综述-铝合金疲劳及断口分析

综述-铝合金疲劳及断口分析
综述-铝合金疲劳及断口分析

文献综述

(2011级)

设计题目铝合金疲劳及断口分析

学生胡伟

学号201111514

专业班级金属材料工程2011级03班指导教师黄俊老师

院系名称材料科学与工程学院

2015年4月12日

铝合金疲劳及断口分析

1 绪论

1.1 引言

7系铝合金包括Al-Zn-Mg 系和Al-Zn-Mg-Cu 系合金,此类合金具有密度低、比强度高、良好的加工性能及优良的焊接性能等一系列优点。随着应用在铝合金上的热处理工艺及微合金化技术的不断改进,其力学性能被大幅度强化,综合性能也得到了全面提升。在航空航天、建筑、车辆、、桥梁、工兵装备和大型压力容器等方面都得到了广泛的应用。

现代工业的飞速发展,对7 系铝合金的强度、韧性以及抗应力腐蚀性能等提出了更高的要求。但是,存在另外一个现象,在各行各业的领域中,铝合金设备偶尔会出现难以察觉的断裂,在断裂之前很难甚至无法察觉到一点塑性变形。这种断裂形式,对人身以及财产安全造成了不可挽回的损失。经过大量实验表明,这些断裂是由于材料的疲劳引起,材料在交变载荷的长期作用下,表面或者部,尤其是部会产生微观裂纹。本文主要研究铝合金疲劳引起的裂纹以及疲劳断口分析,此类研究对于日后的生产安全,有重大意义。

1.2 7系铝合金的发展历史

在20世纪20年代,德国的科学家研制出Al-Zn-Mg系合金,由于该合金抗应力腐蚀性能太差,并未得到产业应用。在20世纪30年代初一直到二战结束期间,各个国家在研究中发现,Cu元素可以提高铝合金的抗应力腐蚀性能。在此,开发了大量Al-Zn-Mg 系合金,因此忽视了对Al-Zn-Mg 系合金的研究。德、美、、法等国在Al-Zn-Mg-Cu 系合金基础上成功地开发了7075 、B93 和D。T。D683 等合金。目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。20世纪50年代,

德国科学家公布了具有优良焊接性能的合金AlZnMg1 和AlZnMg2,引起了人们对Al-Zn-Mg系合金的重视。在此段时间,美国学者在AlZnMg1 合金的基础上,加入了Zr、Mn、Cr 等元素,研制出了7004和7005合金,具有优良焊接性和抗应力腐蚀性能,广泛应用于焊接行业。唯一不足的是,工艺性能较差。日本科学家尝试降低合金中Mg含量,提高Zn/Mg值,研制出了ZK60和ZK61合金,使合金的焊接性和工艺性能提高,但是降低了很大的强度。同时期,前联也研制出了1915、1933合金,强度也是偏低。为了克服强度低的缺点,20世纪70年代又研制出7020合金,具有高强度,焊接性好的性能。以后,人们把注意力集中在了Al-Zn-Mg 系铝合金上。20世纪80年代初,美国科学家先后在7075合金的基础上,为了解决实际生产中抗应力腐蚀敏感性较高的问题,以及满足某些特殊需要,调整了部分合金元素的含量,发展了许多新型合金。

相比之下,国对7系铝合金的研究起步较晚,在20实际80年代,由东北和研究院研制Al-Zn-Mg 系铝合金。目前主要有7050、7075、7175等合金产品。20 世纪90 年代中期,航空材料研究所采用常规半连续铸造法试制出7A55 超高强铝合金,近几年又研制出强度更高的7A60 合金。而在Al2Zn2Mg 系铝合金的研制上,国基本都是仿制,很少自行开发。

1.3 铝合金疲劳的分类

1.3.1 疲劳的定义

疲劳断裂是由于交变载荷、应力下引起的延时断裂,其断裂应力水平往往低于材料的抗拉强度σb,有时甚至低于屈服强度σs。一般情况下,疲劳破坏不发生明显的塑性变形,其变形主要是脆性断裂,是一种没有预兆、十分危险的破坏形式,难以检测、预防。

铝合金的疲劳,按疲劳破坏原因可分为三类:热疲劳、腐蚀疲劳和机械疲劳。

1.3.2热疲劳

铝合金的热疲劳是在交变应力和热应力共同作用下产生的疲劳破

坏。外部约束和部约束是产生热疲劳的两个必要条件,外部约束即阻碍材料自由膨胀,部约束即产生温度梯度,使材料膨胀,但由于约束从而产生热应力与热应变,经过一定的循环次数,导致裂纹的萌生、扩展。文孝等研究了LD8铝合金的同相和异相热疲劳特性,应用弹塑性断裂力学方法对不同状态下热疲劳寿命进行了探讨。

1.3.3腐蚀疲劳

长期在化工行业使用或者海水中使用的金属材料,处于腐蚀的环境中,此外还承受交变载荷作用,与正常环境下的金属材料相比,腐蚀性环境和交变载荷同时作用,会显著降低材料的疲劳性能,从而产生构件的破坏,以至于最终断裂。

宫玉辉等研究了不同腐蚀环境对7475-T7351铝合金疲劳性能及裂纹扩展速率的影响,发现腐蚀环境对裂纹扩展有较明显的加速作用,但不同环境腐蚀和不同温度对材料的低周疲劳性能影响不大。王成等将不同浓度硅酸钠添加到铝合金中,发现其可以抑制铝合金的点蚀、减少裂纹源,提高铝合金在氯化钠溶液中抗点蚀的能力及腐蚀疲劳寿命,但对铝合金的腐蚀疲劳裂纹的扩展无法抑制。

1.3.4机械疲劳

机械零部件在外加应力或者应变作用下将会产生机械疲劳,经长时间工作后,即使所受应力小于材料屈服点,仍然会产生裂纹,或者产生断裂。在循环应力水平较低时,弹性应变起主导作用,此时疲劳寿命较长,称之为高周疲劳,也称应力疲劳;在循环应力水平较高时,塑性应变起主导作用,此时疲劳寿命较短,称之为低周疲劳,也称塑性疲劳。睿等对2024-T3铝合金孔板进行了高低周复合疲劳试验,研究发现随着高低周循环次数增大,复合疲劳寿命有显著的降低,并建立了高低周循环次数和应力幅比与高低周复合疲劳寿命之间的关系式,但其只考虑了载荷循环次数对疲劳的影响,没有全面综合其他影响疲劳寿命的因素。

1.4 疲劳破坏过程及机理

金属设备疲劳过程的开始,即疲劳裂纹的萌生称为疲劳源。疲劳源

是材料微观组织永久损伤的核心,当裂纹开始萌生后,逐渐长大并与其它裂纹合并,然后形成肉眼可见的宏观裂纹,称为主裂纹,此时裂纹萌生阶段结束。之后,进入裂纹扩展阶段,首先开始稳定扩展,裂纹达到临街尺寸后,随着进一步的交变应力、应变作用下,金属材料无法承受,裂纹开始突然间失稳,材料瞬间产生破坏,发生断裂。简而言之,疲劳破坏过程分为:裂纹萌生,裂纹扩展和失稳断裂三个阶段。每个阶段具体如下:

裂纹萌生:

由于应力集中,疲劳裂纹首先起源于材料部微观结构最薄弱的额区域,或者应力较高的区域。裂纹萌生初期,长度小于0。05mm~0。1mm,此裂纹称为疲劳裂纹核。随着疲劳进行,微观裂纹逐渐发展成宏观裂纹,肉眼可见。铝合金材料疲劳裂纹萌生主要部位有滑移带、晶界、相界面三种

裂纹扩展:

疲劳裂纹萌生结束后,将进入裂纹扩展阶段。此阶段又分为两个部分,首先是裂纹沿主滑移系,以纯剪切方式向扩展,扩展速率极低,其延伸围在几个晶粒长度之间。其次,在晶界的阻碍作用下,使扩展方向逐渐垂直于主应力即

拉应力方向,并形成疲劳条纹或称为疲劳辉纹,一条辉纹就是一次循环的结果。

第一阶段的裂纹扩展速度慢,长度小,所以该阶段的形貌特征并不明显。而第二阶段的穿晶扩展,其扩展速率随循环周次增加而增大,扩展程度也较为明显,多数材料的第二阶段可用电子显微镜观察到疲劳条纹,有些甚至能用肉眼观察到。不同材料的疲劳条纹各不相同,形貌也是种类繁多,有与裂纹扩展方向垂直略呈弯曲并相互行的沟槽状花样,有断口比较平滑而且分布有贝纹或海滩花样,有时则呈现以源区为中心的放射线,疲劳条纹是疲劳断口最有代表性的特征。

一般情况下,疲劳裂纹扩展区在整个断口所占面积较大。疲劳裂纹扩展阶段是材料整个疲劳寿命的主要组成部分。不同铝合金材料裂纹扩展的两个阶段也有不同的寿命,在材料表面光滑试件中,第一阶段的扩展时间占整个疲劳寿命的绝大部分;而在有缺口的试件中,第

一阶段几乎可以忽略,第二阶段的传播是整个疲劳裂纹扩展的寿命。

裂纹失稳:

疲劳裂纹扩展到一定长度即临界长度时,材料表面不足以承受外部载荷,在下一次加载中将发生失稳扩展,导致快速断裂。这一阶段是构件寿命的最后阶段,失稳扩展到断裂这一短暂过程对于构件寿命的贡献是可以忽略的,裂纹最后失稳快速扩展所形成的断口区域称为瞬断区,材料性质不同,断口相貌也截然不同。

1.5 疲劳寿命的影响因素

1.5.1材料因

疲劳特性与合金成分有关,成分决定了合金组织以及强化效果;同时,合金的显微组织也冶金过程中的缺陷也对合金疲劳有很大程度的影响,裂纹源可能由夹杂物,晶粒大小,晶粒偏析,晶界疏松引起。涛等研究了Al-Si系铸造铝合金疲劳性能,发现铸造过程难以避免的孔洞及Si颗粒大小、形貌均对铸造铝合金材料疲劳裂纹的萌生有重要影响;Zhai[7]通过对铝锂合金疲劳性能各向异性的研究发现,在轧制方向强度低,疲劳性能也最差,疲劳裂纹多沿方向萌生,而在厚度方向强度较高,鲜见裂纹的萌生,疲劳性能也自然最佳;时效处理是改善铝合金性能的有效途径,由于其改变了合金微观组织结构,自然也对合金疲劳特性影响颇大;Sharma等通过对不同时效处理后的AA 2219 铝合金进行疲劳试验,结果表明自然时效及欠时效处理后的合金疲劳性能较好,鲜见疲劳裂纹的萌生;而峰时效和过时效处理后的合金,其多出萌生疲劳裂纹切裂纹扩展速率较高,疲劳性能不佳。

1.5.2构件状态

合金的疲劳特性也跟表面粗糙度、材料尺寸、几何形状。表面凹凸。壁厚均匀性有关。

Suraratchai等对影响铝合金疲劳寿命的因素进行了研究,其对合金表面粗糙度进行了有限元分析,结果表明由于材料表面凹凸不平而引起的应力集中,是损害疲劳寿命的源头;肖骥研究了7475铝合金板材的疲劳性能,在疲劳试验中表现最好的T-L平面上的试件进行了

喷丸处理,结果发现,经过喷丸处理之后,并不是一定提高了试件的疲劳强度,在喷丸处理的过程中,在引入残余压应力的同时,也破坏了试件表面的平整度。残余压应力将提高试件的疲劳强度,而过高的粗糙度,将使试件表面很容易成为裂纹源。

1.5.3工作条件

载荷的大小和加载方式及加载频率是合金材料疲劳寿命的决定性因素。岗等研究了2E12铝合金在不同应力水平下的疲劳性能及疲劳裂纹扩展速率,结果表明缺口的存在降低了疲劳强度,随着应力比的提高,疲劳强度也大幅度改善;蹇

海根等通过金相、电镜扫描显微技术对比了不同应力下铝合金的疲劳断口显微组织,发现疲劳裂纹萌生处与材料表面的距离随加载应力升高而减小,加载应力越高,疲劳源区面积越小,裂纹扩展区的疲劳辉纹间距越大,且随着应力的增大,断口上疲劳裂纹扩展区的面积减小,瞬断区的面积增大。同时材料寿命也受工作环境如温度、周边介质等因素影响。Gasqueres等[13]通过对AA 2024铝合金疲劳裂纹扩展规律的研究发现,正常室温下,疲劳裂纹扩展进入第二阶段后,将环境温度调至223 K,裂纹长大又转为第一阶段的扩展规律,而且此时裂纹的扩展受到温度和气压的共同影响。铝合金疲劳特性的影响因素很多,从单一或几个因素的考虑对铝合金材料疲劳寿命进行研究并不准确,建立相应的科学模型,综合考虑所有因素从而精确地预测材料的疲劳寿命是需要进一步深入研究的重点。具有效率高、成本低、工艺简单等优点,适用于多种颗粒以及多种基体,此方法总体上具有一定竞争力。

1.6 疲劳寿命的估算方法

因材料疲劳多数是不可预测,不可检测到的塑性断裂,因此造成的损失不可估计,所以材料疲劳寿命的估计一直以来是重要研究问题。几百年,各国科学家一直在探索、研究。

1945年Miner在对疲劳累积损伤问题进行大量试验研究的基础上,将Palmgren于1924年提出的线性累积损伤理论公式化,形成了

断口分析

断口分析 研究金属断裂面的学科,是断裂学科的组成部分。金属破断后获得的一对相互匹配的断裂表面及其外观形貌,称断口。断口总是发生在金属组织中最薄弱的地方,记录着有关断裂全过程的许多珍贵资料,所以在研究断裂时,对断口的观察和研究一直受到重视。通过断口的形态分析去研究一些断裂的基本问题:如断裂起因、断裂性质、断裂方式、断裂机制、断裂韧性、断裂过程的应力状态以及裂纹扩展速率等。如果要求深入地研究材料的冶金因素和环境因素对断裂过程的影响,通常还要进行断口表面的微区成分分析、主体分析、结晶学分析和断口的应力与应变分析等。随着断裂学科的发展,断口分析同断裂力学等所研究的问题更加密切相关,互相渗透,互相配合;断口分析的实验技术和分析问题的深度将会取得新的发展。断口分析现已成为对金属构件进行失效分析的重要手段。 断口的宏观和微观观察断口分析的实验基础是对断口表面的宏观形貌和微观结构特征进行直接观察和分析。通常把低于40倍的观察称为宏观观察,高于40倍的观察称为微观观察。 对断口进行宏观观察的仪器主要是放大镜(约10倍)和体视显微镜(从5~50倍)等。在很多情况下,利用宏观观察就可以判定断裂的性质、起始位置和裂纹扩展路径。但如果要对断裂起点附近进行细致研究,分析断裂原因和断裂机制,还必须进行微观观察。 断口的微观观察经历了光学显微镜(观察断口的实用倍数是在 50~500倍间)、透射电子显微镜(观察断口的实用倍数是在 1000~40000倍间)和扫描电子显微镜(观察断口的实用倍数是在 20~10000倍间)三个阶段。因为断口是一个凹凸不平的粗糙表面,观察断口所用的显微镜要具有最大限度的焦深,尽可能宽的放大倍数范围和高的分辨率。扫描电子显微镜最能满足上述的综合要求,故近年来对断口观察大多用扫描电子显微镜进行(见金属和合金的微观分析)。 脆性断口和延性断口根据断裂的性质,断口大致可以分为几乎不伴随塑性变形而断裂的脆性断口,和伴随着明显塑性变形的延性断口。脆性断口的断裂面通常与拉伸应力垂直,宏观上断口由具有光泽的结晶亮面组成;延性断口的断裂面可能同拉伸应力垂直或倾斜,分别称为正断口和斜断口;从宏观来看,断口上有细小凹凸,呈纤维状。对于单轴拉伸断口和冲击断口,在理想情况下,其断裂面是由三个明显不同的区域(即纤维区、放射区和剪切唇区)所构成(图1)。这三个区域实际上是裂纹形成区、裂纹扩展区和剪切断裂区(对冲击拉伸则有终了断裂区),通常称它们为断口三要素。对于同一种材料,三个区域的面积及其所占整个断口的比例随外界条件的改变而变化。例如:加载速率愈大,温度愈低,则裂纹扩展区(即放射区)所占的比例也愈大。如果定义裂纹扩展区对另外两个区面积的比值为R,则通常把R=1时的断裂温度称为材料的韧性-脆性转变温度(或延性-脆性转变温度、塑性-脆性转变温度)。如果在同一温度和加载速率下比较两种材料的断裂性质,则R值愈小的材料,其延性(塑性)愈好。 金属断裂的微观机制为了阐明断裂的全过程(包括裂纹的生核和扩展,以及环境因素对断裂过程的影响等),提出种种微观断裂模型,以探讨其物理实质,称为断裂机制。在断口的分析中,各种断裂机制的提出主要是以断口的微观形态为基础,并根据断裂性质、断裂方式以及同环境和时间因素的密切相关性而加以分类。根据大量的研究成果,目前已知主要的金属断裂微观机制可以归纳在表1中。

断口分析

故障件的断口分析 在形形色色的故障分析过程中,人们常会瞧到一些损坏零件的断口,但就是人们缺乏“读懂”它的经验,不能从它的断口处判断其损坏的真正原因而贻误了战机。这里结合整改过程中的一些实例作些介绍,希望能对您有所帮助! 对于汽车常用碳素钢与合金钢而言,其常见断口有: 1.韧性(塑性)断口:发生明显塑性变形的断裂统称为塑性断裂。断口形貌为韧性(塑性)断口,断口呈暗灰色没有金属光泽瞧不到颗粒状形貌,断口上有相当大的延伸边缘。 2.疲劳弯曲断口: 2-1 在抗拉极限范围内的疲劳弯曲断口:出现典型的疲劳裂纹源区、裂纹扩展区与瞬时断裂区特征(下面将详 述)。 2-2 超过抗拉极限范围内的弯曲断口:不具有典型的疲劳断口特征,属于不正常的弯曲断裂。其断口特征:沿弯 曲方向上下呈灰褐色无金属光泽的断层;而内层呈银 灰色白亮条状新断口(见图1)。

图1 3.典型的金属疲劳断口 典型的疲劳断口定会出现疲劳裂纹源区、裂纹扩展区与瞬时断裂区三个特征。断口具有典型的“贝壳状”或称“海滩状”。

3-1 疲劳裂纹源区:就是疲劳裂纹萌生的策源地,它处于机件的表面,形状呈平坦、白亮光滑的半圆或椭圆形,这就是因为疲劳裂纹的扩展过程速度缓慢,裂纹经反复挤压摩擦而形成的。它所占有的面积较其她两个区要小很多。疲劳裂纹大多就是因受交变载荷的机件表面有缺陷;譬如裂纹、脱碳、硬伤痕、焊点等缺陷形成应力集中而引起的。疲劳裂纹点在同一个机件上可能有多处,换句话说可能有多处疲劳裂纹源区,这需要我们去仔细解读疲劳断口。 3-2 疲劳裂纹扩展区:就是形成疲劳裂纹后慢速扩展的区域。它就是判断疲劳断裂的最重要的特征区。它以疲劳源区为中心,与裂纹扩展方向垂直呈半圆形或扇形的弧线,也称疲劳弧线呈“贝纹状”。疲劳

金属疲劳应力腐蚀试验及宏观断口分析

金属疲劳、应力腐蚀试验及宏观断口分析 在足够大的交变应力作用下,由于金属构件外形突变或表面刻痕或内部缺陷等部位,都可能因较大的应力集中引发微观裂纹。分散的微观裂纹经过集结沟通将形成宏观裂纹。已形成的宏观裂纹逐渐缓慢地扩展,构件横截面逐步削弱,当达到一定限度时,构件会突然断裂。金属因交变应力引起的上述失效现象,称为金属的疲劳。静载下塑性性能很好的材料,当承受交变应力时,往往在应力低于屈服极限没有明显塑性变形的情况下,突然断裂。疲劳断口(见图1-1)明显地分为三个区域:裂纹源区、较为光滑的裂纹扩展区和较为粗糙的断裂区。裂纹形成后,交变应力使裂纹的两侧时而张开时而闭合,相互挤压反复研磨,光滑区就是这样形成的。载荷的间断和大小的变化,在光滑区留下多条裂纹前沿线。至于粗糙的断裂区,则是最后突然断裂形成的。统计数据表明,机械零件的失效,约有70%左右是疲劳引起的,而且造成的事故大多数是灾难性的。因此,通过实验研究金属材料抗疲劳的性能是有实际意义的。 图1-1 疲劳宏观断口 一﹑实验目的 1.了解测定材料疲劳极限的方法。 2.掌握金属材料拉拉疲劳测试的方法。 3.观察疲劳失效现象和断口特征。 4.掌握慢应变速率拉伸试验的方法。 二、实验设备 1.PLD-50KN-250NM 拉扭疲劳试验机。 2.游标卡尺。 3.试验材料S135钻杆钢。 4.PLT-10慢应变速率拉伸试验。 三﹑实验原理及方法 在交变应力的应力循环中,最小应力和最大应力的比值为应力比: max min σσ= r (1-1) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为max 1σ,经历N 1次循环后,发生疲劳失效, 则N 1称为最大应力r 为时的max 1σ疲劳寿命(简称寿命) 。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力max σ与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图1-2所示。由图可见,当应力降到某一极限值r σ时,S-N 曲线趋 近于水平线。即应力不超过r σ时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。 实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107 次循环下仍未失效的最大应力作为持久极限r σ。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

腐蚀疲劳断口讲解

西安石油大学本科课程设计(论文) 课程设计(论文) 题目:钻杆钢腐蚀疲劳的断口分析学院(系):材料科学与工程学院 专业:金属材料工程 班级:金材1002 学生姓名:李佳典 指导教师:雒设计 所在单位:西安石油大学 完成时间:2013年9月

目录 1.引言 (2) 2. 钻杆钢 (2) 2.1 钻杆钢的分类及应用 (2) 2.2 钻杆钢在腐蚀环境下的失效分析 (2) 3. 实验方法 (3) 3.1 实验材料的选用 (3) 3.2 断口的制备和保存及注意事项 (4) 4. 腐蚀疲劳的断口形貌分析 (4) 4.1 宏观断口形貌特征分析 (5) 4.2 疲劳裂纹源的微观断口形貌特征分析 (6) 4.3 疲劳裂纹扩展区的微观断口形貌特征分析 (7) 5. 结果分析 (8) 5.1 钻杆钢腐蚀疲劳断口形貌特征的影响因素 (8) 6. 结论 (8) 参考文献 (9)

1.引言 许多工程结构件的使用状态,不但是处于交变载荷和常温大气的条件下,而大多数是经受交变载荷和腐蚀介质的共同作用。金属的腐蚀疲劳[1]是工程中经常出现的一种现象,钻探管道,压缩机和燃气轮的叶片,舰船用螺旋桨和舵,蒸汽和水管道,化学工业中的泵轴等,往往遭受到腐蚀疲劳破坏。所以,随着现代化工业的发展,腐蚀疲劳已成为在石油、化工、冶金和海洋灯用钢结构中的重要研究课题之一。国外非常重视腐蚀疲劳研究工作,1973年召开过国际腐蚀疲劳会议。近些年来,已将断裂力学应用于腐蚀疲劳研究中,但是,国内对金属腐蚀疲劳研究很少。 鉴于我国目前海水用钢和抗硫化氢用钢等防腐蚀用钢发展的需要,应积极采取措施在现有疲劳试验机上增加腐蚀装置,大力开展腐蚀疲劳的实验研究工作。 2. 钻杆钢 2.1 钻杆钢的分类及应用 石油钻杆一般采用中碳合金钢,钢管都以热处理状态交货,通常采用调质热处理,得到回火索氏体组织,其具有良好的综合机械性能。按美国石油学会标准API5D钻杆按钢级可分为E-75,X-95,G-105,S-135,短线后的数字代表最小屈服强度,其中S135材质相对于36CrNiMo,36CrMnMo,30CrMn,也可以采用不锈钢材质,如00Cr13Ni5Mo。 钻杆是尾部带有缧纹的钢管,用于连接钻机地表设备和位于钻井底端钻磨设备或底孔装置。钻杆的用途是将钻探泥浆运送到钻头,并与钻头一起提高、降低或旋转底孔装置。钻杆必须能够承受巨大的内外压、扭曲、弯曲和振动。在油气的开采和提炼过程中,钻杆可以多次使用,钻杆的长度一般在九米左右。 光管和原钢管材在经过多次加工步骤后被制成钻杆。首先,通过钢管加厚工序的处理,光管外表面向内弯,钢管管壁加厚。下一步,进行螺纹加工并镀上能够增加强度的铜。然后进行非破坏性质量控制检验,随后进行钢管管体接头的焊接。而后,管体会经历焊接热处理和焊接最终处理,以消除焊接残余压力。在对成品钻杆进行渡漆和包装前要对钢管成品进行其他的一些检测,包括硬度测试,压力测试和非破坏性测试。 2.2 钻杆钢在腐蚀环境下的失效分析 钻杆腐蚀疲劳失效[2,3], 是腐蚀介质和弯曲交变载荷共同作用的结果从大量钻杆失效分析中观察到,腐蚀疲劳失效大都发生在内加厚过渡区终了处,即接头端面0.5~1.0m

综述-铝合金疲劳及断口分析报告

文献综述 (2011级) 设计题目铝合金疲劳及断口分析 学生姓名胡伟 学号201111514 专业班级金属材料工程2011级03班指导教师黄俊老师 院系名称材料科学与工程学院 2015年4月12日

铝合金疲劳及断口分析 1 绪论 1.1 引言 7系铝合金包括Al-Zn-Mg 系和Al-Zn-Mg-Cu 系合金,此类合金具有密度低、比强度高、良好的加工性能及优良的焊接性能等一系列优点。随着应用在铝合金上的热处理工艺及微合金化技术的不断改进,其力学性能被大幅度强化,综合性能也得到了全面提升。在航空航天、建筑、车辆、、桥梁、工兵装备和大型压力容器等方面都得到了广泛的应用。 现代工业的飞速发展,对7 系铝合金的强度、韧性以及抗应力腐蚀性能等提出了更高的要求。但是,存在另外一个现象,在各行各业的领域中,铝合金设备偶尔会出现难以察觉的断裂,在断裂之前很难甚至无法察觉到一点塑性变形。这种断裂形式,对人身以及财产安全造成了不可挽回的损失。经过大量实验表明,这些断裂是由于材料的疲劳引起,材料在交变载荷的长期作用下,表面或者内部,尤其是内部会产生微观裂纹。本文主要研究铝合金疲劳引起的裂纹以及疲劳断口分析,此类研究对于日后的生产安全,有重大意义。 1.2 7系铝合金的发展历史 在20世纪20年代,德国的科学家研制出Al-Zn-Mg系合金,由于该合金抗应力腐蚀性能太差,并未得到产业内应用。在20世纪30年代初一直到二战结束期间,各个国家在研究中发现,Cu元素可以提高铝合金的抗应力腐蚀性能。在此,开发了大量Al-Zn-Mg 系合金,因此忽视了对Al-Zn-Mg 系合金的研究。德、美、苏、法等国在Al-Zn-Mg-Cu 系合金基础上成功地开发了7075 、B93 和D。T。 D683 等合金。目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。20世纪50年代,德国

疲劳断口宏观分析

1 疲劳断口的形貌特征 疲劳断口是指金属材料或零构件在疲劳断裂过程中形成的一种匹配的表面, 称断裂面或断口。分析它的目的在于确定零构件是否属于疲劳破坏?其破坏的原因是什么?从而提出防止事故的措施和方法,为今后的设计、选材以及加工等问 题提出改进意见。 对断口的形貌进行分析包括两个方面,即宏观断口分析和微观断口分析。所 谓宏观分析是指用肉眼或20—30倍以下放大镜观察断口的形貌特征。微观分析 是指用光学显微镜或电子显微镜对断口进行分析。宏观分析不要求专门设备,被观察断口尺寸不受限制,可以观察断件和断口全貌,了解各个方面变化情况,所以说宏观分析是断口分析的基础。微观分析是用高倍的光学显微镜、c透射电镜,扫描电镜对断口进行分析,能观察断口的精细结构及裂纹形态。 1.1 疲劳断口宏观特征 由于零构件经常承受拉、压、弯、扭或复合应力的作用,因载荷类型不同, 在宏观断口上表现出的形貌特征也不相同。 (1)弯曲应力作用下的疲劳断口 图1-2是在弯曲疲劳载荷作用下的断口示意图。零件在弯曲疲劳载荷作用下,其表面应力最大,中心应力最小,疲劳源首先在表面形成,然后沿着与最大正应力相垂直方向扩展,到最后瞬断。图中(a)是单向弯曲疲劳断口,它的疲劳源 首先在受拉应力一侧表面形成,瞬断区在疲劳源相对侧,其面积大小由材料抗拉强度和外加载荷的大小来决定。图中(b)是双向弯曲疲劳断口,由于双向弯曲,试件上下两侧交替承受拉应力作用,故疲劳源在相对两侧面形成,瞬断区在中间。

图1-3是轴在旋转弯曲应力作用下的疲劳断 口示意图,由于旋转弯曲应力也是表面最大,中 心最小,疲劳源也开始于表面,且疲劳源两侧裂 纹发展速度较中心快,故贝纹线比较扁平。最终 瞬断区虽然也在疲劳源对面,但总是相对于轴的 旋转方向逆偏转一个角度,此种现象称为偏转现 象。 因此,从疲劳源与瞬断区的相对位置便能推知轴的旋转方向。 轴上有无应力集中及应力集中大小,其最终瞬断区的位置是不同的。若应力 集中较小时,疲劳源只在一处发生,最终瞬断区在疲劳源相对应的一侧。若应力集中较大时,则沿周向缺口将同时有几个疲劳源产生,瞬断区的位置则在轴的内部。另外,最终瞬断区的位置还受轴上名义应力大小的影响。名义应力越大,瞬断区越移向轴的中央,如图l—4所示。 图1—5综合给出了上述各种弯曲应力条件下的疲劳断口形态图。

飞行器结构疲劳强度与断裂分析综述.

飞机结构疲劳强度与断裂分析的现状和未来的发展 学院:经济管理学院 班级:940802020 学号:2009040802050 姓名:冉超 飞机结构疲劳强度与断裂分析的现状和未来的发展疲劳强度是指飞机结果在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。实际上,飞机结构并不可能作无限多次交变载荷试验。 断裂是指飞机结构被断错或发生裂开. 讨论的主要是脆性断裂情况,其断裂面是看得见摸得着的。还有两类断裂的断裂面则是看得见却不一定摸得着的。 许多飞机结果,如轴、齿轮、轴承、叶片、弹簧等,在工作过程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后会产生裂纹或突然发生完全断裂。 疲劳破坏是机械零件失效的主要原因之一。据统计,在飞机结构失效中大约有80%以上属于疲劳破坏,而且疲劳破坏前没有明显的变形,所以疲劳破坏经常造成重大事故,所以对于轴、齿轮、轴承、叶片、弹簧等承受交变载荷的零件要选择疲劳强度较好的材料来制造。 疲劳失效是金属材料常见的失效形式, 特别是轴类, 连杆, 轴承类等零件, 长期在应力下工作的工件材料都要求较高的疲劳强度, 这样的可以提高零件的使用寿命。疲劳强度同时还与硬度、强度、韧性有较大关系,所以他是金属材料的重要力学性能指标

疲劳强度是材料能够承受无数次应力循环时的最大应力。疲劳强度关系到零件的寿命以及零件工作时能够承受的最大应力,这对零件的安全设计有重大意义。 例如:在齿轮设计中,当接触疲劳强度不满足要求时,假定不再更换材料的前提下,可以用如下方法进行弥补: 1、增加齿轮的齿宽(增加轮齿的接触面积) 2、轮齿进行高频淬火(或中频淬火)、渗碳、渗氮(提高轮齿的表面硬度) 3、磨齿(降低齿轮运行中因为接触强度不足而致使齿面发生胶合、斑蚀的危险性能) 希望以上能对你有所帮助,谢谢 航空工业作为技术密集、知识密集的高技术产业,集材料、机械、发动机、空气动力、电子、超密集加工、特种工艺等各种前沿技术之大成。目前,国际航空技术发达国家早已实施损伤容限耐久性规范,并成为国际适航性条例要求。然而,在飞机结构的三维损伤容限耐久性预测设计方面,由于研究队伍严重萎缩,国际上的实质性进展非常缓慢,三维损伤容限耐久性技术的发展停滞不前。与此同时,现代飞机大量使用三维整体结构,已有技术与需求的矛盾更加突出。这一现状的存在,使得国内外的设计者们在已有技术基础上不得不依靠更加实际、但耗资巨大的全机试验和各级全尺寸部件试验来检验飞机结构的损伤容限和耐久性,虚拟试验的科学基础欠缺。近年随着计算机容量逐渐满足三维断裂分析的需要,国际上三维试验和数值研究 骤增,多尺度研究骤增,虚拟试验的概念形成并得以应用。有影响和代表水平的工作主要出自美国NASA 以Newman 为主的研究组、英国Sheffield 大学nCode 公司及其研究组、法国宇航院(ONERA、瑞典航空研究实验室(FOI,德文首字Blom 研究组,荷兰国防动力研究实验室、澳大利亚国防科技组织(DSTO等[5-8]。但是其损伤容限耐久性技术依据的理论基础仍然是二维疲劳断裂理论,未取得本质上的突破,考虑三维约束的疲劳寿命分析模型也都是建立在大量经验参数基础上

疲劳宏观断口的特征

在日常质量整改过程中,往往会看到一些损坏零件的断口,一些技术人员缺乏“读懂”它的经验,不能从它的断口处判断其断裂原因。本文仅就疲劳断面如何判断 作一介绍,希望能对您有所帮助! 金属疲节断口的夫现形状特征...................... 疲劳師白恒函了產福昶輛薪看籬:毛轩很多斷裂 営恳■具宵明星区别了其他任何性质斯蟄的断口耳溺特饪. 苟过些特征又哥林料■性质.应力畑巫力太八政讣境肉幸 鬧員观向?因归对披羽浙匚守折杲说霁站过程、分祈疫劳 失效愿因旳重要方法? 「-卜典型的波茹阡口往往由匿苏裂滾海区、瘦苛裂纹 扩展EK和蜿时斷裂区三宀都分组戍,貝有次型的“員査 “状或嚼滩壮诈纹的特征,这和将征给朗九鼓的鉴钊工乍 討玉了根大的利砒° h疲苦裂纯源区 菽劳裂纹源区是疲苛裂纹萌生您策卿L裁苇破坏的起區多处于桶T旳義峦源区的断口刑醐倉載情况F比较平坦、出死,且呈半圆形取半桅园形,同芮裂纹庄源區内的扩展直举煖慢,裂级表面受反貝侪压?挛帯次数多,所以莽断口较算他两个区灵为平坦.册光亮*右整/断口上与其他两个区相汁,痰劳裂纹诵区所白的面积最/扎 当表面承受足蒼高赠余压应力或材科内部存古严重的冶金册色时,裂纹源则向次表面或机件内郃移就有时在疲育断口上世会出现多个裂纹瘪每卜瓯区所占面袄往住比单怡源区小.源区斷口持伍不 -定都具有孵个源区那祥典型的fm.裂纹源的數目取决于删的性债、机件的应力犹态以廉交变敷局吠呪等■:辭,礙力集中系数越大,台义应力挖禹巴址滾旁湍旳数匕就擾织婀iu玻专師」二常自〔T悝二K同忙胃讯疙针承址涉己、当壽替丧血疗在某裘勰时I则零杵无寂劳裂纹萌生期,疲劳裂级在交变載荷作用下直按由该袞裂纹艰邹冋纵猱扛展,这盯断口上不再岀现疲劳餌只有製纹扌二展区和孵时断段尻?

钻杆钢腐蚀疲劳的断口分析

科技论文写作 题目:钻杆钢腐蚀疲劳的断口分析钻杆钢腐蚀疲劳的断口分析

摘要:首先通过对钻杆钢进行了疲劳腐蚀实验,然后借助于扫描电镜对S135钻杆钢的腐蚀疲劳断口形貌进行宏观和微观分析研究,最后对其断口形貌形成的影响因素进行讨论。结果表明其疲劳断口是以脆性性为主的多源性断口,且在不同加载载荷下,腐蚀钻杆钢的疲劳断口主要由粗糙程度差异明显的疲劳裂纹源区和劳裂纹稳态扩展区与疲劳裂纹瞬断区组成,在裂纹源区断面相对光滑,裂纹扩展区断面相对粗糙,且疲劳裂纹扩展一般萌生于金属表面。而且随加载载荷的大小不同,其各区域面积也随之不同。 关键词:钻杆钢腐蚀疲劳疲劳断口断口分析 1 引言 随着现代工业的快速发展,当今社会对石油资源的需求越来越大。伴随着浅部油气层的长期开采,各大主力油田大多己进入开发的中后期,浅层勘探很难发现大型的油气资源,因此在今后的油气勘探中,深井、超深井和大位移井等高难度井将成为国内外各大油气田增产上储的主要手段。近年来随着定向井、大位移井、水平井、深井等高难度井应用的逐年增多,钻具失效断裂事故也随之增加。钻具失效在石油钻井界是普遍存在的。在深井!超深井、大位移井等高难度井钻井过程中,钻具的受力状况复杂,井下环境异常恶劣,处在内、外充满钻井液的狭长井眼里工作,通常承受弯曲、挤压、扭转、液体压力等载荷,因此钻具在井下的运动是一个复杂的动力学系统。钻井液是由固体、液体和化学处理剂组成的复杂混合液,碱性极强,pH值大多在7-11之间。在钻井过程中,由于钻井液及其它腐蚀介质(如硫化氢、二氧化碳等)和复杂交变应力的共同作用,会严重降低钻具的疲劳寿命,使钻具极易发生腐蚀疲劳断裂事故。钻具的腐蚀疲劳断裂没有疲劳极限,因此很难预测其疲劳寿命,危害性极大。钻井过程中钻具在任何部位断裂都会造成严重的后果,导致油井报废。美国的统计和估算表明:14%的钻柱断裂事故发生在井上,平均每发生一次损失约106000美元,这是正常消耗以外的巨额费用。据统计我国每年必须用数亿元人民币的外汇进口各种规格的钻杆和钻挺。 根据管材研究所2003年对国内十几个油田调查资料统计:全国每年发生钻具断裂事故约1000起,其中约70%发生在深井、定向井、大位移井、水平井等高难度井中。在管材研究所1999年到2003年完成的钻具失效分析中,有72%

金属断口机理及其分析

名词解释 延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。 蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。 准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口 沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。 解理断裂:在正应力作用下沿解理面发生的穿晶脆断。 应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断 疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。 正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。 冲击韧性:冲击过程中材料吸收的功除以断的面积。 位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断 裂机理或断裂过程。 河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。其形状类似地图上的河 流。 断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些 质点的晶体结构。 氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。 卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。 等轴韧窝:拉伸正应力作用下形成的圆形微坑。 均匀分布于断口表面,显微洞孔沿空间三 维方向均匀长大。 第一章 断裂的分类及特点 1.根据宏观现象分:脆性断裂和延伸断裂。 脆性断裂裂纹源:材料表面、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45o . 2.根据断裂扩展途分:穿晶断裂与沿晶断裂。 穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可 能是延性断裂; 沿晶断裂:裂纹沿着晶界扩展,多属脆断。应力腐蚀断口,氢脆断口。 3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂 4根据断面的宏观取向与最大正应力的交角分:正断、切断 正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 切断:断面取向与最大切应力相一致,与最大应力成45o交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形: 裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型) 裂纹尺寸与断裂强度的关系 Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则 相似) a Y K c c πσ?=1

疲劳断裂失效分析

1 5.1疲劳断裂失效的基本形式和特征 5.2疲劳断口形貌及其特征 5.3疲劳断裂失效类型与鉴别 5.4疲劳断裂失效的原因与预防 第5章疲劳断裂失效分析 2?按应力循环次数 当Nf>105时为低应力高周疲劳(通常所指) 当Nf<10 4时为高应力低周疲劳?按服役的温度及介质条件 机械疲劳、高温疲劳、低温疲劳 冷热疲劳、腐蚀疲劳?基本形式 切断疲劳:面心立方在单向压缩、拉伸及扭转条件下多以切断形式破坏 正断疲劳:大多数的金属构件的疲劳失效都是以此形式进行的,特别是体心立方金属 3 ?疲劳断裂的突发性?疲劳断裂应力很低 ?疲劳断裂是一个损伤积累的过程?疲劳断裂对材料缺陷的敏感性?疲劳断裂对腐蚀介质的敏感性 4 典型的疲劳断口一般有三个区,即疲劳源区、疲劳裂纹扩展区和瞬时破断区。疲劳断口的宏观特征与静载破坏的脆性断口相似,无明显的宏观塑性变形。 5 ?疲劳核心是疲劳破坏的起点,它总是位于零件强度最低或应力最高的地方。 ?零件承受弯曲、扭转疲劳负荷时,最大应力区是在零件的表面。 ?零件表面的加工刀痕、凹槽、尖角、台肩等处由于应力集中往往成为疲劳源。 ?如果零件内部存在缺陷,如脆性夹杂物、白点、空洞、化学成分的偏析等,则可能在零件内部产生疲劳源。 1、疲劳核心(或称疲劳源) 6 ù疲劳源的数目可以不止一个,在名义应力较高或是应力集中较为严重时,在高应力区域就可能产生几个疲劳源。 ù疲劳源的位置用肉眼或低倍放大镜就能判断,一般在疲劳区中磨得最光亮的地方。 ù在断口表面同时存在几个疲劳源的情况下,可按疲劳线的密度来确定疲劳源产生的次序,疲劳线的密度越大,表示起源的时间越早。

7 疲劳断口上最重要的特征区域 该区域上常有疲劳断裂独特的宏观标志,如贝纹状、蛤壳状、海滩波纹等。 贝纹线以疲劳源为中心,向四周推进呈弧形线条,垂直于 裂纹扩展方向。 对于光滑试样,疲劳弧线的圆心一般指向疲劳源区。扩展到一定程度时,也可能出现疲劳弧线的转向现象 当试样表面有尖锐缺口时,疲劳弧线的圆心指向疲劳源区的相反方向。 在低周疲劳断口上一般也不常能观察到贝壳状条纹线。 8 $疲劳裂纹达到临界尺寸后发生的快速破断,它的特征与 静拉伸断口中快速破坏的放射区及剪切唇相同,但有时仅出现剪切唇而无放射区。$对于非常脆的材料,此区为结晶状断口,即使是塑性良好的合金钢或铝合金,疲劳断件断口附近通常也观察不到宏观的塑性变形。 9 10 6与静载拉伸断裂时不同,拉压疲劳断裂的疲劳核心多源于表面而不是内部。缺口试样由于缺口根部有应力集中故靠近表面裂纹扩展快,结果形成波浪形的疲劳弧线。高应力导致疲劳稳定扩展区较小,而最终断裂区所占比例较大。 6旋转弯曲的疲劳源区一般出现在表面,但无固定地点,疲劳源可 以为多个。疲劳源区和最后断裂区相对位置一般总是相对于轴的旋转方向而逆转一个角度。而高应力集中时,最终撕裂面移向中心,呈现棘轮花样。交变扭转载荷也出现这种花样 6双向弯曲的疲劳源区可能在零件的两侧表面,最后断裂区在截面内部。在高名义应力下,光滑的和有缺口的零件瞬断区的面积都大于扩展区,且位于中心部位,形状似腰鼓形。随着载荷和应力程度的提高,瞬断区的形状逐渐变形成为椭圆形。在低名义应力下,两个疲劳核心并非同时产生,扩展速度也不一样,所以断口上的疲劳断裂区一般不完全对称,瞬断区偏离中心位置。 11 D第一阶段为切向扩展阶段。在交变应力作用下,使滑移形成的裂纹源扩展形成可观察的裂纹,裂纹尖端将沿着与拉伸轴呈45°角方向的滑移面扩展。该阶段中裂纹扩展范围较 小,一般在2~5个晶粒之内。 D第二阶段为正向扩展阶段。裂纹从原来与拉伸轴呈45 °的滑移面,发展到与拉伸轴呈90 °,该阶段的断口具有引人注目的独特形态-疲劳辉纹。 D第三阶段是由于裂纹扩展到一定长度后,使构件的有效截面减少而造成的一次性快速断裂,断口特征常为韧窝型撕裂。 12疲劳辉纹的一般特点 (1)疲劳裂纹是一系列基本上相平行的条纹,略带弯曲呈波浪形,并与裂纹局部扩展方向相垂直,其凸弧面指向裂纹扩展方向。 (2)在疲劳裂纹稳定扩展阶段,所形成的每一条辉纹相当于一次载荷循环。辉纹确定了裂纹前沿线在前进时的位置。(3)疲劳辉纹的间距随应力场强度因子而变化,应力越大,间距越宽;反之应力越小,则间距越窄。 (4)疲劳断口的微观范围内,通常由许多大小不同、高低不一的小断块组成,每一小断块上的疲劳辉纹连续且平行,而相邻小断块上的疲劳辉纹不一定连续和平行。(5)断口的两匹配面上的辉纹基本对应。

常见断口的失效分析-2

常见材料失效形式与分析 1.概述 材料失效分析技术包括:感官检查、断口分析、化学成分分析、力学性能测试、组织分析、无损检测、残余应力测试、结构受力分析、使用维护分析、环境分析等。其中断口分析是重要的一环。 材料失效形式有断裂、变形、腐蚀、磨损等。在机械装备的各类失效中以断裂失效最主要、危害最大。断口是断裂失效中两断裂分离面的简称。断口真实地记录了裂纹由萌生、扩展直至失稳断裂全过程的各种与断裂有关的信息。对断口进行定性和定量分析,可为断裂失效模式及断裂类型的确定提供有力依据,为断裂失效原因的诊断提供线索,并且可以作为冲击试验转变温度的确定依据。断口金相学不仅能在设备失效后进行诊断分析,还可为新产品、新装备投入使用进行预研预测。 本实验的主要内容为:观察不同载荷下失效的金属断口的宏观形貌和微观形貌,掌握其宏观形貌特征和微观形貌特征。 2.实验目的 (1)了解拉伸、冲击、疲劳断口各特征区的构成及形貌特征; (2)掌握判定断口承载类型及断裂性质的方法。 3.实验装置及材料 (1)扫描电子显微镜(JSM-6390A型)一台; (2)超声清洗仪(SCQ-200)一台; (3)拉伸、冲击、疲劳断口试样若干; (4)放大镜一只; (5)吹风机一只; (6)丙酮、无水酒精、导电胶带若干。 4.实验原理 4.1断口形貌特征: (1)宏观形貌特征 包括断口附近的残留塑性变形特征,如:缩颈量的多少、表面的凹凸程度,有无剪切唇等;断口的光泽和颜色:各区域的颜色及亮、暗程度,氧化腐蚀产物的颜色;断口的形貌特征花样:如纤维状、结晶状、发光小平面、放射线、弧形线等;特征区的位置、分布、面积;材料内部缺陷的痕迹等。 (2)微观形貌特征 断口上常见的微观特征有:韧窝,特征包括微孔深度、大小,微孔形态(等轴、剪切、撕裂)等;滑移,具有滑移线、蛇形花样、涟波花样和延伸区(平直区)等特征;解理,包括台阶、河流、舌状、扇形、鱼骨状花样及瓦纳线等特征。准解理,介于解理断裂与塑性断裂间的一种过渡断裂形式,具有解理小平面、撕裂棱、浅韧窝、涟波花样及延伸区等特征;沿晶断裂,具有岩石状、冰糖状等特征;疲劳,具有条带、二次裂纹、轮胎花样等特征;腐蚀,具有氧化物、腐蚀产物、泥纹等特征。 4.2断口的分类 (1)按断口表面宏观变形分:有:脆性断口、韧性断口、韧-脆混合断口。 (2)按断口表面宏观取向分:有正断断口、切断断口、正-切混合断口。 (3)按断口表面微观断裂路径分:有沿晶断口、穿晶断口。 (4)按断口表面微观形貌分:有解理断口、准解理断口、韧窝断口、疲劳断口、沿晶断口

疲劳断口宏观分析

. 1 疲劳断口的形貌特征 疲劳断口是指金属材料或零构件在疲劳断裂过程中形成的一种匹配的表面,称断裂面或断口。分析它的目的在于确定零构件是否属于疲劳破坏?其破坏的原因是什么?从而提出防止事故的措施和方法,为今后的设计、选材以及加工等问题提出改进意见。 对断口的形貌进行分析包括两个方面,即宏观断口分析和微观断口分析。所谓宏观分析是指用肉眼或20—30倍以下放大镜观察断口的形貌特征。微观分析是指用光学显微镜或电子显微镜对断口进行分析。宏观分析不要求专门设备,被观察断口尺寸不受限制,可以观察断件和断口全貌,了解各个方面变化情况,所以说宏观分析是断口分析的基础。微观分析是用高倍的光学显微镜、c透射电镜,扫描电镜对断口进行分析,能观察断口的精细结构及裂纹形态。 1.1 疲劳断口宏观特征 由于零构件经常承受拉、压、弯、扭或复合应力的作用,因载荷类型不同,在宏观断口上表现出的形貌特征也不相同。 (1)弯曲应力作用下的疲劳断口 图1-2是在弯曲疲劳载荷作用下的断口示意图。零件在弯曲疲劳载荷作用下,其表面应力最大,中心应力最小,疲劳源首先在表面形成,然后沿着与最大正应力相垂直方向扩展,到最后瞬断。图中(a)是单向弯曲疲劳断口,它的疲劳源首先在受拉应力一侧表面形成,瞬断区在疲劳源相对侧,其面积大小由材料抗拉强度和外加载荷的大小来决定。图中(b)是双向弯曲疲劳断口,由于双向弯曲,

试件上下两侧交替承受拉应力作用,故疲劳源在相对两侧面形成,瞬断区在中间。. 页脚.. . 图1-3是轴在旋转弯曲应力作用下的疲劳断 口示意图,由于旋转弯曲应力也是表面最大,中心最小,疲劳源也开始于表面,且疲劳源两侧裂纹发展速度较中心快,故贝纹线比较扁平。最终瞬断区虽然也在疲劳源对面,但总是相对于轴的旋转方向逆偏转一个角度,此种现象称为偏转现象。因此,从疲劳源与瞬断区的相对位置便能推知轴的旋转方向。轴上有无应力集中及应力集小,其最终瞬断区的位置是不同的。若应力集中若应力集中最终瞬断区在疲劳源相对应的一侧。较小时,疲劳源只在一处发生,另则沿周向缺口将同时有几个疲劳源产生,较大时,瞬断区的位置则在轴的部。瞬断区越名义应力越大,最终瞬断区的位置还受轴上名义应力大小的影响。外,所示。4l移向轴的中央,如图—.

疲劳断口的主要特点

疲劳断口的主要特点 [ 标签:断口,主要特点] ☆ǘ祁月ú☆回答:1人气:1提问时间:2010-01-20 14:51 答案 为便于分析研究,常按破坏循环次数的高低将疲劳分为两类:①高循环疲劳(高周疲劳)。作用于零件、构件的应力水平较低,破坏循环次数一般高于104~105的疲劳,弹簧、传动轴等的疲劳属此类。②低循环疲劳(低周疲劳)。作用于零件、构件的应力水平较高,破坏循环次数一般低于104~105的疲劳,如压力容器、燃气轮机零件等的疲劳。实践表明,疲劳寿命分散性较大,因此必须进行统计分析,考虑存活率(即可靠度)的问题。具有存活率p(如95%、99%、99.9%)的疲劳寿命Np的含义是:母体(总体)中有p的个体的疲劳寿命大于Np。而破坏概率等于(1-p )。常规疲劳试验得到的S-N曲线是p=50%的曲线。对应于各存活率的p的S-N曲线称为p-S-N曲线。 疲劳(2) fatigue 材料、零件和构件在循环加载下,在某点或某些点产生局部的永久性损伤,并在一定循环次数后形成裂纹、或使裂纹进一步扩展直到完全断裂的现象。 研究简史有记载的最早进行疲劳试验是德国的W.A.艾伯特。法国的J.-V.彭赛列首先论述了疲劳问题并提出“疲劳”这一术语。但疲劳研究的奠基人则是德国的A.沃勒,他在19世纪50~60 年代最早得到表征疲劳性能的S-N曲线并提出疲劳极限的概念。20世纪50年代P.J.E.福赛思首先观察到疲劳过程中在滑移带内有金属薄片挤出的现象。随后N.汤普孙等人发现这种滑移带不易用电解抛光去掉,称为“驻留滑移带”。后来证明,驻留滑移带常常成为裂纹源。1924年德国的J.V.帕姆格伦在估算滚动轴承寿命时,假设轴承的累积损伤与其转动次数成线性关系。1945年美国M.A.迈因纳明确提出了疲劳破坏的线性损伤累积理论,也称为帕姆格伦- 迈因纳定律,简称迈因纳定律。此后,断裂力学的进展丰富了传统疲劳理论的内容,促进了疲劳理论的发展。用概率统计方法处理疲劳试验数据,是20世纪20年代开始的。60

飞行器结构疲劳强度与断裂分析

飞机结构疲劳强度与断裂分析 院系:机电工程学院 专业:机械制造及其自动化(机械电子) 班级:94060109 姓名:于丹 学号:2009040601353 飞机结构疲劳与断裂分析的现状和未来的发展

疲劳强度是指飞机结果在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。实际上,飞机结构并不可能作无限多次交变载荷试验。 飞机结构在实际使用中,要不断承受交变载荷的作用。但是,早期设计给及只是从静强度上考虑,只要通过计算和试验证明飞机结构能够承受得住设计载荷(实际使用中所出现的最大载荷乘以安全系数),就认为飞机结构具有足够的强度。由于飞机结构承受交变载荷的作用,某些构建常常出现疲劳性能也较好。因此,飞机结构的疲劳问题并不突出,疲劳强度问题没有引起足够的重视。直到50年代前期,世界各国的飞机强度规范中对疲劳强度都还没有具体要求,不要求进行全尺寸结构疲劳试验。但是,随着航空事业的不断发展,飞机的性能不断提高,适用寿命延长,新结构、新材料不断出现,飞机结构在使用中疲劳破坏与安全可靠之间的矛盾逐渐显露出来了。 断裂是指飞机结构被断错或发生裂开.讨论的主要是脆性断裂情况,其断裂面是看得见摸得着的。还有两类断裂的断裂面则是看得见却不一定摸得着的。 许多飞机结果,如轴、齿轮、轴承、叶片、弹簧等,在工作过程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后会产生裂纹或突然发生完全断裂。 疲劳破坏是机械零件失效的主要原因之一。据统计,在飞机结构

相关文档
最新文档