛的应用,提高了通信的抗干扰能力。由于器件的进步及混沌理论的直接序列的出现,使直接序列系统更利于同步和减少码间串扰,为实现超宽带序列扩频创造了条件。

典型的产品有美国SICOM公司1995年在美国95年联合武士互通性演示验证(JWID'95)演示会上演示它开发的宽带短波收发信机。而西德TST公司生产的TST-2007无线保密电台,采用直接序列扩频技术,在29MHz带宽上编码,使每赫兹的功率很少,以致在近距离上也难以检测到传输信号。

为了增加直扩系统的处理增益,常可采用M元扩频的方法,M元扩频(或称软扩频)方式将基带信号的K个比特分成一组,从而形成一个K位的地址信号,总共有2k地址,每个地址对应一个伪随机码。使用的伪随机码的数目比直扩方式增加了2k -1个,码长增加了K 倍,处理增益增加了10lgkdB,因而其抗干扰能力也相应提高,但设备复杂度也提高。

直接扩频技术(包括M元扩频)虽得到广泛应用,但在VHF战术通信等场合往往有明显的远近效应,因此一般应用时要采取混合方式,同时还需采取增加扩频码码长,直扩码型的种类以及采用交织编码和纠错编码技术等增强措施。

外军通信抗干扰发展趋势

外军通信抗干扰发展趋势 1、跳频通信装备抗跟踪干扰能力日益提高,抗跟踪干扰已由定频通信抗自动瞄准式干扰发展到跳频抗跟踪干扰 外军提高跳频通信抗跟踪干扰能力的技术动态主要有两个方面,一是适当提高跳速,二是采用变速跳频。外军大部分20世纪80年代的跳频通信装备为中低跳速跳频,较新的跳频通信装备采用了中高跳速跳频,如美国的HF-2000,CHESS,HA VE-QUICKIIA,JTIDS及MILSTAR,瑞典的TRC-350,法国的ALCALTEL111等。值得注意的一点是外军有些跳频通信装备大幅度提高跳速并不是以提高抗跟踪干扰能力为出发点的,其主要目的是利用相应的技术体制,由高跳速提高数据传输速率,如:CHESS系统和JTIDS等。另外,提高跳速后,还将给交织和纠错带来方便。当然,提高跳速也会引起其他问题,需要综合考虑。变速跳频是抵抗跟踪干扰的有效措施之一,外军现役跳频电台中也有所采用,但还多是半自动变速或有限种跳速随机变速,有些是通过信令实现跳速牵引,还没有实现真正意义上的变速跳频,这里将其称为准变速跳频,如法国的ERM-9000,TRC-9600,南非的TRC-1600,TRC-600以及瑞典的SFH-41等。 2、跳频通信装备抗阻塞干扰技术逐步成熟 最初提出跳频抗干扰体制,实际上是基于频率分集原理,并以提高跳速为代价实现抗阻塞干扰为出发点的。后来由于数据传输速率越来越高,常规跳频体制的跳速难以适应,形成了实际上的慢跳频(无论绝对跳速多高)。因此,抗阻塞干扰能力一直是跳频通信的重要问题。长期以来很多国家都致力于跳频通信抗阻塞干扰技术的研究,有些成果已得到成功的应用。外军实用化研究成果主要有短波采用自适应选频与跳频相结合的体制,将经过LQA(链路质量分析)选出的最佳或准最佳频率作为跳频频率表生成的基准,如美国的SCl40、英国PATHER-2000、以色列的HF-2000,TRl78、法国的TRC-350H、南非的HF-6000,TRl78A/B,TR390以及瑞典的TRC-350等;超短波采用具有FCS(free channel searce)功能的跳频体制,在一般窄带干扰情况下,使用常规跳频,在遇到宽带阻塞干扰时,自动转到FCS功能,在当前最佳频点上定频工作,一旦宽带干扰消失,又可回到跳频方式上工作,如法国的PR4G、比利时的BAMS等;UHF波段采用了频率自适应与跳频相结合的体制,即在跳频通信过程中自动检测和删除受干扰频率,使系统在无干扰或干扰较弱的频点上跳频,如瑞典的RL-401系列跳频接力机等,但该跳频机在干扰严重时,无更有效的措施,只是自动回到常规跳频状态。 3、扩展频段成为通信抗干扰新的发展趋势 拓宽现有频段、发展多频段,不仅有利于协同通信和全谱作战,还有利于提高跳频通信抗阻塞干扰能力。在拓宽频段方面,外军少数短波电台的频段范围已拓宽到116~50MHz,如美国的M508,RF-500,AN/PRC-132短波电台等;少数超短波电台的频段范围拓宽到30~108 MHz,如比利时的BAMS、荷兰的PRC/VRC-8600、德国的SEMl73/183/193、以色列的CNR-9000、英国的PANTHER-V、法国的PR4G系列电台等,增加了20MHz的带宽。在开发新频段方面,成效显著,最具代表性的是美国的MILSTAR卫星通信系统,采用宽带亚毫米/毫米波,实现宽带高速跳频,跳频带宽达2 GHz。在研制多频段通信抗干扰装备方面更是如火如荼,电台以HF/VHF/UHF三个频段的综合运用为典型特征。如美国的AM-7177A/ARC-182(V),MBITR,MXF-610,MBMMR,SPEAKEASY,英国的SWORDFISH,BOWMAN,南非的MATADOR,TRC-1600,TR600,加拿大的AN/GRC-512(V)等,多频段接力机主要有美国的AMLD4,AMLA3,AN/GRC-226,法国的TFH-150,TFH-701,瑞典的RL401/422,俄罗斯的捷标坦特系列接力机等。 4、提高短波跳频数据速率取得突破进展 自从短波通信出现以来,由于通信体制、器件、信道带宽及天波传输特性等原因,短波

电子系统抗干扰

电子系统抗干扰 一.概述 在电子系统设计中,应充分考虑并满足抗干扰性的要求。形成干扰的基本要素有三个:1)干扰源,指产生干扰的元件、设备或信号; 2)耦合路径,指干扰从干扰源传播到敏感器件的通路或媒介; 3)敏感器件,指容易被干扰的对象。 抗干扰设计的基本原则是:抑制干扰源,切断干扰耦合路径,提高敏感器件的抗干扰性能。 二.干扰源 用数学语言描述,du/dt、di/dt大的地方就是干扰源。电磁干扰源主要包括雷电、静电放电、开关电源、传送器(通信设备)、瞬时功率执行元件(如继电器、起辉器)、可控硅、电机、高频时钟等。系统各部件之间也会相互干扰。 抑制干扰源就是要尽可能的减小干扰源的du/dt、di/dt。这是抗干扰设计中最优先考虑和最重要的原则。减小干扰源的du/dt可以通过在干扰源两端并联电容来实现。减小干扰源的di/dt则通过在干扰源回路中串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: 1对电源部分进行PCB设计时,要使用大面积铺地,尽量增大供电线宽度以降低噪声。并对电源部分采取滤波措施。 2,对电机、继电器等线圈器件增加续流二极管,消除断开线圈时产生的反向电动势的干扰。并在线圈两端并接火花抑制电路(可用RC串联电路)。 3,给电机加滤波电路,注意电容、电感引线要尽量短。 4,电路板上每个IC要并接一个0.01uF~0.1uF的高频电容,以减小IC对电源的影响。高频电容应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效

果。 5,布线时避免90度折线,减少高频噪声发射。 6,可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿)。 三.耦合路径 按干扰的传播路径可将其分为传导干扰和辐射干扰两类。 3.1 传导干扰: 所谓传导干扰是指通过导线传播到敏感器件的干扰。多发生在低频电路中。 例如一条导线在一个有噪声的环境中经过,这条导线通过感应将接受这个噪声并且将它传递到电路的其余部分。 例如两个电路共享电源导线及接地导线,则其中一个电路中的变压波动会通过电源线及接地线传导至另一电路中。 噪声和有用信号的频带不同,可以通过在导线上增加滤波器的方法切断噪声的传播,有时也可加隔离光耦来解决。电源噪声的危害最大,要特别注意处理。 3.2 辐射干扰 所谓辐射干扰是指通过空间辐射传播到敏感器件的干扰。多发生在高频电路中。一般的解决方法是增加干扰源与敏感器件的距离,用地线把它们隔离和在敏感器件上加屏蔽罩。3.3 切断耦合路径的常用措施: 1,充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。滤波器可分为吸收式滤波器和反射式滤波器。反射式滤波器一般由电容和电感组成,能阻止无用信号并将其反射回信号源。吸收式滤波器一般由铁氧体材料制成,能将不希望的信号吸收掉。 2,如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(滤

跳频通信系统抗干扰性能分析

题目:跳频通信系统抗干扰性能分析 姓名: 学院:信息科学与技术学院 系:通信工程系 专业: 年级: 学号: 教师: 2012年7月10日

跳频通信系统抗干扰性能分析 摘要 扩频技术是一种信息传送技术,它利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传送信息所需的最小带宽。而跳频技术以其良好的抗干扰性能和衰落性及较低的信号被截获概率,成为战术通信领域应用最广的一种抗干扰手段。本文在介绍跳频通信基础原理的基础上,并借助计算机仿真工具Matlab /Simulink 搭建仿真模型,得到了在多径信道下的误码率-信噪比曲线,从而分析跳频通信系统的抗干扰性能。 关键字:跳频、Simulink 仿真、多径、抗干扰 一.引言 跳频通信时现代通信中采用的最常用的扩频方式之一,其基本原理是指收发双方传输信号的载波频率按照预定规律进行离散变化。与定频通信相比,由于发送的信号调制在多个伪随机跳变的频率上,敌方不容易捕获到所发送的信息,有利于信号的隐藏,可以有效躲避干扰。因此,跳频技术在通信对抗尤其是卫星通信中处于特别有利的位置。扩频技术正在取代常规通信技术成为军事通信的一种主要抗干扰通信技术。因此,对扩频通信的研究,成为通信对抗中的重要部分。本文通过Matlab 软件仿真跳频通信系统的基本过程,在多径信道下分析其抗干扰能力。 二.跳频通信的基本原理 扩频通信系统是一种信息处理传输系统,这种系统是利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传输信息所必需的最小带宽。在接收机中利用同一码对接收信号进行同步相关处理以解扩和恢复数据。现有的扩频系统可分为:直接序列扩频、跳频、跳时,以及上述几种方式的组合。其中跳频系统是如今使用最多的扩频技术。 跳频扩频的调制方式可以为二进制或M 进制的FSK(MFSK)。如果采用二进制FSK ,调制器选择两个频率中的一个,设为0f 或1f ,对应于待传输的信号0或1.得到的二进制FSK 信号是由PN 码生成器输出序列输出觉得的频率平移量,选择

直接序列扩频通信系统抗干扰性能分析教学提纲

直接序列扩频通信系统抗干扰性能分析

直接序列扩频通信系统抗干扰性能分析 在现代战争中,通信对抗扮演着越来越重要的角色。随 着计算机技术、微电子技术等大量高新技术的应用,军事通信获得了长足的发展,尤其是跳频、扩频等一些新的通信手段应用之后,使得通信频谱越来越宽,通信的反侦察、抗干扰能力越来越强,迫使各国加紧对通信对抗技术以及装备的研制。直接序列扩频通信由于其优良的多址接入、低截获概率、抗干扰和强保密等特性,使得它在军事通信、卫星通信和民用领域得到了广泛应用。在电子对抗中,对扩频通信的有效干扰成为制胜关键。 第一章研究背景介绍 1.1直扩通信研究背景 现代战争首先是电子战,在电子战中失去优势的一方,将导致通信中断,指挥失灵等,从而丧失战争主导权。两次海湾战争,前南斯拉夫战争以及阿富汗战争都是很好的佐证。因此,通信对抗作为C4ISR系统的核心,越来越受到各国的重视。通信对抗属于电子对抗,它包括通信侦察、通信干扰等主要对抗措施。通信对抗的目的在于:侦收和截获敌方信息,测量有关技战术参数;采用各种干扰方式阻止敌方正常通信并抑制敌方对我方的干扰,保证我方通信系统有效工作。

扩频通信作为新型的通信方式,具有优良的抗干扰、抗衰落和抗多径性能及频谱利用率高、多址通信等诸多优点,并被广泛地应用于军事通信领域,极大地提高了通信系统的抗截获和抗干扰能力。因此,扩频通信系统成为干扰方的首要作战目标,同时,扩频通信的抗干扰、抗截获、抗侦破特性给干扰方带来了巨大的困难。为取得现代电子战的胜利,针对扩频通信系统研究高效的干扰方式,如何有效的干扰成为取得现代电子战胜利的重要一环,对战时通信对抗具有重要意义。 1.2直扩通信的军事应用情况 1)直扩通信技术在舰艇卫星通信系统上应用广泛。国外舰艇卫星通信系统和国内舰艇卫星通信系统均采用码分多址通信方式,使用C波段。这样网络组织与撤收灵活,通信质量高,频道使用少。从目前使用看,这种方式充分发挥了直接序列扩频通信的特点,是扩频通信应用成功的范例。另外,美军使用的联合战术信息分发系统也使用直接扩频技术,主要用于在战术作战环境中进行抗干扰、发布保密数字信息,具有容纳用户数多和交互数据量大的特点,能快速保密地交换指挥控制信息和敌方战术设备的状态参数。 2)直扩通信技术在军用战术移动通信电台、数据分发系统中发挥重要作用。1996年美军演示了SICOM公司研制

移动通信的基本技术之抗干扰措施

移动通信的基本技术之抗干扰措施 在第三代移动通信系统中除了大量的环境噪声和干扰以外,还有大量的电台产生的干扰,如邻道干扰、公道干扰和互调干扰,更重要的是第三代移动通信系统的主流标准(WCDMA、CDMA2000等)都采用了码分多址方式,CDMA码分多址系统是一个干扰受限制系统,在信息的传输中,存在着多址干扰,多径干扰和远近效应。那么为了保证网络的畅通运行,我们也采用了第三代移动通信系统采用的相关抗干扰技术进行处理。这些技术包括:空分多址(SDMA)智能天线技术,用于抗多径干扰的RAKE接收技术,抗多址干扰的联合检测技术,并对这些技术在特定系统中的性能进行了仿真。 首先介绍一下智能天线技术,智能天线利用多个天线阵元的组合进行信号处理,自动调整发射和接收方向图,以针对不同的信号环境达到最优性能。智能天线是一种空分多址技术,主要包括两个方面:空域滤波和波达方向(DOA)估计。空域滤波(也称波束赋形)的主要思想是利用信号、干扰和噪声在空间的分布,运用线性滤波技术尽可能地抑制干扰和噪声,以获得尽可能好的信号估计。 智能天线通过自适应算法控制加权,自动调整天线的方向图,使它在干扰方向形成零陷,将干扰信号抵消,而在有用信号方向形成主波束,达到抑制干扰的目的。加权系数的自动调整就是波束的形成过程。智能天线波束成型大大降低了多用户干扰,同时也减少了小区间干扰。 比起只能智能天线技术抗多径干扰的RAKE接受技术又有哪些技术有点呢?智能天线抑制干扰的能力在多数情况下受天线阵元个数的限制,且当感兴趣信号存在多个非相关多径时,阵列只保留其中的一路信号,而把零陷对准其它信号,这样,阵列能够减小由非相关多径带来的干扰,但未能发挥路径分集的优势,因而是次最优的。为此,联合时域和空域处理的接收技术成为研究的热点。 当信道存在多径时延扩展,且时延大于一个码片周期时,这些多径信号既是多径干扰,又是一些有价值的分集源,由此产生了2D-RAKE接收机。目前2D-RAKE接收机讨论最多的是应用在WCDMA上行链路。 空时RAKE接收机首先对存在角度扩展的多个路径分量进行波束成型,以降低DOA可分辨的其它用户信号产生的多址干扰或期望信号的非相关多径分量,然后将经过空间滤波后的信号送入RAKE合并器,以充分利用延迟可分辨的期望信号的多个路径的能量。空间波束形成旨在衰减干扰信号,而时间多径合并旨在利用有用信号。 与时域和空域一维干扰抑制不同的是,空时二维干扰抑制不再使用强迫置零条件,而是考虑噪声的存在,使用优化准则。空时处理有名的优化准则有两个,一个是空时最小均方误差准则,另外一个是空时最大似然准则 我们介绍的第三种抗干扰技术是联合检测技术 传统的接收技术是针对某一用户进行信号检测而把其他用户作为噪声加以处理,在用户数增多时,导致了信噪比恶化,系统性能和容量都不如人意。联合检测技术是在传统检测技术的基础上,充分利用造成多址干扰的所有用户信号及其多径的先验信息(信号之间的相关性时已知的:如确知的用户信道码,各用户的信道估计),把用户信号的分离当作一个统一的相互关联的联合检测过程来完成,从而具有优良的抗干扰性能,降低了系统对功率控制精度的要求,因此可以更加有效地利用上行链路频谱资源,显著地提高系统容量,并削弱了“远近效应”的影响。 每一样技术都有其优缺点,那么我们是否能将其结合,使技术更优化,让其在抗干扰方面体现的效果更为明显呢? 那就是智能天线与联合检测的结合(SA+JD), 其主要用于TD-SCDMA系统中,TD-SCDMA系统结合使用了智能天线和联合检测技术:1)智能天线消除小区间干扰,联合检测消除小区内干扰,两者配合使用;2)智能天线缓解了联合检测过程中信道估计的不准确对系统性能恶化的影响;3)当用户增多时,联合检测的计算量非常大,智能天线的使用减少了潜在的多用户; 4)智能天线的阵元数有限,对于M个阵元的智能天线只能抑制M-1个干扰源,而且所形成的副瓣对其它用户而言仍然是干扰,只能结合联合检测来减少这些干扰;5)在用户高速移动下,TDD模式上下行采用同样空间参数使得波束成型有偏差;用户在同一方向时,智能天线不能起到作用;还

数字电子系统的抗干扰设计

数字电子系统的抗干扰设计 摘要:主要描述了数字电子系统中不易解决的电源噪声干扰和传导干扰问题,并介 绍了几种解决问题的途径和方法。 关键词:电源;传导;干扰;抑制 1 引言 每个电气工程师和电气工程技术人员都希望他所设计的设备工作可靠,不会被其它设备干扰,也不会干扰其它设备。但是,由于电气噪气和电磁干扰几乎无处不在,所以,我们设计的产品往往达不到这些目标。如果不能有效地解决这些问题,我们可能必须放弃这些项目或者采取修修补补的办法,这样一来既浪费了我们投资项目的所有时问、资金和努力,又可能使产品性能大打折扣。 二:一般在工作的开始就必须将干扰措施设计成产品。这一般包含四个步骤的过程: (1)了解干扰的类型和来源 干扰源:是指产生干扰的元件、 设备或信号,用数学语言描述:du/dt, di/dt大的地方就是干扰源。如:继电器、

雷电、电机、可控硅、高频时钟等都可能 (2)在设计电路时尽量消除或减小这些干扰对系统的影响; (3)设计线路板、导线的结构尽量消除这些问题,必要时,使用干扰抑制器件; (4)将系统分成模块调试,保证每个子系统组装正确无误、工作正常,在进行进一步组装前不会有任何问题。通过一开始就正确地设计系统,经常提前完成任务,成本也较低。 干扰一般有电源噪声干扰、空间干扰(即场干扰)和传导干扰。空间干扰都通过电磁波辐射窜人系统;传导干扰则通过与系统相连接的导线,如,以与前向通道和后向通道等进人系统;电源噪声干扰有过压、欠压、浪涌电压、尖峰电压等。2.1抗干扰设计的几个原则: 即尽可能的减小干扰源的du/dt, di/dt。这是抗干扰设计中最优先考虑和 最重要的原则,常常会起到事半功倍的 效果。减小干扰源的du/dt主要是通过 在干扰源两端并联电容来实现。减小干 扰源的di/dt则是在干扰源回路串联电 感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: ①继电器线圈增加续流二极管,消

单片机软件抗干扰方法

在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视。下面以MCS-51单片机系统为例,对微机系统软件抗干扰方法进行研究。 1 软件抗干扰方法的研究 在工程实践中,软件抗干扰研究的内容主要是:一、消除模拟输入信号的噪声(如数字滤波技术);二、程序运行混乱时使程序重入正轨的方法。本文针对后者提出了几种有效的软件抗干扰方法。 1.1 指令冗余 CPU取指令过程是先取操作码,再取操作数。当PC受干扰出现错误,程序便脱离正常轨道“乱飞”,当乱飞到某双字节指令,若取指令时刻落在操作数上,误将操作数当作操作码,程序将出错。若“飞” 到了三字节指令,出错机率更大。 在关键地方人为插入一些单字节指令,或将有效单字节指令重写称为指令冗余。通常是在双字节指令和三字节指令后插入两个字节以上的NOP。这样即使乱飞程序飞到操作数上,由于空操作指令NOP的存在,避免了后面的指令被当作操作数执行,程序自动纳入正轨。 此外,对系统流向起重要作用的指令如RET、 RETI、LCALL、LJMP、JC等指令之前插入两条NOP,也可将乱飞程序纳入正轨,确保这些重要指令的执行。 1.2 拦截技术 所谓拦截,是指将乱飞的程序引向指定位置,再进行出错处理。通常用软件陷阱来拦截乱飞的程序。因此先要合理设计陷阱,其次要将陷阱安排在适当的位置。

(1 )软件陷阱的设计 当乱飞程序进入非程序区,冗余指令便无法起作用。通过软件陷阱,拦截乱飞程序,将其引向指定位置,再进行出错处理。软件陷阱是指用来将捕获的乱飞程序引向复位入口地址0000H的指令。通常在EPROM中非程序区填入以下指令作为软件陷阱: NOPNOPLJMP 0000H其机器码为0000020000。 (2 )陷阱的安排 通常在程序中未使用的EPROM空间填0000020000。最后一条应填入020000,当乱飞程序落到此区,即可自动入轨。在用户程序区各模块之间的空余单元也可填入陷阱指令。当使用的中断因干扰而开放时,在对应的中断服务程序中设置软件陷阱,能及时捕获错误的中断。如某应用系统虽未用到外部中断1,外部中断1的中断服务程序可为如下形式: NOPNOPRETI返回指令可用“RETI”,也可用“LJMP 0000H”。如果故障诊断程序与系统自恢复程序的设计可靠、完善,用“LJMP 0000H”作返回指令可直接进入故障诊断程序,尽早地处理故障并恢复程序的运行。 考虑到程序存贮器的容量,软件陷阱一般1K空间有2-3个就可以进行有效拦截。 1.3软件“看门狗”技术 若失控的程序进入“死循环”,通常采用“看门狗”技术使程序脱离“死循环”。通过不断检测程序循环运行时间,若发现程序循环时间超过最大循环运行时间,则认为系统陷入“死循环”,需进行出错处理。

卫星通信抗干扰系统

卫星通信抗干扰系统 一般可理解为,通信装备及系统为对抗干扰方利用电磁能和定向能控制、攻击通信电磁频谱,以提高其在通信对抗中的生存能力所采取的通信反对抗技术体系、方法和措施。 一般说,通信抗干扰的基本体系、方法、措施可分为三类: 1、信号处理。如直接序列扩频技术(DS-SS),其关键参量是作为时间函数的相位;跳频技术(FH-SS)其关键参量是作为时间函数的载频;等等。 2、空间处理。如采用自适应天线调零技术,当接收端受到干扰时,使其天线方向图零点自动指向干扰方向,以提高通信接收机的信干比。 3、时间处理。如猝发传输技术,由于通信信号在传输过程中暴露的时间很短暂,从而大大降低了被干扰方侦察、截获的概率。 通信抗干扰技术研究的就是在已知或预测敌方的干扰手段情况下,在上述技术基础上(当然不排除以后有新的技术类别)选取适当的技术手段来消除或减轻敌方干扰,而使我方需要进行的通信能够延续的一项技术。对敌方的干扰性质,强度、种类、手段、采用的体系,了解得越清楚,采取的措施越有针对性,取得的效果也越好。由于敌方的对抗手段往往是综合的、多变的,有的可能是完全新颖的,所以抗干扰的手段也必须采取多种方式的结合才能取得较好的效果。 通信抗干扰技术的特点: 1、对抗性强,技术综合性强,难度高,发展快,某种程度上说是敌我双方智慧和技术的斗争。通信的成败关系着战争的胜负,所以此技术对抗性很强。通信抗 干扰有了新技术,搞对抗的就想新的对策,反过来也一样,这样就促进了技术的发展和难度的提高。 2、对技术的实用性和可靠性的要求高,通信抗干扰必须在战场上实际解决问题。指标高而不可靠或不实用是不能容忍的,其后果不堪设想。 [相关技术]通信对抗;扩频技术;抗干扰电台;卫星通信抗干扰 [技术难点] 1、提高跳频速率有利于抗干扰,但跳速提高需解决如下问题:接收机中频滤 波器产生的瞬时扰动问题;发射机功率输出截止状态产生的过渡问题;频率合成器

抗干扰措施

提高变电所自动化系统可靠性的措施 一、概述 变电所综合自动化系统具有功能强、自动化水平高、可节约占地面积、减轻值班员操作及监视的工作量、缩短维修周期以及可实现无人值班等优越性。这已为越来越多的电力部门的专家和技术人员所共识。但一方面,由于它是高技术在变电所的应用,是一种新生事物,很多人对它还不够了解,因此也不放心。特别是目前不少工作在变电所第一线的技术人员与运行人员,对综合自动化系统的技术和系统结构还不了解,对其可靠性问题比较担心。另一方面,变电所综合自动化系统内部各个子系统都为低电平的弱电系统,但它们的工作环境是电磁干扰极其严重的强电场所,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,没有采取必要的措施,这样的综合自动化系统在强电磁场干扰下,也确实很容易不能正工作,甚至损坏元器件。因此,综合自动化系统的可靠性是个很重要的问题。 可靠性是指综合自动化系统内部各子系统的部件、元器件在规定的条件下、规定的时间内,完成规定功能的能力。不同功能的自动装置有不同的反映其可靠性的指标和术语。例如,保护子系统的可靠性通常是指在严重干扰情况下,不误动、不拒动。远动子系统的可靠性通常以平均无故障间隔时间MTBF来表示。 提高综合自动化系统可靠性的措施涉及的内容和方面较多,本章将从电磁兼容性、抗电磁干扰的措施和自动化系统本身的自纠错和故障自诊断等方面讨论提高变电所综合自动化系统的可靠性措施问题。 二、变电所内的电磁兼容 (一)电磁兼容意义 变电所内高压电器设备的操作、低压交、直流回路内电气设备的操作、雷电引起的浪涌电压、电气设备周围静电场、电磁波辐射和输电线路或设备短路故障所产生的瞬变过程等都会产生电磁干扰。这些电磁干扰进入变电所内的综合自动化系统或其他电子设备,就可能引起自动化系统工作不正常,甚至损坏某些部件或元器件。 电磁兼容的意义是,电气或电子设备或系统能够在规定的电磁环境下不因电磁干扰而降低工作性能,它们本身所发射的电磁能量不影响其他设备或系统的正常工作,从而达到互不干扰,在共同的电磁环境下一起执行各自功能的共存状态。

数字电子系统硬件抗干扰分析毕业论文

毕业设计论文 数字电子系统硬件抗干扰分析 系电子信息工程系 专业电子信息工程技术(嵌入式系统工程技术)姓名 班级电信083(系统)学号0801133131 指导教师职称讲师 设计时间2010.11.22-2011.1.8

目录 摘要 (2) 关键词: (2) 第一章引言 (3) 1.1 课题研究现状 (3) 1.2 论文主要内容 (4) 第二章电磁干扰的基本理论 (5) 2.1 电磁干扰的概述 (5) 2.1.1 形成干扰的基本要素 (5) 2.1.2 电磁干扰源及其传输通道 (5) 2.2 抑制电磁干扰的有效措施 (6) 第三章数字电路的硬件抗干扰措施 (7) 3.1 器件使用时的抗干扰措施 (7) 3.2 电路设计中抗干扰措施 (7) 3.2.1 接地技术 (7) 3.2.2 滤波技术 (9) 3.2.3 隔离技术 (10) 3.3 线路板设计时的抗干扰措施 (12) 3.3.1 线路板走线原则 (12) 3.3.2 PCB合理设置去耦电容 (14) 3.3.3 PCB特殊元件的放置 (16) 第四章结论 (17) 致谢 (18) 参考文献 (19)

摘要 每个电气工程师和电气工程技术人员都希望他所设计的设备工作可靠,不会被其它设备干扰,也不会干扰其它设备。但是,由于电气噪声和电磁干扰几乎无处不在,所以,我们设计的产品往往达不到这些目标。如果不能有效地解决这些问题,我们可能必须放弃这些项目或者采取修修补补的办法,这样一来既浪费了我们投资项目的所用时间、资金和努力,又可能使产品性能大打折扣。 在数字电路中干扰分析非常重要,是决定电路工作性能的关键因素,也是我们在做实验前必须要进行的工作。本文主要从数字电路硬件抗干扰设计的常用措施入手,首先分析了电磁干扰的基本理论,重点阐述了电磁干扰源,以传导干扰和辐射干扰为例进行分析。然后从硬件方面来分析抗干扰措施,硬件方面主要从器件使用中抗干扰措施、电路设计抗干扰措施、印制板电路抗干扰措施三方面入手,重点分析了电路设计中抗干扰措施的三个方面:接地技术、滤波技术、隔离技术,并对其进行适当的展开分析。并且对PCB 干扰提出了如下几项项措施:线路板走线原则、合理设置去耦电容、特殊器件的处理。虽然数字电路抗干扰措施种类很多,但每项措施都有很强的针对性,所以在具体应用中须根据实际情况来灵活采取措施,不能盲目随从,否则会适得其反。 关键词:数字电子系统;电磁兼容;电磁干扰;屏蔽技术

电子系统中的抗干扰技术_介绍

电子系统中的抗干扰技术 摘要:应用硬件抗干扰措施是必不可少的一种有效方法。本文中介绍了几种形式的干扰以及解决方法,如信号如何走线、接地的安全可靠、印制电路板避免干扰的设计、电源使用注意事项等几方面进行了阐述。通过合理的硬件电路设计,可以削弱或 抑制绝大部分干扰。实践应用取得了良好的效果。 关键词:抗干扰、屏蔽、电磁辐射。 0 引言 干扰是无处不在的,干扰可导致系统工作不正常,输出信息失真,严重可导致系统瘫痪。抗干扰设计是设备长期稳定运行的保证;随着电子技术的发展、电子设备的普及应用,抗干扰技术的研究显得越来越重要,应用也越来越普及。电子工程师从设备的研制阶段就应使用抗干扰技术,抗干扰技术始终贯穿于设备的设计、制造、安装、使用等各个阶段。 1 抗干扰技术应用 1.1 电源使用方面 有些电源在通断的一瞬间会对小功率电子设备造成损害,对附近的电子设备形成干扰。例如,显示器附近有电源设备时,有时开关电源设备的一瞬问会导致显示器闪一下,如果电源功率较大或靠的太近,而显示器屏蔽效果又达不到要求,显示器就会出现波纹,影响使用。 解决方法是:电源设备加装屏蔽层,采取有效的接地措施,电源线也应带屏蔽层,显示器等易受干扰的设备应尽量远离电源。 1.2 信号传输方面 信号在传输过程中由于线缆过长、过细,绝缘性能不好,没有采取有效的屏蔽、接地措施,信号传输就会受到干扰,特别是正电平信号受干扰影响较大。解决方法有: (1)信号采用负电平传输。 (2)容易相互干扰的信号分开传输。 (3)高频信号单独采用同轴电缆传输。 (4)模拟信号、数字信号分开传输。 (5) (内部可采用一根信号线附近一根地线的接线形式)。 (6)尽量采用带有屏蔽层的电缆,屏蔽层接地。线缆的绝缘性能要好。 (7)正确使用双绞线可起到消除电磁干扰的作用,通常网络线缆都是采用双绞的形式。

军事短波通信抗干扰措施

【摘要】短波电台是部队通信装备中应用最多的设备,针对日益复杂的电磁应用环境和通信对抗挑战,本文从技术和使用角度阐述了电台通信抗干扰的几点措施。 【关键词】短波电台通信抗干扰 短波通信通常是指利用波长为100―10m (频率为3―30mhz)的电磁波进行的无线电通信。目前也有把中波的高频段(1.5―3mhz)归到短波波段中去,所以现有的许多短波通信设备,其波段范围往往扩展到1.5―30mhz。在许多国家,也把短波通信认为是高频(hf)无线电通信。 多年来,短波通信被广泛地用于政府、军事、气象、商业等部门,用以传送语言、文字、图像、数据等信息。尤其在军事部门,它始终是军事指挥通信的重要手段之一,是军事指挥决策部门与下级所属单位有效沟通和信息传递的重要工具,也是构建我军c4i指挥体系的重要环节,在现代日益复杂的战场环境下,如何提高电台抗干扰能力,保护己方通信畅通尤为迫切。 一、短波通信干扰类型 能够对设备形成干扰的前提是在时间域对齐,频率域对准,空间域相同,能量域足够,这是干扰的总体原则,具体到各个干扰样式和原理,则有不同的表现形式,通信干扰主要有以下几种类型: 以上几种干扰措施是以前常用的干扰方式,随着通信设备的发展,有些干扰方式现在已基本不再使用,比如单频干扰或窄带连续波干扰,随着军事电台大量采用抗干扰措施,现在已少见单频电台干扰,但宽带噪声干扰、多音干扰和脉冲干扰、扫频干扰仍然应用较多。 此外,为了对抗跳频扩频通信、直接伪码序列扩频通信和混合扩频通信抗干扰能力强的新体制通信系统,出现了一些新的通信对抗技术样式,如宽带拦阻式干扰、跟踪引导式干扰、快速转发式干扰、部分频带噪声干扰等。这些新的干扰样式必须引起我们足够的重视,寻扎相应的对抗策略。 二、短波通信抗干扰技术 通信抗干扰技术的体系、方法、措施可分为4类: (1)以扩频技术为主的频域抗干扰技术,如直接序列扩频( ds-ss),其关键参量是时间函数的相位;跳频( fh)的关键参量是时间函数的载频;ds/ fh混合扩频技术;自适应选频技术,当通信信道干扰严重时,通信双方同时改换到最优化频道;自适应频域滤波技术。其中,跳频技术是目前军事通信抗干扰技术中应用最广泛、最有效措施之一,其原理是信息码同伪随机码模相加后,去离散地控制射频载波振荡器输出频率,使发射信号的频率随伪码的变化而跳变。跳频技术抗干扰能力得益于信号载波频率在很宽的频带内跳变,使干扰方难以跟瞄,但其瞬时带宽同定频一样。现阶段,中高速跳频技术仍是对付跟踪(引导)式和宽带阻拦式干扰的有效措施。有效提高跳频抗干扰效率的方法是:提高跳频速率、加大跳频带宽、变速跳频、适当增加跳频组网数目。跳频带宽宽,可跳频道数多,抗干扰能力就愈强。对于宽带阻拦式干扰来说,干扰效率与干扰的带宽成正比。例如对于10mhz中频带宽,信道间隔25 khz,共400信道,当干扰机对该跳频台实施10 mhz拦阻式干扰时,干扰功率平分在400个信道上,干扰强度仅为定频干扰的1/ 400。若带宽再增加,抗干扰力会更强。当前,跳频通信电台朝着跳频速率更快,跳频带宽更宽、智能化跳频的方向发展。 (2)以自适应时变和处理技术为主的时域抗干扰技术,含猝发通信、低速率通信技术、跳时(th)技术、自适应信号功率管理技术。跳时就是一种时分信道,用伪随机码随机选择信道工作时间,可视为一种伪码调制系统,它具有很好的远近效应一致性,模拟和数字体制都可使用。跳时的优点是用时间的合理分配来避开干扰,干扰机必须连续发射才可能收到效果,增大了干扰代价,也就具有一定的抗干扰能力。猝发通信是首先将正常速率的信息存贮

电子设备的抗干扰方法1

关于电子设备的抗干扰方法研究 【摘要】随着电子技术的不断发展,对于抗干扰技术的要求也越来越高。本文通过对电子设备的干扰进行分析,总结了干扰的现象,进而提出了电子设备抗干扰的方法和建议,促进了电子设备抗干扰能力的提高。 【关键词】电子设备抗干扰方法电子技术 众所周知,现在任何的电力系统或者电子领域都需要应用大量的电子设备,对于这些电子设备的控制一般采用集成电子电路系统。由于集成电路经常是在比较弱的电信号下工作,但是受控制的系统又经常是强电设备,这样就很容易产生各种干扰的信号。电子设备处于电磁辐射、静电感应、高压输电、雷电冲击等的工作状态中,经常受到这些有害因素的干扰,势必会对电子设备的可靠性、精确性、有效性产生影响,导致系统不能正常的运行使用。随着电子技术的飞速发展,电子设备的使用也遍布各个领域,对于电子设备使用中的干扰和抗干扰原因、措施的分析,显得愈发重要,不仅关乎产品的顺利生产,对于企业的安全、信誉、利益更是有着极其重要的作用和意义。 1 干扰及干扰源 干扰是指使电子设备产生或增大控制误差的一切因素,广义地说,包括温度、湿度、机械振动、电磁现象等环境条件,以及电子设备本身的设计水平。而干扰的来源主要包括外部来源和内部来源

两大部分。外部干扰包括从控制系统的控制器开口处或者开缝处形成的辐射干扰、从电网处传输进来的干扰、或者传输线上形成的反射干扰或者周围环境、系统本身形成的一些辐射、传输干扰。内部干扰则包括电磁辐射、信号辐射、电源传输干扰或者接地不善引起的干扰等。 2 干扰的现象 主要的干扰源由工频干扰、高压干扰、雷电冲击、传输辐射、低压干扰几部分促成。工频干扰是最常见的对电子设备的干扰,它是由于电子设备附近的高压产生故障所形成的。当高压开关突然断开或者打开时,在传输中会突然产生强大的电压和电流,电流的传输受到反射波的影响,在电压器和接地系统之间产生高频的震荡,这样,就导致了电路和接地系统的因为耦合而产生干扰。雷电的干扰是由于电流波的大幅度增加,频率涉及的范围比较广泛,电流波形的变化产生的磁场与入地电流的磁场产生耦合而导致干扰。低压电路中当进行断开操作时,极其容易因为频率的巨变而形成干扰源。这类型的干扰会经常出现在计算机系统的电子设备中,这些继电器、接触器的使用,很容易就成为干扰的对象。 3 抗干扰的措施 综上所述,电子设备产生干扰的原因是复杂多变的,虽然我国目前在抗干扰技术上有了很大的突破,但是鉴于干扰因素难以有效控制,在抗干扰方法上还有待进一步加强和完善。

关于CBTC系统无线通信抗干扰技术的研究

技术装备 52 MODERN URBAN TRANSIT 6/2009现代城市轨道交通 0引言 列车控制系统在地铁信号的发展过程中,经历了从单向轨道电路到双向无线通信的变革。目前广泛应用于地铁列车控制系统的是基于无线通信的列车控制系统(CBTC)(图1)。而无论基于无线局域网还是专用无线网的通信,都存在同频或邻频干扰的问题。为此,如何引入技术手段,提高CBTC系统的抗干扰能力,保证其可靠、稳定运行十分重要。 1无线局域网 1.1结构 无线局域网(WLAN)是计算机 网络与无线通信技术相结合的产物,它以无线多址信道作为传输媒介,利用电磁波完成数据交互,实现传统有线局域网的功能。WLAN的核心结构如图2所示。 从图2可以看到,WLAN的工作层有介质访问控制层(MAC)和物 理层(PHY),其中物理层分为PLCP(物理层收敛过程)子层和PMD(物理机制相关)子层。PLCP子层通过将MAC层信息映射到PMD子层,使MAC层对物理层的依赖减到最低,而PMD子 层则提供了控制无线介质 的方法和手段。WLAN的物理层采用扩频工作方式,包括FHSS(跳频扩频)、DSSS(直接序列扩频)、HR/DSSS(高速直接序列扩频)和OFDM(正交分复用),无线工作频段为ISM:2.4~2.4875GHz以及U-NII:5.725~5.850 GHz(取决于采用的标准)。在IEEE802.11结构内还包含两个管理实体(MAC层管理实体MLME和PHY 物理层管理实体PLME)和管理信息库(MIB),从而控制MAC层和PHY层的工作状态。 1.2MAC层干扰问题 无线局域网的MAC层的载波监听多路访问/冲突检测方法(CSMA/CD)协议问题,从理论上讲,MAC层的CSMA/CD协议完全能够满足局域网级的多用户信道竞争问题,但是,对应无线环境而 邱鹏:南京恩瑞特实业有限公司轨道交通事业部,助理工程师,南京 211106 关于CBTC系统无线通信 抗干扰技术的研究 邱鹏 李亮 摘 要:研究基于无线传输的CBTC系统车-地通信抗干扰技术,通过 分析无线局域网中的同频干扰,结合重复累积码、感知无线电、一致性测试3项技术,提出1套在CBTC系统设计和系统运营两个阶段抑制同频干扰的完整解决方案。 关键词:车地通信;同频干扰;重复累积码;感知无线电;一致性测试 注:LLC即逻辑链路控制;WEP即有线等效保密 图2WLAN 的核心结构 图1CBTC 系统框图 车载部分 车载ATC定位 数据通信部分 无线传输系统 轨旁网络装置 ATS 轨旁ATC系统 LLC WEPMAC PHY DSSS FH IR OFDMMACMgmt MIB LLC MAC 业务接口 MAC管理业务接口MAC子层 MAC管理层 PHY业务接口 PHY管理业务接口PHY管理层 PLCP子层PMD 子层

软件抗干扰的几种办法

软件抗干扰的几种办法 在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视。下面以MCS-51单片机系统为例,对微机系统软件抗干扰方法进行研究。 1、软件抗干扰方法的研究 在工程实践中,软件抗干扰研究的内容主要是:一、消除模拟输入信号的噪声(如数字滤波技术);二、程序运行混乱时使程序重入正轨的方法。本文针对后者提出了几种有效的软件抗干扰方法。 (1) 指令冗余 CPU取指令过程是先取操作码,再取操作数。当PC受干扰出现错误,程序便脱离正常轨道“乱飞”,当乱飞到某双字节指令,若取指令时刻落在操作数上,误将操作数当作操作码,程序将出错。若“飞”到了三字节指令,出错机率更大。 在关键地方人为插入一些单字节指令,或将有效单字节指令重写称为指令冗余。通常是在双字节指令和三字节指令后插入两个字节以上的NOP。这样即使乱飞程序飞到操作数上,由于空操作指令NOP的存在,避免了后面的指令被当作操作数执行,程序自动纳入正轨。 此外,对系统流向起重要作用的指令如RET、RETI、LCALL、LJMP、JC等指令之前插入两条NOP,也可将乱飞程序纳入正轨,确保这些重要指令的执行。 (2) 拦截技术

所谓拦截,是指将乱飞的程序引向指定位置,再进行出错处理。通常用软件陷阱来拦截乱飞的程序。因此先要合理设计陷阱,其次要将陷阱安排在适当的位置。 软件陷阱的设计 当乱飞程序进入非程序区,冗余指令便无法起作用。通过软件陷阱,拦截乱飞程序,将其引向指定位置,再进行出错处理。软件陷阱是指用来将捕获的乱飞程序引向复位入口地址0000H的指令。通常在EPROM中非程序区填入以下指令作为软件陷阱: NOPNOPLJMP 0000H其机器码为0000020000。 陷阱的安排 通常在程序中未使用的EPROM空间填0000020000。最后一条应填入020000,当乱飞程序落到此区,即可自动入轨。在用户程序区各模块之间的空余单元也可填入陷阱指令。当使用的中断因干扰而开放时,在对应的中断服务程序中设置软件陷阱,能及时捕获错误的中断。如某应用系统虽未用到外部中断 1,外部中断1的中断服务程序可为如下形式: NOPNOPRETI返回指令可用“RETI”,也可用“LJMP0000H”。如果故障诊断程序与系统自恢复程序的设计可靠、完善,用“LJMP0000H”作返回指令可直接进入故障诊断程序,尽早地处理故障并恢复程序的运行。 考虑到程序存贮器的容量,软件陷阱一般1K空间有2-3个就可以进行有效拦截。 (3)软件“看门狗”技术

电子系统的抗干扰分析与设计

电子系统的抗干扰分析与设计 摘要:抗干扰对数字电路非常重要,也是决定其工作性能的关 键因素。该文描述了数字电子系统中不易解决的电源噪声干扰和传导干扰问题,并介绍了几种硬件跟软件解决该类问题的途径和方法。 一.引言 几乎每一个电气工程技术人员都希望他所设计的设备工作可靠,不会被其它设备干扰,也不会干扰其它设备。但是,由于电气噪气和电磁干扰几乎无处不在,所以,我们设计的产品往往达不到这些目标,无法完全杜绝这方面的干扰。如果不能有效地解决这些问题,我们可能必须放弃这些项目或者采取修修补补的办法,这样一来既浪费了我们投资项目的所有时问、资金和努力,又可能使产品性能大打折扣。因此在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后再去进行抗干扰的补救措施。 二. 抗干扰设计 大多数情况下在工作的开始就必须将干扰措施设计成产品。 2.1 抗干扰设计包含四个基本步骤的过程: (1)了解干扰的类型和来源 干扰源:是指产生干扰的元件、设备或信号,用数学语言描述:du /dt,di/dt大的地方就是干扰源。如:继电器、雷电、电机、可控硅、高频时钟等都可能。 典型的干扰传播路径是通过导线的传导和空间的辐射。 干扰一般有电源噪声干扰、空间干扰(即场干扰)和传导干扰。空间干扰都通过电磁波辐射窜人系统;传导干扰则通过与系统相连接的导线,如,以与前向通道和后向通道等进人系统;电源噪声干扰有过压、欠压、浪涌电压、尖峰电压等。 (2)在设计电路时尽量消除或减小这些干扰对系统的影响;

(3)设计线路板、导线的结构尽量消除这些问题,必要时,使用干扰抑制器件; (4)将系统分成模块调试,保证每个子系统组装正确无误、工作正常,在进行进一步组装前不会有任何问题。通过一开始就正确地设计系统,经常提前完成任务,成本也较低。 2.2 抗干扰设计的几个基本原则: (1)抑制干扰源 (2) 切断干扰传播路径 (3)提高敏感器件的抗干扰性能 2.2.1 抑制干扰源 就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。 减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 常用的抑制干扰源的措施有: ①继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。 (图1)仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 图1 消除线圈反电势干扰 ②在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选 几K到几十K,电容选0.01μF~0.1μF),减小电火花影响。(图2) 图2 减小继电器火花

相关文档
最新文档