窗函数设计滤波器.(DOC)

窗函数设计滤波器.(DOC)
窗函数设计滤波器.(DOC)

******************

实践教学

*******************

XXXX大学

计算机与通信学院

2014年春季学期

《信号处理》课程设计

题目:窗函数法设计FIR低通滤波器

专业班级:

姓名:

学号:

指导教师:

成绩:

摘要

在数字信号处理中.数字滤波器十分重要并已获得广泛应用,效字滤渡

器与模拟滤渡器比较,具有精度高、稳定、体积小、重量轻、灵活、不要求阻抗匹配以及实现模拟滤波器无法宴现的特殊滤波功能等优点.使数字滤波器成为信号处理领域的一十要研究课题。

本课程设计主要是对一段语音信号,加入噪声后,用汉宁窗设计出的FIR滤波器对加入噪声后的语音信号进行滤波去噪处理。在此次课程设计中,系统操作平台为Windows 7,程序设计的操作软件MATLAB 7.0。此课程设计首先是用音乐软件采集一段语音信号,加入噪声,然后采用汉宁窗函数法设计出FIR滤波器,再用设计出的滤波器对这段加噪后的语音信号进行滤波去噪,最后对前后时域和频域的波形图进行对比分析,从波形可以看出噪

声被完全滤除,达到了语音不失真的效果。

关键字滤波器 ;汉宁窗 ;去噪

III

目录

前言 (1)

第一章设计介绍 (2)

1.2 MATLAB在DSP中的运用 (2)

1.3 FIR数学滤波器介绍 (2)

1.4 窗函数法 (3)

1.5 汉宁窗 (5)

第二章基本原理 (5)

2.1 汉宁窗基本原理 (6)

2.2 窗函数法设计基本原理 (6)

第三章设计实现框图 (8)

第四章基于MATLAB的仿真程序及结果 (9)

4.1 读入语音数据并画出其时域与频域图 (9)

4.2 在MATLAB中对信号加入两个噪声 (9)

4.3 滤波器设计基本程序: (10)

参考文献: (15)

附录:程序源代码 (16)

致谢 (19)

前言

在当今数字信号处理中,滤波器十分重要并以获得广泛应用,它是去除信号中噪声的基本手段,因此,滤波运算时信号处理中的基本运算。滤波器设计问题也是数字信号处理中的基本问题。FIR 滤波器的设计方法主要是建立在对理想滤波器频率特性做某种近似的基础上的。这些近似方法有窗函数法、频率抽样法及最佳一致逼近法。

本设计以窗函数法设计FIR 数字滤波器,窗函数设计法的基本思想是用FIRDF 逼近希望的滤波特性。设希望逼近的滤波器的频率响应为()ω

j d e H ,其单

位脉冲响应用()n h d 表示。为了设计简单方便,通常选择

()ωj d e H 为具有片段常数特性的理想滤波器。因此()n h d 是无限长非因果序列,不能直接作为FIR 滤波器的单位脉冲响应。窗函数设计法就是截取

()n h d 为有限长的一段因果序

列,并用合适的窗口函数进行加权作为FIR 滤波器的单位脉冲响应()n h 。

第一章设计介绍

1.1 数字信号处理简介

数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科[2]。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。

1.2 MATLAB在DSP中的运用

MATLAB在信号与系统中的应用主要包括符号运算和数值计算仿真分析。由于信号与系统课程的许多内容都是基于公式演算,而MATLAB借助符号数学工具箱提供的符号运算功能,能基本满足信号与系统课程的需求。例如解微分方程、傅里叶正反变换、拉普拉斯正反变换和z正反变换等。MATLAB在信号与系统中的另一主要应用是数值计算与仿真分析,主要包括函数波形绘制、函数运算、冲击响应与阶跃响应仿真分析、信号的时域分析、信号的频谱分析、系统的S域分析和零极点图绘制等内容。数值计算仿真分析可以帮助学生更深入地理解理论知识,并为将来使用MATLAB进行信号处理领域的各种分析和实际应用打下基础。

1.3 FIR数学滤波器介绍

数字滤波器对信号滤波的方法是:用数字计算机对数字信号进行处理,处理就是按照预先编制的程序进行计算。数字滤波器的原理如图所示,它的核心是数字信号处理器。在本设计中,要求学生掌握利用窗函数的方法设计一个FIR低通数字滤波器。数字滤波器是一个能够完成特定任务的离散时间系统.它可以利用有限精度算法来实现。当采用一个因果稳定的离散线性移不变系统的系鲈函数去逼近滤渡器所要求的性能指标时.由于系统函数有无

限长单位冲激响应ⅡI R1系统函数和有限长单位冲激响应系统函数两种,相应地数字滤渡器也就有无限长单位冲激响应滤渡器和有限长单位冲激响应滤渡器两种剐。FIR 滤渡器的设计问题实质上是确定能满足所要求的转移序列或脉冲响应的常数的问题.设计方法主要有窗函数法、频率采样法和等波纹最佳逼近法等。FIR 的突出优点是:系统总是稳定的、易于实现线性相位、允许设计多通带(或多阻带)滤波器,但与IIR 相比,在满足同样阻带衰减的情况下需要的阶数较高,滤波器的阶数越高,占用的运算时间越多,因此在满足指标要求的情况下应尽量减少滤波器的阶数。

1.4 窗函数法

FIR 数字滤波器设计最简单的方法是窗函数法,通常也称为傅立叶级数法。它是在时域进行的,因而必须由理想滤波器的频率响应)(jw d e H 推导出其单位冲激响应)(n h d ,在设计一个FIR 数字滤波器的单位冲激响应)(n h 去逼近)(n h d 。窗函数是一种用一定宽度窗函数截取无限长脉冲响应序列获取有限长脉冲响应序列的设计方法。丽其设计Fm 滤披器的基本思想:根据培定的滤渡器技术指标选取滤波器长度N 和窗函数“靠J ,使其具有最窄宽度的主瓣和最小的旁瓣。其核心是从给定的频率特性.通过加窗确定有限长单位脉冲响应序列h(n)即实际滤波器的系散向量.其是由理想滤渡器脉冲响应hd “n 与窗函敷函数相加相乘得到。

使用窗函数法设计时要满足以下两个条件: ○

1窗谱主瓣尽可能地窄,以获得较陡的过渡带; ○

2尽量减少窗谱的最大旁瓣的相对幅度,也就是使能量尽量集中于主瓣,减小峰肩和纹波,进行增加阻带的衰减。 窗函数的选择原则是:

[1]具有较低的旁瓣幅度,尤其是第一旁瓣的幅度; [2]旁瓣的幅度下降的速率要快,以利于增加阻带的衰减; [3]主瓣的宽度要窄,这样可以得到比较窄的过渡带。

通常上述的几点难以同时满足。实际中设计FIR 数字滤波器往往要求是线性相位的,因此要求)(n w 满足线性相位的条件,即要求w(n)满足:

)1()(n N w n w --= (1-1)

所以,窗函数不仅有截短的作用,而且能够起到平滑的作用,在很多领域得到了应用。

窗口设计法基本步骤如下:

(1)构造希望逼近的频率响应函数()

ωj d e H 。以低通线性相位FIRDF 设计为例,一般选择()

ωj d e H 为线性理想低通滤波器,即

()

???=-,

,0ωτω

j j d e e H πωωωω≤<≤c c (1-2)

(2)求出()n h d 。对()

ωj d e H 进行IFT 得到

()()

()[]()

τπτωωπππωω--==?-n n d e e H n h c n

j j d d sin 21 (1-3)

(3)加窗得到FIRDF 的单位脉冲响应()n h ,

()()()n w n h n h d = (1-4)

式中,()n w 称为窗口函数,其长度为N 。如果要求第一类线性相位FIRDF ,则要求()n h 关于()2/1-N 点偶对称。而()n h d 关于τ=n 点偶对称,所

()2/1-=N τ,同时要求()n w 关于()2/1-N 点偶对称。

常见的窗函数,可以分为以下主要类型:

(1)幂窗--采用时间变量某种幂次的函数,如矩形、三角形、梯形或其

它时间(t )的高次幂;

(2)三角函数窗--应用三角函数,即正弦或余弦函数等组合成复合函

数,例如汉宁窗、海明窗等;

(3)指数窗--采用指数时间函数,例如高斯窗等。

各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见下表中所示;

表2-1常见窗函数性能表

名称滤波器

过渡带

最小阻

带衰减

名称

滤波器

过渡带

最小阻带

衰减

矩形 1.8π/M21dB PARZENWIN 6.6π/M 56dB

巴特利特 6.1π/M25dB FLATTOPWIN 19.6π/

M

108dB

汉宁 6.2π/M44dB GAUSSWIN 5.8π/M 60dB 汉明 6.6π/M51dB BARTHANNWIN 3.6π/M 40dB

布莱克曼11π/M74dB BLACKMANHARRIS 16.1π/

M

109dB

BOHMANWIN 5.8π/M 51.5dB CHEBWIN 15.2π/

M

113dB

NUTTALLWIN 15.4π/

M

108dB TUKEYWIN 2.4π/M 22dB

1.5 汉宁窗

汉宁窗(Hanning Window)又称升余弦窗,汉宁窗可以看作是3个矩形时间窗的频谱之和,或者说是3个()t

sin型函数之和,而括号中的两项相对于第一个谱窗向左、右各移动了π/T,从而使旁瓣互相抵消,消去高频干扰和漏能。可以看出,汉宁窗主瓣加宽并降低,旁瓣则显著减小,从减小泄漏观点出发,汉宁窗优于矩形窗.但汉宁窗主瓣加宽,相当于分析带宽加宽,频率分辨力下降。

第二章 基本原理

2.1 汉宁窗基本原理

汉宁窗函数是余弦平方函数,又称之为升余弦函数,它的时域形式可以表为:

))1

2cos(1(5.0)(+-=n k

k w π

(2-1) 其中1,2,,k n =…。它的频域幅度特性函数为:

1

()222()0.5()0.25[()()]11N j R R R W W W W e

N N ω

ππωωωω--??=+-++??--??

(2-2)

其中()R W ω为矩形窗函数的幅度频率特性函数。汉宁窗函数的最大旁瓣值比主瓣值低31dB ,但是主瓣宽度比矩形窗函数的主瓣宽度增加了一倍,为

8N

π

。汉宁窗函数的时域幅度与频域幅度特性曲线的MATLAB 实现的曲线图如图2-1所示。

图2.1 汉宁窗函数的时域幅度与频域幅度特性曲线

2.2 窗函数法设计基本原理

用窗函数设FIR 滤波器的基本思路:从时域出发设计 h(n)逼近理想hd(n)。设理想滤波器的单位响应在时域表达为hd(n),则Hd(n) ,一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器单位抽样响应h(n)最直接的方法是先将hd(n)往右平移,再进行截断,即截取为有限长因果序列:h(n)=hd(n)w(n),并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,线性相位FIR数字低通滤波器的单位抽样响应h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs)效应。为了消除吉布斯效应,一般采用其他类型的窗函数。MATLAB 设计 FIR 滤波器有多种方法和对应的函数。窗函数设计法不仅在数字滤波器的设计中占有重要的地位,同时可以用于功率谱的估计,从根本上讲,使用窗函数的目的就是消除由无限序列的截短而引起的Gibbs现象所带来的影响。

第三章设计实现框图

开始

剪切语音将语音格式转换为wav

加入噪声

对语音信号进行频谱分析

用汉宁窗设计FIR

频率响应

用FIR滤波器对信号滤波

画出音乐信号滤波前后波形并比较

结束

图3.1 程序设计流程图

第四章基于MATLAB的仿真程序及结果

4.1 读入语音数据并画出其时域与频域图

用音乐剪切工具剪切一段音乐信号,并以”.wav”格式保存,本设计剪切音乐片段为“1.wav”,然后将该片段读入MATLAB,画出该信号的时域和频域的波形图。再对该片段进行抽样,得到抽样后的预处理信号的时域和频域波形图。

读入音乐信号:

[s, fs,bits]=wavread('C:\Users\Administrator\Desktop\1.wav');

ss=s(:,1);

%sound(s,fs,bits)

作出该原信号的时域波形:

s1=s(17000:end);

figure(1);

subplot(321)

plot(s)

title('原始语音信号');

作出该原信号的频域波形:

S=fft(s);

subplot(322);

plot(abs(S));

title('原始语音信号频谱');

subplot(323)

plot(s1)

对信号进行抽样:

title('预处理截短语音信号');

wavwrite(s1,fs,'s1.wav');

S1=fft(s1);

subplot(324)

plot(abs(S1))

title('预处理语音信号频谱');

N=length(s);

fn=10^5;

t=0:1/fs:(N-1)/fs;

4.2 在MATLAB中对信号加入两个噪声

s2=ss'+0.22*sin(fn*3*pi*t)+0.22*sin(fn*1.5*pi*t)+0.22*sin(fn*2*pi* t);

ss2=s2+awgn(s2,15);

读入加噪后的音乐信号并作出加噪后的时域和频域波形图:

wavwrite(ss2,fs,'s2.wav');

subplot(325);

plot(ss2);

title('加噪后语音信号');

subplot(326);

S2=fft(ss2);

plot(abs(S2));

title('加噪后信号频谱');

sound(ss2,fs,bits);

图4.1 原始、预处理及加噪的信号的时域频域波形图截图中给出了原始语音信号的时域与频域的波形图,及第一和第二张图。中间两幅图给出了预处理的时域和频域的波形图。最后两幅图是加噪后的时域和频域的波形图。

4.3 滤波器设计基本程序:

wp=.2*pi;

ws=.3*pi;

wc=(wp+ws)/2;

N=ceil(3.1*2*pi/(ws-wp));

n=0:1:N-1;

r=(N-1)/2;

hn1=fir1(N-1,wc/pi,'low',hanning(N));

hd=ideal_hp1(wc,N);

w_han=(hanning(N))';

h=hd.*w_han;

figure(2)

subplot(211)

stem(n,hd)

title('理想单位脉冲响应hd(n)');

subplot(212)

stem(n,h);

title('实际单位脉冲响应hd(n)');

figure(3)

freqz(hn1);

title('滤波器幅频特性与相频特性');

图4.2理想单位脉冲与实际单位脉冲

该截图给出了理想单位脉冲与实际单位脉冲图。s3=conv(s2,hn1); wavwrite(s3,fs,'s3.wav');

S3=fft(s3);

sound(s3,fs,bit

图4.3 滤波器特性图

该图给出了滤波器参数的相关波形图。给出了滤波器的幅频和相频特性波形图。

滤波处理后的信号频谱图:

figure(4)

subplot(211);

plot(s3);

title('滤波器处理之后信号图');

subplot(212);

plot(abs(S3));

title('滤波器处理之后频谱')

图4.4 滤波后的时域与频域波形图

该图是滤波后的时域频域的波形图像,从图像中不难看出经过FIR滤波器处理后的图像在频谱上相对于加噪的波形图像要规则的多,而且从声音上分辨,基本去除了信号中加给的两种噪音信号,达到了滤波的效果。

第五章实验结论及总结

通过本次课程设计,我巩固了课堂中学习的理论知识,并能够用所学习的理论知识正确分析数字信号处理的基本问题,和解释数字信号处理的基本现象,掌握了用窗函数法设计FIR数字低通滤波器的正确方法和步骤,以及用MATLAB软件编写程序实现该滤波器的仿真,还学到了一些用所学知识解决实际问题的技巧。还体会到了与其他高级语言的程序设计相比,MATLAB环境下可以更方便、快捷地设计具有严格线性相位的FIR滤波器,节省大量的编程时间,提高编程效率,且参数的修改也十分方便,还可以进一步进行优化设计。另外,由于课本知识掌握的不牢固和MATLAB软件编程环境的不熟悉,在课程设计的过程中也遇到了一些难题,例如不知道用窗函数法设计FIR数字低通滤波器的详细方法和步骤,题目所给的参数不知道如何转换成低通滤波器的技术指标,还有此程序指令的MATLAB实现也让我们很头疼。最后通过认真看了几遍课本和其他有关书籍,网上查阅相关资料,才使得这些问题得以解决。

我们也都深深意识到了团队合作的重要性,任务的完成需要团队每个人的密切配合,合理的分工与合作,共同面对和解决设计中遇到的各种问题,才能值得此次课程设计逐渐趋于完善。

参考文献:

[1] 丁玉美. 数字信号处理[M]. 西安电子科技大学出版社,2003,3.

[2] 朱冰莲. 数字信号处理[M]. 电子工业出版社,2003,7.

[3] 程佩青.数字信号处理教程(第二版)[M].北京:清华大学出版社,2001.

[4] 韩纪庆,张磊,郑铁然.语音信号处理[M].北京:清华大学出版社,2004.

[5] Sanjit K.Mitra 著,孙洪,余翔宇译,《数字信号处理实验指导书》,电子工业出版社,2005 年。

[6] 张葛祥,李娜. MATLAB仿真技术与应用.北京:清华大学出版社,2002年。

[7] 董长虹等. MATLAB信号处理与应用.北京:国防工业出版社,2005。

附录:程序源代码

[s, fs,bits]=wavread('C:\Users\Administrator\Desktop\1.wav');

ss=s(:,1);

%sound(s,fs,bits)

s1=s(17000:end);

figure(1);

subplot(321)

plot(s)

title('原始语音信号');

S=fft(s);

subplot(322);

plot(abs(S));

title('原始语音信号频谱');

subplot(323)

plot(s1)

title('预处理截短语音信号');

wavwrite(s1,fs,'s1.wav');

S1=fft(s1);

subplot(324)

plot(abs(S1))

title('预处理语音信号频谱');

N=length(s);

fn=10^5;

t=0:1/fs:(N-1)/fs;

s2=ss'+

0.22*sin(fn*3*pi*t)+0.22*sin(fn*1.5*pi*t)+0.22*sin(fn*2*pi*t);

ss2=s2+awgn(s2,15);

wavwrite(ss2,fs,'s2.wav');

subplot(325);

plot(ss2);

title('加噪后语音信号');

S2=fft(ss2);

plot(abs(S2));

title('加噪后信号频谱');

sound(ss2,fs,bits);

wp=.2*pi;

ws=.3*pi;

wc=(wp+ws)/2;

N=ceil(3.1*2*pi/(ws-wp));

n=0:1:N-1;

r=(N-1)/2;

hn1=fir1(N-1,wc/pi,'low',hanning(N)); hd=ideal_hp1(wc,N);

w_han=(hanning(N))';

h=hd.*w_han;

figure(2)

subplot(211)

stem(n,hd)

title('理想单位脉冲响应hd(n)'); subplot(212)

stem(n,h);

title('实际单位脉冲响应hd(n)'); figure(3)

freqz(hn1);

title('滤波器幅频特性与相频特性');

s3=conv(s2,hn1);

wavwrite(s3,fs,'s3.wav');

S3=fft(s3);

sound(s3,fs,bits);

figure(4)

实验六、用窗函数法设计FIR滤波器

实验六 用窗函数法设计 FIR 滤波器 一、实验目的 (1) 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 (2) 熟悉线性相位FIR 数字滤波器特性。 (3) 了解各种窗函数对滤波特性的影响。 二、实验原理 滤波器的理想频率响应函数为H d (e j ω ),则其对应的单位脉冲响应为: h d (n) = ?-π π ωωωπ d e e H n j j d )(21 窗函数设计法的基本原理是用有限长单位脉冲响应序列h(n)逼h d (n)。由于h d (n)往往是无 限长序列,且是非因果的,所以用窗函数。w(n)将h d (n)截断,并进行加权处理: h(n) = h d (n) w(n) h(n)就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数H(e j ω )为: H(e j ω ) = ∑-=-1 )(N n n j e n h ω 如果要求线性相位特性,则h (n )还必须满足: )1()(n N h n h --±= 可根据具体情况选择h(n)的长度及对称性。 用窗函数法设计的滤波器性能取决于窗函数w(n)的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。 三、实验步骤 1. 写出理想低通滤波器的传输函数和单位脉冲响应。 2. 写出用四种窗函数设计的滤波器的单位脉冲响应。 3. 用窗函数法设计一个线性相位FIR 低通滤波器,用理想低通滤波器作为逼近滤波器,截止频率ωc =π/4 rad ,选择窗函数的长度N =15,33两种情况。要求在两种窗口长度下,分别求出h(n),打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和阻带衰减; 4 用其它窗函数(汉宁窗(升余弦窗)、哈明窗(改进的升余弦窗)、布莱克曼窗) 设计该滤波器,要求同1;比较四种窗函数对滤波器特性的影响。 四、实验用MATLAB 函数 可以调用MATLAB 工具箱函数fir1实现本实验所要求的线性相位FIR-DF 的设计,调用一维快速傅立叶变换函数fft 来计算滤波器的频率响应函数。

MATLAB窗函数法实现FIR的高通,带通和低通滤波器的程序

MATLAB窗函数法实现FIR的高通,带通和低通滤波器的程序 MATLAB 学院:地球物理与石油资源学院班级:姓名:学号:班内编号:指导教师:完成日期:测井11001大牛啊啊啊陈义群2013年6月3日课程设计报告一、题目FIR滤波器的窗函数设计法及性能比较 1. FIR滤波器简介数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应滤波器和有限冲激响应滤波器。与IIR滤波器相比,FIR滤波器的主要特点为: a. 线性相位;b.非递归运算。 2. FIR 滤波器的设计FIR滤波器的设计方法主要有三种:a.窗函数设计法;b.频率

抽样发;c.最小平法抽样法;这里我主要讨论在MATLAB环境下通过调用信号分析与处理工具箱的几类窗函数来设计滤波器并分析与比较其性能。窗函数法设计FIR滤波器的一般步骤如下: a. 根据实际问题确定要设计的滤波器类型; b. 根据给定的技术指标,确定期望滤波器的理想频率特性;c. 求期望滤波器的单位脉冲响应;d. 求数字滤波器的单位脉冲响应; e. 应用。常用的窗函数有(1)Hanningwindoww(n)?[?((2)Hammingw indoww(n)?[?((3)Balckmanwindoww(n)?[ ?((4)KaiserwindowI0{?1?[2n/(N?1)]2}w(n )?RN(n)I0(?)式中I0(x)是零阶Bessel函数,可定义为()2?n4?n)?()]RN(n)N?1N?1()2?n)]RN(n)N ?1() ?nN?1)]RN(n)() (x/2)m2I0(x)?1??m!m?1? 当x?0时与矩形窗一致;当x?时与海明窗结果相同;当x?时与布莱克曼窗结果相同。3.窗函数的选择标准 1. 较低的旁瓣

窗函数设计FIR滤波器

1.课题描述......................................................... (1) 2.题目及要求......................................................... (1) 3.设计原理......................................................... (1) 3.1 滤波器的分类......................................................... (1) 3.2 数字滤波器工作原理 (1) 3.3 FIR滤波器的设计指 标 (3) 3.4窗函数设计FIR滤波器的设计原 理 (5) 3.5用窗函数设计滤波器的步 骤 (10) 3.6实验所用MATLAB函数说 数 (11)

4设计容......................................................... (12) 4.1用MATLAB编程实 现 (12) 4.2结果分析......................................................... (15) 5总结......................................................... (17) 6参考文献......................................................... (17)

1.课题描述 数字滤波器是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。因此,数字滤波的概念和模拟滤波相同,只是信号的形成和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。本课题使用MATLAB信号处理箱和运用窗函数的FIR滤波器去除无用信号。2.题目及要求 产生包含三个正弦成分(120hz,80hz,20hz)的信号,设计基于窗函数的FIR滤波器去除120hz,20hz成分,保留80hz信号。通带允许的最大衰减为0.25dB,阻带应达到的最小衰减为20dB。滤波器的采样频率为500Hz。 3.设计原理 3.1滤波器的分类 从功能上可以分为:低通、高通、带通和带阻。 从处理信号分为:经典滤波器和现代滤波器。 从设计方法上分为:切比雪夫和巴特沃斯 从实现方法上分为:FIR和IIR 3.2数字滤波器的工作原理 数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。如数字滤波器的系统函数为H(Z),其脉

窗函数设计低通滤波器 电信课设

XXXX大学 课程设计报告 学生:xxx 学号:xxx 专业班级:电子信息工程 课程名称:数字信号处理课程设计 学年学期20XX——20XX 学年第X学期指导教师:xxx 2014年6月

课程设计成绩评定表

目录 1. 窗函数设计低通滤波器 1.1设计目的 (1) 1.2设计原理推导与计算 (1) 1.3设计容与要求 (2) 1.4设计源程序与运行结果 (3) 1.5思考题 (10) 2. 用哈明窗设计FIR带通数字滤波器 2.1设计要求 (14) 2.2设计原理和分析 (14) 2.3详细设计 (15) 2.4调试分析及运行结果 (15) 2.5心得体会 (17) 参考文献 (17)

1.窗函数设计低通滤波器 1.1设计目的 1. 熟悉设计线性相位数字滤波器的一般步骤。 2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。 4. 学会根据指标要求选择合适的窗函数。 1.2设计原理推导与计算 如果所希望的滤波器的理想的频率响应函数为() ωj d e H ,则其对应的单位脉冲响应为 ()() ωπ ωωπ π d e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数() ωj e H ,即 ()?????≤<≤=-π ωωωωωα ω c c j j d ,,e e H 0,其中21-=N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαω π π ω sin 21 21 用有限长单位脉冲响应序列()n h 逼近()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函 数() ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取

实验四 用窗函数法设计FIR数字滤波器

实验四 用窗函数法设计FIR 数字滤波器 实验项目名称:用窗函数法设计FIR 数字滤波器 实验项目性质:验证性实验 所属课程名称:数字信号处理 实验计划学时:2 一. 实验目的 (1)掌握用窗函数法设计FIR 数字滤波器的原理与方法。 (2)熟悉线性相位FIR 数字滤波器的特性。 (3)了解各种窗函数对滤波特性的影响。 二. 实验容和要求 (1) 复习用窗函数法设计FIR 数字滤波器一节容,阅读本实验原理,掌握设计步骤。 (2) 用升余弦窗设计一线性相位低通FIR 数字滤波器,截止频率 rad c 4 π ω= 。窗口长度N =15,33。要求在两种窗口长度情况下,分别求出()n h ,打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和20dB 带宽。总结窗口长度N 对滤波器特性的影响。 设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数()ωj e H ,即 ()?????≤<≤=-π ωωωωωα ω c c j j d ,,e e H 0 其中2 1 -= N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαωπ π ωsin 2121

(3) 33=N ,4πω=c ,用四种窗函数设计线性相位低通滤波器,绘制相应的幅频特性曲线,观察3dB 带宽和20dB 带宽以及阻带最小衰减,比较四种窗函数对滤波器特性的影响。 三. 实验主要仪器设备和材料 计算机,MATLAB6.5或以上版本 四. 实验方法、步骤及结果测试 如果所希望的滤波器的理想的频率响应函数为()ωj d e H ,则其对应的单位脉冲响应为 ()()ωπ ω ωπ πd e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是用有限长单位脉冲响应序列()n h 逼近 ()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数() n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率 响应函数()ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 我们知道,用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的

FIR滤波器窗函数设计

课题名称:FIR滤波器窗函数设计

FlR 滤波器窗函数设计 引言: 数字滤波器(DigitalFilter )是指输入、输出都是离散时间信号,通过一定运算 关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分的器件。 在许 多数字信号处理系统中,如图像信号处理等,有限冲激响应( FIR )滤波器是最 常用的组件之一,它完成信号预调、频带选择和滤波等功能。 FIR 滤波器虽然在 截止频率的边沿陡峭性能上不及无限冲激响应 (IIR )滤波器,但是却具有严格的 线性相位特性,稳定性好,能设计成多通带(或多阻带)滤波器组,所以能够在 数字信号处理领域得到广泛的应用。 数字滤波器的分类 1) 根据系统响应函数的时间特性分为两类 1. FIR (Finite ImPUISe Response 数字滤波器网络 M y[n] b k x[n k] k0 特点:不存在反馈支路,其单位 冲激响应为有限长 2. IIR ( Infinite ImPUISe Response 数字滤波器网络 特点:存在反馈支路,即信号流图中存在环路,其单位冲激响应为无限长 (2) FIR 数字滤波器IIR 数字滤波器的区别 1. 从性能上来说,IlR 滤波器传递函数包括零点和极点两组可调因素, 对极点的 惟一限制是在单位圆内。因此可用较低的阶数获得高的选择性,所用的存储 单元 少,计算量小,效率高。但是这个高效率是以相位的非线性为代价的。 选择性越好,则相位非线性越严重。FIR 滤波器传递函数的极点固定在原点, 是不能动的,它只能靠改变零点位置来改变它的性能。所以要达到高的选择 性,必须用较高的阶数;对于同样的滤波器设计指标, FIR 滤波器所要求的 阶数可能比IIR 滤波器高5-10倍,但是FIR 滤波器可以得到严格的线性相位。 2. 从结构上看,IIR 滤波器必须采用递归结构,极点位置必须在单位圆内,否则 系统将 不稳定。相反,FIR 滤波器只要采用非递归结构,不论在理论上还是 在实际的有限精度运算中都不存在稳定性问题, 因此造成的频率特性误差也 较小。此外FIR 滤波器可以采用快速傅里叶变换算法, 在相同阶数的条件下, 运算速度可以快得多。 3. 从设计工具看,IIR 滤波器可以借助于模拟滤波器的成果,因此一般都有有效 的圭寸闭形式的设计公式可供准确计算,计算工作量比较小,对计算工具的要 求不高。 hn b n , 0 n M 0, 其他 n y[n] b k x[n k] k0 a k y[n k1 k]

实验四 窗函数法设计FIR数字滤波器

实验四 窗函数法设计FIR 数字滤波器 一、实验目的 1、掌握窗函数法设计FIR 数字滤波器的原理及具体方法。 2、掌握频率取样法设计FIR 数字滤波器的原理和基本方法。 3、学习利用窗函数法和频率取样法设计低通、带通、高通、带阻数字滤波器。 二、实验环境 计算机、MATLAB 软件 三、实验基础理论 窗函数设计FIR 滤波器 1.基本原理 窗函数设计法的基本思想为,首先选择一个适当的理想的滤波器()j d H e ω ,然后 用窗函数截取它的单位脉冲响应(n)d h ,得到线性相位和因果的FIR 滤波器。这种方法的重点是选择一个合适的窗函数和理想滤波器,使设计的滤波器的单位脉冲响应逼近理想滤波器的单位脉冲响应。 2.设计步骤 (1)给定理想滤波器的频率响应()j d H e ω ,在通带上具有单位增益和线性相位, 在阻带上具有零响应。一个带宽为()c c ωωπ<的低通滤波器由下式给定: π ωωωωωωω≤<=≤=-||,0)(,||,)(c j d c ja j d e H e e H 其中α为采样延迟,其作用是为了得到一个因果系统。 (2)确定这个滤波器的单位脉冲响应 ) ()) (sin()(a n a n n h c d --= πω 为了得到一个(n)h 长度为N 的因果的线性相位FIR 滤波器,我们令 2 1 -= N a (3)用窗函数截取(n)d h 得到所设计FIR 数字滤波器:)()()(n R n h n h N d = 3.窗函数的选择 常用的窗函数有矩形(Rectangular )窗,汉宁(Hanning )窗,海明(Hamming )窗、布莱克曼(Blackman )窗、凯瑟(Kaiser )窗等 表4-1 MATLAB 中产生窗函数的命令

用窗函数设计FIR滤波器解读

实验四用窗函数设计FIR滤波器 一、实验目的 1.熟悉FIR滤波器设计的基本方法。 2.掌握用窗函数设计FIR数字滤波器的原理及方法,熟悉相应的计算机高级语言编程。 3.熟悉线性相位FIR滤波器的幅频特性和相位特性。 4.了解各种不同窗函数对滤波器性能的响应。 二、实验原理与方法 (一)FIR滤波器的设计 目前FIR滤波器的设计方法主要有三种:窗函数法、频率取样法和切比雪夫等波纹逼近的最优化设计方法。常用的是窗函数法和切比雪夫等波纹逼近的最优化设计方法。本实验中的窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求不高的时候是比较灵活方便的。它是从时域出发,用一个窗函 数截取理想的得到h(n),以有限长序列h(n)近似理想的;如果从频域出发,用理想的在单位圆上等角度取样得到H(k),根据h(k)得到 H(z)将逼近理想的,这就是频率取样法。 (二)窗函数设计法 同其它的数字滤波器的设计方法一样,用窗函数设计滤波器也是首先要对 滤波器提出性能指标。一般是给定一个理想的频率响应,使所设计的FIR滤波器的频率响应去逼近所要求的理想的滤波器的相应。窗函数法设计的任务在于寻找一个可实现(有限长单位脉冲响应)的传递函数。 去逼近。我们知道,一个理想的频率响应的傅理叶变换 所得到的理想单位脉冲响应往往是一个无限长序列。对经过适 当的加权、截断处理才得到一个所需要的有限长脉冲响应序列。对应不同的加权、截断,就有不同的窗函数。所要寻找的滤波器脉冲响应就等于理想脉冲响 应和窗函数的乘积。即,由此可见,窗函数的性质就决定了滤波器的品质。

以下是几种常用的窗函数: 1.矩形窗: 2.Hanning窗: 3.Hamming窗: 4.Blackman窗: 5.Kaiser窗: 窗函数法设计线性相位FIR滤波器可以按如下步骤进行: 1.确定数字滤波器的性能要求。确定各临界频率{}和滤波器单位脉冲响 应长度N。 2.根据性能要求和N值,合理地选择单位脉冲响应h(n)有奇偶对称性,从而 确定理想频率响应的幅频特性和相位特性。 3.用傅里叶反变换公式,求得理想单位脉冲响应。 4.选择适当的窗函数W(n)根据式求得所设计的FIR滤波器单位脉冲响应。 5.用傅理叶变换求得其频率响应,分析它的幅频特性,若不满足要 求,可适当改变窗函数形式或长度N,重复上述过程,直至得到满意的结果。 三、实验内容及步骤 (一) 编制实验用主程序及相应子程序 1.在实验编程之前,认真复习有关FIR滤波器设计的有关知识,尤其是窗函数法的有关内容,阅读本实验原理与方法,熟悉窗函数及四种线性相位FIR 滤波器的特性,掌握窗函数设计滤波器的具体步骤。 2.编制窗函数设计FIR滤波器的主程序及相应子程序 (1)傅里叶反变换数值计算子程序,用于计算设计步骤(3)中的傅里叶反变 换,给定,K=0,1…M-1,按照公式求得理想单位脉冲响应

FIR滤波器的窗函数设计法及性能比较

MATLAB课程设计报告 学院:地球物理与石油资源学院 班级: 姓名: 学号: 班内编号: 指导教师: 完成日期: 2013年6月3日

一、 题目 FIR 滤波器的窗函数设计法及性能比较 1. FIR 滤波器简介 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR )滤波器和有限冲激响应(FIR )滤波器。与IIR 滤波器相比,FIR 滤波器的主要特点为: a. 线性相位;b.非递归运算。 2. FIR 滤波器的设计 FIR 滤波器的设计方法主要有三种:a.窗函数设计法;b.频率抽样发;c.最小平法抽样法; 这里我主要讨论在MA TLAB 环境下通过调用信号分析与处理工具箱的几类窗函数来设计滤波器并分析与比较其性能。窗函数法设计FIR 滤波器的一般步骤如下: a. 根据实际问题确定要设计的滤波器类型; b. 根据给定的技术指标,确定期望滤波器的理想频率特性; c. 求期望滤波器的单位脉冲响应; d. 求数字滤波器的单位脉冲响应; e. 应用。 常用的窗函数有 同。 时与布莱克曼窗结果相当时与海明窗结果相同; 时与矩形窗一致;当当885.84414.50]!)2/([1)(120===+=∑∞ =x x x m x x I m m 3.窗函数的选择标准 1. 较低的旁瓣幅度,尤其是第一旁瓣; 2. 旁瓣幅度要下降得快,以利于增加阻带衰减; 3. 主瓣宽度要窄,这样滤波器过渡带较窄。 函数,可定义为是零阶式中Bessel x I n R I N n I n w window Kaiser n R N n N n n w window Balckm an n R N n n w window Ham m ing n R N n n w window Hanning N N N N )()5.2.9()(]) (})]1/(2[1{[)()4()4.2.9()()]14cos(08.0)12cos( 5.042.0[)()3()3.2.9()()]12cos( 46.054.0[)()2() 2.2.9()()]1cos( 5.05.0[)()1(0020ββππππ--=-+--=--=--=

用窗函数法设计FIR数字滤波器

用窗函数法设计FIR 数字滤波器 一、实验目的 1.掌握用窗函数法设计FIR 数字滤波器的原理和方法。 2.熟悉线性相位FIR 数字滤波器特征。 3.了解各种窗函数对滤波特性的影响。 二、实验仪器 微型计算机 matlab 软件 三、实验原理和方法 如果所希望的滤波器的理想频率响应函数为 )(ωj d e H ,则其对应的单位脉冲响应为 )(n h d =π21 ωωωππd e e H j j d )(?- (2-1) 窗函数设计法的基本原理是用有限长单位脉冲响应序列)(n h 逼近)(n h d 。由于)(n h d 往往是无限长序列,且是非因果的,所以用窗函数)(n ω将)(n h d 截断,并进行加权处理,得到: )(n h =)(n h d )(n ω (2-2) )(n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列, 其频率响应函数)(ωj d e H 为: )(ωj d e H =∑-=-1 0)(N n j e n h ω (2-3) 式中,N 为所选窗函数)(n ω的长度。 由第七章可知,用窗函数法设计的滤波器性能取决于窗函数)(n ω的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见第七章。 这样选定窗函数类型和长度N 后,求出单位脉冲响应)(n h =)(n h d ·)(n ω,并按式(2-3)求出)(ωj e H 。)(ωj e H 是否满足要求,要进行验算。一般在)(n h 尾部加零使长度满足于2的整数次幂,以便用FFT 计算)(ωj e H 。如果要观察细节,补零点数增多即可。如果)(ωj e H 不满足要求,则要重新选择窗函数类型和长度N ,再次验算,直至满足要求。 如果要求线性相位特性,则)(n h 还必须满足 )1()(n N h n h --±= (2-4) 根据上式中的正负号和长度N 的奇偶性又将线性相位FIR 滤波器分成四类。要根据设计的滤波特性正确选择其中一类。例如,要设计线性低通特征,可选择)1()(n N h n h --=一类,而不能选)1()(n N h n h ---=一类。 四、实验内容

实验六用窗函数设计FIR滤波器附思考题程序

实验六 用窗函数设计 F I R 滤波器 1.实验目的 (1) 熟悉FIR 滤波器设计的方法和原理 (2) 掌握用窗函数法设计FIR 滤波器的方法和原理,熟悉滤波器的特性 (3) 了解各种窗函数滤波器特性的影响 2.实验原理 FIR 滤波器的设计方法主要有三种:窗函数法、频率取样法、切比雪夫等波纹逼近法。FIR 滤波器的设计是要寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应()j d H e ω,其对应的单位脉冲响应)(n h d 。 (1)用窗函数设计FIR 滤波器的基本方法 在时域用一个窗函数截取理想的)(n h d 得到)(n h ,以有限长序列)(n h 近似逼近理想的)(n h d ;在频域用理想的)(ωj d e H 在单位圆上等角度取样得到h(k),根据h(k)得到H(z)将逼近理想的Hd(z)。 设理想滤波器)(ωj d e H 的单位脉冲响应为)(n h d 。以低通线性相位FIR 数字滤波器为例。 )(n h d 一般是无限长的、非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,(现象称为吉布斯(Gibbs )效应)。 (2)典型的窗函数 (a )矩形窗(Rectangle Window) 其频率响应和幅度响应分别为: 21)2/sin()2/sin()(--=N j j e N e W ωωωω,) 2/sin()2/sin()(ωωωN W R = 在matlab 中调用w=boxcar(N)函数,N 为窗函数的长度 (b )三角形窗(Bartlett Window) 其频率响应为:212])2/sin()4/sin([2)(--=N j j e N N e W ωω ωω 在matlab 中调用w=triang(N)函数,N 为窗函数的长度 (c )汉宁(Hanning)窗,又称升余弦窗 其频率响应和幅度响应分别为: 在matlab 中调用w=hanning(N)函数,N 为窗函数的长度 (d )汉明(Hamming)窗,又称改进的升余弦窗

窗函数法设计FIR数字滤波器

数字信号处理实验报告 ---实验4窗函数法设计FIR数字滤波器 一、实验目的 1.了解常用的几种窗函数,能正确选择适当的窗函数进行滤波器设计; 2.掌握窗函数法设计数字低通滤波器。 二、实验原理 1.常用的窗函数: 矩形窗函数为boxcar和rectwin,调用格式: w= boxcar(N) w= rectwin(N) 其中N是窗函数的长度,返回值w是一个N阶的向量。 三角窗函数为triang,调用格式: w= triang(N) 汉宁窗函数为hann,调用格式: w= hann(N) 海明窗函数为hamming,调用格式: w= hamming(N) 2.各个窗函数的性能比较

三、实验内容 题一:生成四种窗函数:矩形窗、三角窗、汉宁窗、海明窗,并观察其频率响应。 题二:根据下列技术指标,设计一个FIR数字低通滤波器:wp=0.2π,ws=0.4π,ap=0.25dB, as=50dB,选择一个适当的窗函数,确定单位冲激响应,绘出所设计的滤波器的幅度响应。 四、上机程序及运行结果 题一:n=30; %矩形窗及其频响 window1=rectwin(n); [h1,w1]=freqz(window1,1); subplot(4,2,1); stem(window1);title('矩形窗');subplot(4,2,2); plot(w1/pi,20*log(abs(h1))/abs(h1(1)));title('矩形窗频响'); %三角窗及其频响 window2=triang(n); [h2,w2]=freqz(window2,1); subplot(4,2,3);stem(window2);title('三角窗'); subplot(4,2,4); plot(w2/pi,20*log(abs(h2))/abs(h2(1)));title('三角窗频响'); %汉宁窗及其频响 window3=hann(n); [h3,w3]=freqz(window3,1); subplot(4,2,5);stem(window3);title('汉宁窗'); subplot(4,2,6); plot(w3/pi,20*log(abs(h3))/abs(h3(1)));title('汉宁窗频响'); %海明窗频响 window4=hamming(n);

实验六 用窗函数设计FIR滤波器(附思考题程序)

实验六 用窗函数设计FIR 滤波器 1.实验目的 (1) 熟悉FIR 滤波器设计的方法和原理 (2) 掌握用窗函数法设计FIR 滤波器的方法和原理,熟悉滤波器的特性 (3) 了解各种窗函数滤波器特性的影响 2.实验原理 FIR 滤波器的设计方法主要有三种:窗函数法、频率取样法、切比雪夫等波纹逼近法。FIR 滤波器的设计是要寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应()j d H e ω,其对应的单位脉冲响应)(n h d 。 (1)用窗函数设计FIR 滤波器的基本方法 在时域用一个窗函数截取理想的)(n h d 得到)(n h ,以有限长序列)(n h 近似逼近理想的)(n h d ;在频域用理想的)(ωj d e H 在单位圆上等角度取样得到h(k),根据h(k)得到H(z)将逼近理想的Hd(z)。 设理想滤波器)(ωj d e H 的单位脉冲响应为)(n h d 。以低通线性相位FIR 数字滤波器为 例。 )(n h d 一般是无限长的、非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,(现象称为吉布斯(Gibbs )效应)。 (2)典型的窗函数 (a )矩形窗(Rectangle Window) 其频率响应和幅度响应分别为: 21)2/sin()2/sin()(--=N j j e N e W ωωωω,) 2/sin()2/sin()(ωωωN W R = 在matlab 中调用w=boxcar(N)函数,N 为窗函数的长度 (b )三角形窗(Bartlett Window) 其频率响应为:212])2/sin()4/sin([2)(--=N j j e N N e W ωω ωω 在matlab 中调用w=triang(N)函数,N 为窗函数的长度 (c )汉宁(Hanning)窗,又称升余弦窗 其频率响应和幅度响应分别为:

窗函数法设计FIR数字滤波器

数字信号处理实验报告---实验4窗函数法设计FIR数字滤波器

一、实验目的 1.掌握用窗函数法、频率采样法设计FIR数字滤波器的原理及方法,熟悉相应的计算机编程。 2.熟悉线性相位FIR数字滤波器的幅频特性和相频特性。 3.了解各种不同窗函数对滤波器性能的影响。 二、实验原理 1.常用的窗函数: 矩形窗函数为boxcar和rectwin,调用格式: w= boxcar(N)w= rectwin(N) 其中N是窗函数的长度,返回值w是一个N阶的向量。 三角窗函数为triang,调用格式: w= triang(N) 汉宁窗函数为hann,调用格式: w= hann(N) 汉明窗函数为hamming,调用格式: w= hamming(N) 三、设计指标 (1)矩形窗设计线性相位低通滤波器(参数自主设定)。 (2)改用汉宁窗,设计参数相同的低通滤波器。 四、上机程序及运行结果 生成四种窗函数:矩形窗、三角窗、汉宁窗、海明窗,并观察其频率响应。 n=30; %矩形窗及其频响 window1=rectwin(n); [h1,w1]=freqz(window1,1); subplot(4,2,1);

stem(window1);title('矩形窗');subplot(4,2,2); plot(w1/pi,20*log(abs(h1))/abs(h1(1)));title('矩形窗频响'); %三角窗及其频响 window2=triang(n); [h2,w2]=freqz(window2,1); subplot(4,2,3);stem(window2);title('三角窗'); subplot(4,2,4); plot(w2/pi,20*log(abs(h2))/abs(h2(1)));title('三角窗频响'); %汉宁窗及其频响 window3=hann(n); [h3,w3]=freqz(window3,1); subplot(4,2,5);stem(window3);title('汉宁窗'); subplot(4,2,6); plot(w3/pi,20*log(abs(h3))/abs(h3(1)));title('汉宁窗频响'); %汉明窗频响 window4=hamming(n); [h4,w4]=freqz(window4,1); subplot(4,2,7);stem(window4);title('汉明窗'); subplot(4,2,8); plot(w4/pi,20*log(abs(h4))/abs(h4(1)));title('汉明窗频响');

FIR数字低通滤波器的(汉宁)窗函数法设计

)(9cos 15.0)(12cos 15.0)(1919n R n n R N n n w ??? ?? ???? ??-=????????? ??--=ππ 2.3进行语音信号的采集 (1)按“开始”-“程序”-“附件”-“娱乐”-“录音机”的顺序操作打开W indo ws系统中的录音机软件。如图1所示。 图1 wind ows 录音机 (2)用麦克风录入自己的声音信号并保存成wav 文件。如图2所示。 图2 保存文件 保存的文件按照要求如下: ① 音信号文件保存的文件名为“yuxue jiao .wav ”。 ②语音信号的属性为“8.000KHz,8位,单声道 7KB/秒” ,其它选项为默认。 2.4语音信号的分析 将“y ux uejia o.wav ”语音文件复制到计算机装有Matlab 软件的磁盘中相应

图3语音信号的截取处理图 在图3中,其中第一个图为原始语音信号; 第二个图是截短后的信号图。

图4频谱分析图 其中第二个图是信号的FFT 结果,其横坐标的具体值是X(k)中的序号k;第三个图是确定滤波频率范围的参考图,其横坐标的具体值应当是遵循D FT 定义式和频率分辨率求得的: ∑-===1 0)()]([)(N n k N W n x n x DFT k X π 当k 等于0时, 020 j kn N j k kn N e e W ==?-=π ,从数字角频率上看,对应的正好是0=ω即 直流的位置,也就是说,在取滤波频段时,当将主要能量(即红色框的部分)保留,其余频段部分的信号滤除。 )]([)(n x DFT k X =相当于是信号)(n x 的实际频谱)]([)(n x DFT ej X w =采样,而)(n x 又 是连续时间语音信号)(t x 的采样。)(k X 的每两个相邻取值之间的频率间隔大小对应到语音信号)(n x 的频谱中去,其频率间隔大小正好是 采样结果的长度 采样速率 == =?L f f f s det f ?称频率分辨率,其中Hz f s 8000=,10000=L ,

实验六-用窗函数设计FIR滤波器(附思考题程序)

实验六 用窗函数设计FIR 滤波器 1.实验目的 (1) 熟悉FIR 滤波器设计的方法和原理 (2) 掌握用窗函数法设计FIR 滤波器的方法和原理,熟悉滤波器的特性 (3) 了解各种窗函数滤波器特性的影响 2.实验原理 FIR 滤波器的设计方法主要有三种:窗函数法、频率取样法、切比雪夫等波纹逼近法。FIR 滤波器的设计是要寻求一系统函数)(z H ,使其频率响应)(ω j e H 逼近滤波器要求的理 想频率响应()j d H e ω ,其对应的单位脉冲响应)(n h d 。 (1)用窗函数设计FIR 滤波器的基本方法 在时域用一个窗函数截取理想的)(n h d 得到)(n h ,以有限长序列)(n h 近似逼近理想的 )(n h d ;在频域用理想的)(ωj d e H 在单位圆上等角度取样得到h(k),根据h(k)得到H(z)将 逼近理想的Hd(z)。 设理想滤波器)(ω j d e H 的单位脉冲响应为)(n h d 。以低通线性相位FIR 数字滤波器为 例。 ?∑- -∞ -∞ == =π πωωω ω ω π d e e H n h e n h e H jn j d d jn n d j d )(21)()()( )(n h d 一般是无限长的、非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得 到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有

限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即 ?? ?-==2 /)1() ()()(N a n w n h n h d 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,(现象称为吉布斯(Gibbs )效应)。 (2)典型的窗函数 (a )矩形窗(Rectangle Window) )()(n R n w N = 其频率响应和幅度响应分别为: 2 1) 2/sin()2/sin()(--=N j j e N e W ω ω ωω,) 2/sin() 2/sin()(ωωωN W R = 在matlab 中调用w=boxcar(N)函数,N 为窗函数的长度 (b )三角形窗(Bartlett Window) ???? ?-≤<----≤ ≤-=121 ,1 22210,12)(N n N N n N n N n n w 其频率响应为:21 2]) 2/sin()4/sin([2)(--=N j j e N N e W ωω ωω 在matlab 中调用w=triang(N)函数,N 为窗函数的长度 (c )汉宁(Hanning)窗,又称升余弦窗 )()]1 2cos(1[21)(n R N n n w N --=π 其频率响应和幅度响应分别为:

用窗函数法设计FIR数字滤波器

实验五 用窗函数法设计FIR 数字滤波器 一、实验目的: 1. 掌握用窗函数法设计FIR 数字滤波器的原理和方法 2. 熟悉线性相位FIR 数字滤波器特性。 3. 了解各种窗函数对滤波特性的影响。 二、实验原理 线性相位特点在实际应用中非常重要,如在数据通信、图像处理、语音信号处理等领域,往往要求系统具有线性相位特性,因而常采用容易设计成线性相位的有限冲激响应FIR 数字滤波器来实现。 1. 常用窗函数: 1) 矩形窗 10[]0k M w k ≤≤?=?? 其他 (5.21) 2) Hann (汉纳)窗 0.5-0.5cos(2/)0[]0 k M k M w k π≤≤?=??其他 (5.22) 3) Hamming (汉明)窗 0.54-0.46cos(2/)0[]0 k M k M w k π≤≤?=??其他 (5.23) 4) Blackman (布莱克曼)窗 0.42-0.5cos(2/)0.08cos(4/)0[]0k M k M k M w k ππ+≤≤?=?? 其他 (5.24) 5) Kaiser (凯泽)窗 0[]0w k k M =≤≤ (5.25) 其中2201(/2)()1!n x I x n ∞=??=+??? ?∑ 下面介绍用窗函数设计FIR 滤波器的步骤: a) 根据技术要求确定待求滤波器的单位取样响应[]d h k 。 b) 根据对过渡带和阻带衰减的要求,选择窗函数的形式,并估计窗函数长度/N A w ≈?,A 决定 于窗口的形式,w ?表示滤波器的过渡带。

c) 利用选好的窗函数计算滤波器的单位取样响应[][][]d h k h k w k =。 d) 验算技术指标是否满足要求。设计出来的滤波器的频率响应用10()[]N j j n n H e h k e -Ω-Ω==∑来计算。 2. Matlab 数字信号处理工具箱中常用的FIR 数字滤波器设计函数 hanning 汉纳窗函数。 hamming 汉明窗函数。 blackman 布莱克曼窗函数。 kaiser 凯泽窗函数。 kaiserord 凯泽窗函数设计法的阶数估计。 fir1 窗函数法FIR 数字滤波器设计:低通、高通、带通、带阻、多频率滤波。 fir2 频率抽样法FIR 数字滤波器设计:任意频率响应。 三、实验内容 1. 分别用矩形窗、hann 窗,hamming 窗设计一个阶数为9的FIR 低通数字滤波器,截止频率3c rad πΩ= 。 1) 画出各种方法设计的数字滤波器的单位脉冲响应。 2) 画出它们的幅频响应,并比较各滤波器的通带纹波和阻带纹波,有何结论? 3) 若当输入[]12cos( )cos()42x k k k ππ =++,计算各滤波器的输出并画出其波形。 程序过程: clc;clear all ; %阶数为M=9,数字截止频率为 pi/3;设计II 型低通线性相位滤波器 M=9;Wc=pi/3;k=0:M; hd=Wc*sinc(Wc*(k-0.5*M))/pi; xk=1+2*cos(pi*k/4)+cos(pi*k/2); figure(1); %以下是矩形窗截断 wk=ones(1,M+1); hk=hd.*wk;[H,w]=freqz(hk,1); subplot(311); stem(k,hk,'.'); title('矩形窗截断的单位脉冲响应'); %以下是hann 窗截断 wk=hanning(M+1); hk=hd.*wk';[H,w]=freqz(hk,1); subplot(312);stem(k,hk,'.'); title('hanniing 窗截断的单位脉冲响应'); %以下是hamming 窗截断 wk=hamming(M+1); hk=hd.*wk';[H,w]=freqz(hk,1); subplot(313);stem(k,hk,'.');

相关文档
最新文档