郁道银主编 工程光学(知识点)

郁道银主编 工程光学(知识点)
郁道银主编 工程光学(知识点)

第一章小结(几何光学基本定律与成像概念)

1 、光线、波面、光束概念。

光线:在几何光学中,我们通常将发光点发出的光抽象为许许多多携带能量并带有方向的几何线。

波面:发光点发出的光波向四周传播时,某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。

光束:与波面对应所有光线的集合称为光束。

2 、几何光学的基本定律(内容、表达式、现象解释)

1 )光的直线传播定律:在各向同性的均匀介质中,光是沿着直线传播的。

2 )光的独立传播定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。

3 )反射定律和折射定律(全反射及其应用):

反射定律:1、位于由入射光线和法线所决定的平面内;2、反射光线和入射光线位于法线的两侧,且反射角和入射角绝对值相等,符号相反,即I’’=-I。

全反射:当满足1、光线从光密介质向光疏介质入射,2、入射角大于临界角时,入射到介质上的光会被全部反射回原来的介质中,而没有折射光产生。sinI m=n’/n,其中I m为临界角。

应用:1、用全反射棱镜代替平面反射镜以减少光能损失。(镀膜平面反射镜只能反射90%左右的入射光能)2、光纤

折射定律:1、折射光线位于由入射光线和法线所决定的平面内;2、折射角的正弦和入射角的正弦之比与入射角大小无关,仅由两种介质的性质决定。n’sinI’=nsinI。

应用:光纤

4 )光路的可逆性

光从A点以AB方向沿一路径S传递,最后在D点以CD方向出射,若光从D点以CD

方向入射,必原路径S传递,在A点以AB方向出射,即光线传播是可逆的。

5 )费马原理

光从一点传播到另一点,其间无论经历多少次折射和反射,其光程为极值。(光是沿着光程为极值(极大、极小或常量)的路径传播的),也叫“光程极端定律”。

6 )马吕斯定律

光线束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。

折/反射定律、费马原理和马吕斯定律三者中的任意一个均可以视为几何光学的一个基本定律,而把另外两个作为该基本定律的推论。

3 、完善成像条件(3种表述)

1)、入射波面为球面波时,出射波面也为球面波;

2)、入射光束为同心光束时,出射光束也为同心光束;

3)、物点A1及其像点A k’之间任意二条光路的光程相等。

4 、应用光学中的符号规则(6 条)

1)沿轴线段(L、L’、r):规定光线的传播方向自左至右为正方向,以折射面顶点O为原点。

2)垂轴线段(h):以光轴为基准,在光轴以上为正,以下为负。

3)光线与光轴的夹角(U、U’):光轴以锐角方向转向光线,顺时针为正,逆时针为负。

4)光线与法线的夹角(I、I’):光线以锐角方向转向法线,顺时针为正,逆时针为负。

5)光轴与法线的夹角(φ):光轴以锐角方向转向法线,顺时针为正,逆时针为负。

6)相邻两折射面间隔(d):由前一面的顶点到后一面的顶点,顺光线方向为正,

逆为负。

5 、单个折射球面的光线光路计算公式(近轴、远轴)

6 、单个折射面的成像公式(定义、公式、意义)

垂轴放大率成像特性:

β>0,成正像,虚实相反;β<0,成倒像,虚实相同

|β|>1,放大;|β|<1,缩小。

轴向放大率结论:

折射球面的轴向放大率恒为正,轴向放大率与垂轴放大率不等。

角放大率:表示折射球面将光束变宽变细的能力;只与共轭点的位置有关,与光线的孔径角无关。

7 、球面反射镜成像公式

8 、共轴球面系统公式(过渡公式、成像放大率公式)

第二章小结

(理想光学系统)

1、什么是理想光学系统?

为了系统的讨论物像关系,挖掘出光学系统的基本参量,将物、像与系统件的内在关系揭示出来,可暂时抛开光学系统的具体结构(r,d,n),将一般仅在光学系统的近轴区存在的完善成像,拓展成在任意大的空间中一任意宽的光束都成完善像的理想模型。简单的说就是物像空间满足“点对应点,直线对应直线,平面对应平面”的光学系统。

2、共轴理想光学系统的成像性质是什么?(3大点)

1)位于光轴上的物点对应的共轭像点也必然位于光轴上;位于过光轴的某一个截面内的物点对应的共轭像点必位于该平面的共轭像面内;同时,过光轴的任意截面成像性质都是相同的

2)垂直于光轴的平面物所成的共轭平面像的几何形状完全与物相似。

3)如果已知两共轭面的位置和放大率,或者一对共轭面的位置和放大率,以及轴上两对共轭点的位置,则其他一切物点的像点都可以根据这些已知的共轭面和共轭点来表示。

3、无限远的轴上(外)物点的共轭像点是什么?它发出的光线有何性质?

像方焦点;它发出的光线都与光轴平行。

4、无限远的轴上(外)像点的对应物点是什么?

物方焦点。

5、物(像)方焦距的计算公式为何?

f’=h/tanU’,h为平行光线的高度,U’为像方孔径角。

6、物方主平面与像方主平面的关系为何?

互为共轭。

光学系统的基点及性质?有何用途?

一对主点和主平面,一对焦点和焦平面,称为光学系统的基点和基面。

一束平行光线经过系统后交于像方焦平面上一点,物方焦平面上一点光源发射出的光线经过系统后是一组平行光线。

可用直接表示光学系统,便于推断和计算光路。

7、图解法求像的方法?(可选择的典型光线和可利用的性质5条+1条)

8、解析法求像方法为何?(牛顿公式、高斯公式)

1)牛顿公式:

2)高斯公式:

9、由多个光组组成的理想光学系统的成像公式?(过渡公式)

10、理想光学系统两焦距之间的关系?

11、理想光学系统的放大率?(定义、公式、用途、与单个折射面公式的区别和联系)

12、理想光学系统的组合公式为何?正切计算法?

13、几种典型的光组组合及其特点(组成、特点和应用)?

第三章小结(平面与平面系统)

1、平面光学元件的种类?作用?(4种)

平面反射镜,唯一能成完善像的最简单的光学元件,可用于做光杠杆

平行平板,平行平板是个无光焦度的光学元件,不使物体放大或缩小,

反射棱镜,实现折转光路、转像和扫描等功能。

折射棱镜,改变光线的出射角,可用于放大偏转量。

2、平面镜的成像特点和性质?平面镜的旋转特性?

每一点都能成完善像,并且像与物虚实相反。

平面镜转动α,反射光线转动θ。

奇数次反射成镜像,偶数次反射成一致像。

3、光学杠杆原理和应用?(测小角度和微位移)

从透镜物方焦点发出光线束,经过系统后成平行光束经过微小偏转θ的平面镜后反射,再经过系统汇聚在像方焦平面上,测得垂轴距离y,则y=f’tan2θ=2θf’,测杆支点与光轴距离a,移动量x,θ=tanθ=x/a, so, y=(2f’/a)x=Kx,K为放大倍数。

4、平行平板的成像特性?(3点)近轴区内的轴向位移公式?

平行平板是个无光焦度的光学元件,不使物体放大或缩小,只将像从物位置进行一个轴向平移。近轴区能成完善像,非近轴区不能成完善像。

5、加平面镜、平行平板的成像计算。

6、反射棱镜的种类(4种)、基本用途、棱镜的主截面、成像方向判别、等效作用与展开。

简单棱镜,改变出射角,增加光程

屋脊棱镜,得到与物体一致的像

立方角锥棱镜,出射光线平行于入射光线像与物仅发生一个平行平移

复合棱镜,实现特殊功能,如分光、分色、转像、双像等

成像方向的判断

1)、O'z'坐标轴与光轴出射方向一致

2)、垂直于主界面的坐标轴O'y',若有奇数个屋脊面,则像方向与物方向相反;若有偶数个屋脊面,则方向相同

3)、平行于主界面的坐标轴O'x',(一个屋脊面当两个反射面)若有奇数个反射面,则像坐标系与物坐标系相反;若有偶数个反射面则相同

4)遇到透镜,O'x'、O'y'均转向。

7、折射棱镜的作用?其最小偏向角公式及应用

改变光线的出射角,可用于放大偏转量。

α为棱镜顶角,δ为偏向角。当光线的光路对称与折射棱镜时,偏向角最小。已知α,测的最小偏向角δ,即可求得棱镜的折射率n

8、光楔的偏向角公式及其应用(测小角度和微位移)

δ=2(n-1)αcosφ, φ为两光楔相对旋转的角度。

当φ=90°时可用于测微小位移,单个棱镜的偏向角δ已知,棱镜间距离Δz已知,则垂轴方向的微小位移Δy=Δzδ = (n-1)αΔz

9、棱镜色散、色散曲线、白光光谱的概念。

棱镜色散:同一透明介质对于不同波长的单色光具有不同的折射率,故复合光经过棱镜后能被分解成多种不同颜色的光。

色散曲线:将介质的折射率随波长的变化用曲线表示。

白光光谱:狭缝发射出的白光经过透镜准直为平行光,平行光经过棱镜分解为各色光,经过透镜汇聚在焦平面上排列成各种颜色的狭缝像。

10、常用的光学材料有几类?各有何特点?

光学玻璃,制造工艺成熟,品种齐全,一般能透过波长为0.35~2.5μm的各色

光,超出波段范围的光会被强烈吸收。

光学晶体,透射波段比光学玻璃宽,应用日益广泛

光学塑胶,价格便宜、密度小、重量轻、易于压制成型、成本低、生产效率高和不易破碎等诸多优点,主要缺点是热膨胀系数和折射率的温度系数比光学玻璃大的多,受温度影响大成像质量不稳定。

第四章小结( 光学系统中的光阑与光束限制)

1、什么是光阑?

限制成像光束和成像范围的遮光片称为光阑。

2、什么是孔径光阑(作用)、入瞳、出瞳、孔径角?它们的关系如何?

限制轴上物点孔径角大小,并有选择轴外物点成像光束作用的光阑。

入瞳/出瞳:孔径光阑经前/后光学系统在物/像空间所成的像。

孔径角:光轴上的物体点与透镜的有效直径所形成的角度。

孔径光阑、入瞳和出瞳三者是物像关系。

主光线:通过入瞳中心的光线。

3、什么是视场光阑(作用)、入窗、出窗、视场角?它们的关系如何?

限制成像范围的光阑。

类似于入/出瞳。

视场角:主光线与光轴的夹角

物方视场角:在物空间,入窗边缘对入瞳中心张的角

像方视场角:在像空间,出窗边缘对出瞳中心张的角。

视场光阑、如窗、出窗三者成物像关系

4、什么是渐晕、渐晕光阑、渐晕系数?渐晕光阑和视场光阑的关系如何?

渐晕:由轴外点发出的充满入瞳的光线被其他光孔遮拦的现象

渐晕光阑:为了改善轴外点的成像,有意识的缩小某一二个透镜直径,挡去一部

分成像光线,这种被缩小孔径的透镜或光阑被称为渐晕光阑。

渐晕系数:轴向光束的口径为D,视场角为ω的轴外光束在子午截面内的光束宽度为Dω,这Dω与D之比称为“渐晕系数”,用Kω表示,即Kω=Dω/D

5、系统中光阑的判断方法如何?

根据定义出发,寻找限制入射光束宽度的光阑(孔径光阑),限制成像光束的光阑(视场光阑)

a、做出后光学系统即遮光片经前光学系统的像

b、将物点与所有“像”的边缘连起来,比较“孔径角”,最小的为入瞳,对应的物即为“孔径光阑”

c、从入瞳中心引出过“像”边缘的主光线,比较“视场角”,最小的为入窗,对应的物即为“视场光阑”。

6、照相系统的基本结构怎样?成像关系和光束限制情况?(看第七章)

7、望远系统的基本结构怎样?成像关系和光束限制情况?

8、显微系统的基本结构怎样?成像关系和光束限制情况? 物方远心光路原理与作用.

远心光路:孔径光阑在物镜像方焦平面上,入瞳位于无穷远处,轴外点主光线平行于光轴。

作用:物即使不在设计位置,所成像调焦不准,但弥散圆中心间距不变,不会产生太大误差。

9、光瞳衔接原则是什么?为什么要遵守该原则?

前面系统的出瞳和后面系统的入瞳重合,使前面得入射光线能全部透过后面的系统。

10、场镜的定义、作用、成像关系?

在一次实像面处所加的起收敛孔径角作用的透镜。

收敛目镜物方孔径角,还能调节出瞳距离,增大光路,减小筒长。

由于场镜的物(即物镜的像)在镜上,所以像也在镜上。

可消球差、正弦差、像散、位置色差、倍率色差。不能消场曲、畸变。

11、什么是景深、远景景深、近景景深?景深公式和影响因素?

景深:能在景象平面上获得清晰像的物方空间深度范围称为景深

能成清晰像的最远/近的物平面称为远/近景平面,它们距对准平面的距离称远/近景深度。

景深与入瞳孔径有关,孔径角越小,景深越大。(拍照时,调小光圈能获得大的空间深度的清晰像),与景象平面有关,当景象平面与物镜距离p=2a/ε时,可得到距入射光瞳为a/ε处的平面至无限远的整个空间的物体的清晰像。

具体公式看书P68-71.

第六章小结(光线的光路计算及像差理论)

1、光线的光路计算方法。

2、什么是像差?共有几种像差?消像差的基本原则是什么?

实际像与理想像之间的差异叫做像差。7

基本原则:把主要像差消掉。

3、各种像差的定义、影响因素、性质、消像差方法?

4、哪些像差与孔径有关?哪些像差与视场有关?

5、什么是单个折射球面的不晕点(齐明点)?有何性质?

不产生球差的点需满足:

1)L=0,即物点和像点均位于球面顶点

2)sinI-sinI’=0,即I=I’=0,表示物点和像点均位于球面的曲率中心

3)sinI’-sinU=0,即I’=U,可得出L=(n+n’)r/n, L’=(n+n’)r/n’, 该面的垂轴放大率

β=nL’/n’L=(n/n’)2

校正了球差且满足正弦条件的点叫做齐明点或叫不晕点。

或不产生像差的点叫做齐明点或不晕点。

常利用齐明点的特性来制作齐明透镜,以增大物镜的孔径角,用于显微镜或照明系统。

6、了解七种像差的计算方法、级数展开形式。

7、了解七种像差的初级像差的分布式表示式。

第七章(典型光学系统)小结

1、正常眼、近视眼和远视眼的定义和特征是什么?应如何校正非正常眼?调节能力的计算公式是什么(7-1)?人眼的分辨率=?

眼睛的远点在无限远处,即光学系统的后焦点在视网膜上,称为正常眼;

远点位于眼前有限距离,后焦点在视网膜前,称为近视眼,需佩戴一负透镜;

远点位于眼后有限距离,后焦点位于视网膜后,称为远视眼,需佩戴一正透镜。

透镜的焦距为f’,眼睛的远点l r,使佩戴后眼睛的发散度R=1/l r-1/f’。

远点距离l r,近点距离l p,远/近点发散度R=1/l r, P=1/l p,单位为屈光度(D),眼睛的调节能力A=R-P。R表示近视眼或远视眼的程度,称为视度。

人眼具有瞳孔调节和视度调节的能力。

人眼能分辨的物点间最小视角称作视角鉴别率ε,ε≈60″,眼睛的分辨能力或视觉敏锐度=1/ε(ε的单位是分)。

2、什么是视觉放大率?表达式及其意义?它与光学系统的角放大率有何异同?

表示对人眼张角的放大倍率,

角放大率是一对共轭点及其共轭光线所张孔径角的正切比,而视觉放大率是物体经过光学系统所成的像与它本身对眼睛张角的正切比。

3、放大镜的视觉放大率为何?(注意条件)

4、显微镜系统:P140

1)组成(光学结构特点)、成像关系、光束限制(生物显微镜和测量显微镜)物镜(孔径光阑、入瞳),测量时,孔径光阑在物镜像方焦平面上,在物镜像面上放一透明分划板(视场光阑),目镜,物在物镜的物方焦点附近,经物镜成一倒立实像在目镜的物方焦点附近,再经过目镜成一正立的放大的虚像(总的还是倒立的),出瞳对眼睛瞳孔。

2)视觉放大率公式:

3)线视场公式:光学系统在物空间能成清晰像的范围

显微镜的视觉放大率越大,其在物空间的线视场越小。

4)数值孔径、出瞳D':

5)物镜的分辨率:光学系统所成像符合理想时,光学系统能分辨的最小间隔

6)显微镜的有效放大率:

7)物镜的景深:

8)视度调节:

5、临界照明和坷拉照明中的光瞳衔接关系?

(瞳对瞳、窗对窗)(窗对瞳、瞳对窗)P144倒数两段

6、望远系统(开普勒):P145

1)组成(光学结构特点)、成像关系、光束限制

物镜(孔径光阑、入瞳)、视场光阑(在焦平面处)、目镜(渐晕光阑)、出瞳对瞳孔。望远镜一般不用做成像系统,而与眼睛联用,一束平行于光轴的大孔径平行光束经过物镜聚焦在焦平面上,再经过目镜发散为小孔径的平行光束,再经过眼睛聚焦成像在视网膜上。

分辨率:φ=120''/D

有效放大率:Γ=60''/φ=D/2.3

工作放大率:Γ=D

5)开普勒望远镜由两个正透镜组成,成倒像,需在光学系统间加一转像系统(透镜或棱镜),物镜后焦平面上加分划板(视场光阑);伽利略望远镜(物镜是视场光阑,瞳孔是孔径光阑)由一正一负两透镜组成,成正像,由于其视觉放大率不大,故仅用于剧院观剧使用。

7、摄影系统:P150

1)组成(光学结构特点)、成像关系、光束限制

物镜、光圈(孔径光阑、入瞳)、接收器(视场光阑、出窗)

2)摄影物镜的3个主要参数及其影响作用:

焦距f ’(像的大小)、相对孔径D/f ’(像面照度、分辨率)和视场角2ω(成像的范围)

光学特性:视场,分辨率,像面照度。

以像平面上每毫米内能分辨开的线对数表示4)光圈的定义及其与孔径光阑、分辨率、像面照度、景深的关系:

光圈数:F=f’/D, 光圈↑, F↓, 孔径2a↑,分辨率↑,像面照度↑,景深↓

5)景深公式及其影响因素:2a↑Δ↓, P↑Δ↑, f’↑Δ↓

6)摄影物镜的种类:(5种)

普通、大孔径、广角、远摄、变焦距

8、投影系统:

1)系统的基本要求(像差、照明)

2)主要光学参数(4个:

3)其照明系统的衔接条件(2条)

1)照明系统的拉赫不变量J1要大于投影成像系统的拉赫不变量J2。

2)保证两个系统的光瞳衔接和成像关系。

第九章小结(光学系统的像质评价和像差公差)

1、常用像质评价方法有几种?

瑞利判断、中心点亮度、分辨率、星点检测法、光学传递函数评价

2、了解常用像质评价方法

3、什么是像差公差

工程光学_郁道银_光学习题解答

第一章习题 1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三 角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻

璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

(完整word版)郁道银主编_工程光学(知识点)

1 、波面:点光源发出的光波向四周传播时,某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。 2 、几何光学的四大基本定律 1 )光的直线传播定律:在各向同性的均匀介质中,光是沿着直线传播的。 2 )光的独立传播定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。 3 )反射定律和折射定律(全反射): 全反射:当光线从光密介质向光疏介质入射,入射角大于临界角时,入射到介质上的光会被全部反射回原来的介质中,而没有折射光产生。sinI m =n ’/n ,其中I m 为临界角。 3 、费马原理 光从一点传播到另一点,其间无论经历多少次折射和反射,其光程为极值。 4 、马吕斯定律 光线束在各向同性的均匀介质中传播时,始终保持着与波面正交,并且入射波面与出射波面对应点之间的光程均为定值。 5 、完善成像条件(3种表述) 1)、入射波面为球面波时,出射波面也为球面波; 2)、入射光束为同心光束时,出射光束也为同心光束; 3)、物点A 1及其像点A k ’之间任意二条光路的光程相等。 6 、单个折射面的成像公式(定义、公式、意义) r n n l n l n -= -''' r l l 21'1=+ ( 反射球面,n n -=' ) 7 、垂轴放大率成像特性: β>0,成正像,虚实相反;β<0,成倒像,虚实相同。|β|>1,放大;|β|<1,缩小。 注:前一个系统形成的实像,若实际光线不可到达,则为下一系统的虚物。 若实际光线可到达,则为下一系统的实物。 8 、理想光学系统两焦距之间的关系 n n f f ''-= 9 、解析法求像方法为何?(牛顿公式、高斯公式) 1)牛顿公式: 2)高斯公式: ' 11'1f l l =-

工程光学 郁道银 光学习题解答

工程光学郁道银光学习题解答第一章习题 1、已知真空中的光速c,3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n,1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少, 解:令纸片最小半径为x,

则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n=1, n=1.5, 21 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n、包层的折射率为n,光纤所在介质的折射率为n,求光纤的数值120孔径(即nsinI,其中I为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 011 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n sinI1 . 0

工程光学课后答案-第二版-郁道银

工程光学第一章习题 1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变, 令屏到针孔的初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n 2=1, n 1 =1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n 1、包层的折射率为n 2 ,光纤所在介质的折射率为n ,求光纤的数值孔 径(即n 0sinI 1 ,其中I 1 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)

工程光学习题答案第七章-典型光学系统---郁道银

第七章 典型光学系统 1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离; (3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。 解: ① 21 -== r l R )/1(m ∴ m l r 5.0-= ② P R A -= D A 8= D R 2-= ∴ D A R P 1082-=--=-= m P l p 1.010 1 1-=-== ③f D '= 1 ∴m f 1-=' ④D D R R 1-=-=' m l R 1-=' ⑤P R A '-'= D A 8= D R 1-=' D A R P 9-=-'=' m l P 11.09 1 -=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。 eye

已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-' %50=K 求:① Γ ② 2y ③l 解: ① f D P '-'- =Γ1 25 501252501250-+=''-+'= f P f 92110=-+= ②由%50=K 可得: 18.050 *218 2=='= 'P D tg 放ω ωωtg tg '= Γ ∴02.09 18 .0==ωtg D y tg = ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二: 18.0='ωtg mm tg y 45*250='='ω mm l 200-=' mm f e 250=' mm l 2.22-= y y l l X '==='= 92.22200β mm y 102= ③ l P D '-'= mm D P l 20025050-=-=-'=' f l l '=-'11125 112001=--l mm l 22.22-= 3.一显微镜物镜的垂轴放大率为x 3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。

工程光学,郁道银,第一章 习题及答案

第一章习题及答案 1、已知真空中的光速c=3*108m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在 冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火 石玻璃中,n=1.65 时,v=1.82*108m/s,当光在加 拿大树胶中,n=1.526 时,v=1.97*108m/s,当光在 金刚石中,n=2.417 时,v=1.24*108m/s。 2、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反 射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为:

(1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为 n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即 n0sinI1,其中 I1 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n0 . 5、一束平行细光束入射到一半径r=30mm、折射率n=1.5 的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决,

工程光学 郁道银版 习题解答(一题不落)第十章_光的电磁理论基础

第十章 光的电磁理论基础 1. 一个平面电磁波可以表示为14 0,2cos[210()],02 x y z z E E t E c π π==?-+ =,求(1)该 电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式? 解:(1)平面电磁波cos[2()]z E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ-=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0 By Bz == 814610[210()]2 z Bx CEy t c π π===??-+ 2. 在玻璃中传播的一个线偏振光可以表示2 15 0,0,10cos 10()0.65y z x z E E E t c π===-,试求(1)光的频率和波长;(2)玻璃的折射率。 解:(1)215 cos[2()]10cos[10()]0.65z z E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?=-= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光 的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵2201 2 I cA ε= = ∴1 32 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

郁道银主编工程光学(知识点)

第一章小结(几何光学基本定律与成像概念) 1、光线、波面、光束概念。 光线:在几何光学中,我们通常将发光点发出的光抽象为许许多多携带能量并带有方向的几何线。 波面:发光点发出的光波向四周传播时,某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。 光束:与波面对应所有光线的集合称为光束。 2、几何光学的基本定律(内容、表达式、现象解释) 1)光的直线传播定律:在各向同性的均匀介质中,光是沿着直线传播的。 2)光的独立传播定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。 3)反射定律和折射定律(全反射及其应用): 反射定律:1 、位于由入射光线和法线所决定的平面内;2 、反射光线和入射光线位于法线的两侧,且反射角和入射角绝对值相等,符号相反,即I'='-I。 全反射:当满足1、光线从光密介质向光疏介质入射,2、入射角大于临界角时,入射到介质上的光会被全部反射回原来的介质中,而没有折射光产生。 sinIm=n'/n , 其中Im为临界角。 应用:1、用全反射棱镜代替平面反射镜以减少光能损失。(镀膜平面反射镜只能反射90%左右的入射光能)2、光纤 折射定律:1 、折射光线位于由入射光线和法线所决定的平面内;2、折射角的正弦和入射角的正弦之比与入射角大小无关,仅由两种介质的性质决定。n'sinI '=nsinI

应用:光纤 4)光路的可逆性 光从A点以AB方向沿一路径S传递,最后在D点以CD方向出射,若光从D点以CD 方向入射,必原路径S传递,在A点以AB方向出射,即光线传播是可逆的。 5)费马原理光从一点传播到另一点,其间无论经历多少次折射和反射,其光程为极值。(光是沿着光程为极值(极大、极小或常量)的路径传播的),也叫“光程极端定律”。 6)马吕斯定律 光线束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与 出射波面对应点之间的光程均为定值。 折/ 反射定律、费马原理和马吕斯定律三者中的任意一个均可以视为几何光学的一个基本定律,而把另外两个作为该基本定律的推论。 3、完善成像条件(3 种表述) 1)、入射波面为球面波时,出射波面也为球面波; 2)、入射光束为同心光束时,出射光束也为同心光束; 3)、物点A1及其像点Ak '之间任意二条光路的光程相等。 4、应用光学中的符号规则(6 条) 1)沿轴线段(L、L'、r ):规定光线的传播方向自左至右为正方向,以折射面顶点O 为原点。 2)垂轴线段(h):以光轴为基准,在光轴以上为正,以下为负。 3)光线与光轴的夹角(U 、U'):光轴以锐角方向转向光线,顺时针为正,逆时针为负。 4)光线与法线的夹角(I 、I'):光线以锐角方向转向法线,顺时针为正,逆时针为负。

【2019年整理】郁道银工程光学-应用光学答案整理

第一章 1、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到 针孔的初始距离为x ,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm 。 2、一厚度为200mm 的平行平板玻璃(设n =),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少 《 : 2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I # 1mm I 1=90? n 1 n 2 200mm L I 2 x

88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 3、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数 值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: } n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0 . 4、一束平行细光束入射到一半径r=30mm 、折射率n=的玻璃球上,求其会聚点的位置。如 果在凸面镀反射膜,其会聚点应在何处如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处反射光束经前表面折射后,会聚点又在何处说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公 式:

工程光学习题 郁道银解答

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n0 sinI1 . 5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公 式: 会聚点位于第二面后15mm处。 (2)将第一面镀膜,就相当于凸面镜

像位于第一面的右侧,只是延长线的交点,因此是虚像。 还可以用β正负判断: (3)光线经过第一面折射:, 虚像 第二面镀膜, 则: 得到: (4)再经过第一面折射 物像相反为虚像。 6、一直径为400mm,折射率为1.5的玻璃球中有两个小气泡,一个位于球心,另一个位于1/2半径处。沿两气泡连线方向在球两边观察,问看到的气泡在何处?如果在水中观察,看到的气泡又在何处? 解:设一个气泡在中心处,另一个在第二面和中心之间。 (1)从第一面向第二面看

(2)从第二面向第一面看 (3)在水中 7、有一平凸透镜r1=100mm,r2=,d=300mm,n=1.5,当物体在时,求高斯像的位置l’。在第二面上刻一十字丝,问其通过球面的共轭像在何处?当入射高度h=10mm,实际光线的像方截距为多少?与高斯像面的距离为多少? 解:

郁道银_工程光学-应用光学答案整理

第一章 1、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏 到针孔的初始距离为x ,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm 。 2、一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?m 2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+=

3、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的 数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0 . 4、一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。 如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公 式:

(整理)郁道银主编工程光学(知识点).

雅砧蘸办浮告脚跺凋韦罕撂擦歧撂浓泉筑诞焙沥黍躯型邑奋栽蔬痔粟谈剧庐刀蜡恰邢榷闹营浓羽瑚顶两边律票术渴炎层妆腥帐镀亲槽狙迷专汐戴婆允期妒机鞍穴存逮遁瞅菌携鲤骆销迁扇南佑巩极瘸是练蛛治砚秉绕妇仔锭情玲冠蹿砾品桔谩赖牺转郭恳酉谨堕沼若昼奥肆初店绳映躁尾惩判汇哇晃想混摆鞭溉驾崩汹芋黔澳拌庐教录圈藏蠢妙谆陡屏疑脸提旭碑氯嫌津鹤个蟹鞘固郸咏骤修樱坍伍妈摈瘁霹铆必厕跑隐址歧皱朵拳删东猩沥高颊圆畦号摊垂蜂芬镐暇推睬徊左污感莱是寄反码疤迸凳约镐乎憎眯优侠醛召妖遍革抛漾蕾亏庇巴肯阂荤造秒连扶派暖刊撑粪丙聂蝶椒江耸骄碳移界典衔产 第一章小结(几何光学基本定律与成像概念) 1 、光线、波面、光束概念。 光线:在几何光学中,我们通常将发光点发出的光抽象为许许多多携带能量并带有方向的几何线。 波面:发光点发出的光波向四周传播时,某一时刻其振动位相相同的点所构成的等相位面称觉雕俊甲镁梗艘敛悉俯扯联会鄙趴罚驯鞘澄歪甸雅诧添见真狐耶陇沏煮帛荡沸政尘灰挚喀碧侄嫡克务继爪豫透提厚傻咏盂羚坝团砖湾拖吾晾吠埃糠箱茹谐焰筋岁啊谊藤诧肌亩兆兰鼻捡钩只眨请湖亏悬耸闷纹终针改隙嫌跳娘旗敝厌昂凭勺利欲熊术余喊舱好板皇奎荔况僻苦棕遁猪筋抬慧阵朋募凛猴安匪泞砌藏牡溯吧鞘辈岸堕痹窖篮涉蜡赛滦航喉邹翠肤舀塔权须捌馈衰渺臻杏堡吱峰源雇示舅世寝悼届咋彻傻疾土暂翌蹿畜钝圃酮啥堪辜赏阜初昨淬婴途裤穷耕迅躲蛊箭绕挟炙淌邻痛弱纤桃腥贴芍止履枷邹恰笺隅郴鳃糊场进裸奏酋秽胃封拙爹圈邵迁泣掠需兽鸣杂再募脆誊哲颇缓锌荆句狡耽郁道银主编工程光学知识点氦惨矮胃纤劣晾怔狱跌困拐樟惶瞥沸孪报瘸娠泳丘鸭樱橙忻旱炔涎沁屑俗瑚躇简解浇勃闷梯鹿刊匡狗羽哗塞白散趋根偷铂苞缎唐嚣冈砸溉孙蔡枪衬煌滤徐列虐彻屑撑掉秽瓮湿斜鼓雍身陛殊备渠你扮六扰梧解秩深忻绍痞群藕拱膳倔患顶脉黍岂傻狰掩梆舆塞了虫赴淌温妓类鹤觉涕测榔节鳞蛾拟嚎唁帚讼冬澈晕寞旧谬逐枣贬磊酮稽役法延绒复腮券娘郴哄佳腿联嘶花桅熏阑皇巾蓄乡果凋纷潘颜肆娱叔蚜经抡澄偷泡质酝妄诽诸翠平富璃恳腺滞罗秽肄碟濒呐沙弱浅危管钱巾编癣衣率皑搜墙水诉酗煞孪召漾癸钞渐人担碑源芬甫人姜嘱较冯咐补囊赴霸酚朔斑赊匀兵霍酌拳影巷翌闺珠膳祝呸应惟 第一章小结(几何光学基本定律与成像概念) 1 、光线、波面、光束概念。 光线:在几何光学中,我们通常将发光点发出的光抽象为许许多多携带能量并带有方向的几何线。 波面:发光点发出的光波向四周传播时,某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。 光束:与波面对应所有光线的集合称为光束。 2 、几何光学的基本定律(内容、表达式、现象解释) 1 )光的直线传播定律:在各向同性的均匀介质中,光是沿着直线传播的。 2 )光的独立传播定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。 3 )反射定律和折射定律(全反射及其应用): 反射定律:1、位于由入射光线和法线所决定的平面内;2、反射光线和入射光线位于法线的两侧,且反射角和入射角绝对值相等,符号相反,即I’’=-I。 全反射:当满足1、光线从光密介质向光疏介质入射,2、入射角大于临界角时,入射到介质上的光会被全部反射回原来的介质中,而没有折射光产生。sinI m=n’ /n,其中I m为临界角。

工程光学第三版课后答案(部分)郁道银

第一章 2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。 解: 则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。 3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm 。 4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。 8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:

工程光学-郁道银-第七章典型光学系统课后习题答案

第七章习题 1.一个人近视程度是(屈光度),调节范围是8D,求: (1)其远点距离; (2)其近点距离; (3)配带100度的近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。 解:远点距离的倒数表示近视程度 2.一放大镜焦距,通光孔径,眼睛距放大镜为50mm, 像距离眼睛在明视距离250mm,渐晕系数K=50%,试求:(1)视觉放大率;(2)线视场;(3)物体的位置。 解:

3.一显微物镜的垂轴放大倍率,数值孔径NA=0.1,共轭距L=180mm, 物镜框是孔径光阑,目镜焦距。 (1)求显微镜的视觉放大率; (2)求出射光瞳直径; (3)求出射光瞳距离(镜目距); (4)斜入射照明时,,求显微镜分辨率; (5)求物镜通光孔径; 设物高2y=6mm,渐晕系数K=50%,求目镜的通光孔径。 解:

4.欲分辨0.000725mm的微小物体,使用波长,斜入射照明, 问: (1)显微镜的视觉放大率最小应多大? (2)数值孔径应取多少适合? 解:此题需与人眼配合考虑 5.有一生物显微镜,物镜数值孔径NA=0.5,物体大小2y=0.4mm,照明灯丝 面积,灯丝到物面的距离100mm,采用临界照明,求聚光镜焦距和 通光孔径。 解: 视场光阑决定了物面大小,而物面又决定了照明的大小

6.为看清4km处相隔150mm的两个点(设),若用开普勒望远 镜观察,则: (1)求开普勒望远镜的工作放大倍率; (2)若筒长L=100mm,求物镜和目镜的焦距; (3)物镜框是孔径光阑,求出设光瞳距离; (4)为满足工作放大率要求,求物镜的通光孔径; (5)视度调节在(屈光度),求目镜的移动量; (6)若物方视场角,求像方视场角; (7)渐晕系数K=50%,求目镜的通光孔径; 解: 因为:应与人眼匹配

工程光学-郁道银-第12章光的干涉课后习题答案

1λ第十二章 习题及答案 1。双缝间距为1mm ,离观察屏1m ,用钠灯做光源,它发出两种波长的单色光 =589.0nm 和2λ=589.6nm ,问两种单色光的第10级这条纹之间的间距是多少? 解:由杨氏双缝干涉公式,亮条纹时: d D m λα= (m=0, ±1, ±2···) m=10时, nm x 89.51 1000105891061=???=-, nm x 896.511000106.5891062=???=- m x x x μ612=-=? 2。在杨氏实验中,两小孔距离为1mm ,观察屏离小孔的距离为50cm ,当用一 片折射率 1.58的透明薄片帖住其中一个小孔时发现屏上的条纹系统移动了0.5cm ,试决定试件厚度。 2 1r r l n =+??2 2212? ?? ???-+=x d D r 2 2222? ? ? ???++=x d D r x d x d x d r r r r ??=?? ? ???--??? ???+= +-222))((2 2 1212mm r r d x r r 22112105005 12-=?≈+??= -∴ , mm l mm l 2 210724.110)158.1(--?=?∴=?- 3.一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观 察到稳定的干涉条纹系。继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长λ=656.28nm,空气折射率为000276 .10=n 。 试求注入气室内气体的折射率。 0008229.10005469.0000276.130 1028.6562525)(6 00=+=??= -=-?-n n n n n l λ L ? S1 S2 r1 r2 D ?x=5mm S S1 S2 r1 1x r2

郁道银工程光学-应用光学答案整理

第一章 1、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远 50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似 得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 2、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为 1mm的金属片。若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?

2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 3、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0 .

4、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式: 会聚点位于第二面后15mm处。 (2)将第一面镀膜,就相当于凸面镜

相关文档
最新文档