盾构隧道引起的地表沉降分析

盾构隧道引起的地表沉降分析
盾构隧道引起的地表沉降分析

盾构隧道引起的地表沉降分析

摘要:随着城市地下空间的逐步拓展,盾构法成为城市地下铁路修建的主要工法。本文对盾构隧道施工引起的地表沉降的影响因素进行了详细的分析。主要分析了地表沉降受盾构隧道施工的影响因素分析,归纳总结了地表变形的影响因素,为正确选择施技术,制定完善施工安全措施提供依据,确保施工地区重要设施的安全。同时结合某地铁盾构隧道掘进工程实践进行分析,提出地表沉降的历时阶段,并结合工程实例对盾构施工不同阶段、现场监测和数据分析进行讨论,得出了有益的结论。

关键词:盾构隧道地表沉降影响因素

1引言

由于盾构法具有高度的机械化、自动化,不影响地面交通,对周围建(构)筑物影响较小,适应软弱地质条件,施工速度快等优点,在城市地铁工程中得到广泛应用。目前已经成为国内外城市地铁隧道的主要施工方法。在建的上海、北京,广州、南京、天津地铁中都大量的采用盾构法。但由于盾构的推进引起地层扰动,破坏原始土体的水压平衡,往往引发一系列环境病害。国内外实践表明,盾构施工或多或少都会扰动地层引起地层移动而导致不同程度的环境影响,即使采用当前先进的盾构技术,也难以完全防止地表隆陷以及地层水平位移的发生。尤其是在城市修建地铁,由于其埋深较浅,地表建筑及地下设施较多,修建地铁时对周围环境的影响更大。地层沉降可能导致地表建筑物倾斜,甚至开裂、倒塌,地下管线被破坏;地层水平位移可引起地下桩基偏移及管线与通道错位等,进而导致桩基承载力下降并影响管线与通道的正常使用,甚至毁坏。但地表沉降对环境的影响是主要矛盾。因此,必须研究盾构隧道施工时引起地层移动、造成地面沉降的机理及影响因素,对地面沉降量进行预测,正确估计可能发生的地面变形,以选择最佳的施工技术,制定一套完善的措施以确保施工地区楼房、建筑物与地下管线等重要设施的安全。

伴随着盾构施工方法的逐步完善,众多学者专家对盾构法施工引起的地表沉降和控制地表沉降的措施等方面进行了大量的研究。本文以某地铁盾构隧道的地面沉降观测为基础,详细分析了开挖过程中和完成后的沉降规律,这对评价开挖对地面建筑及地下管线的影响有一定的指导意义。

2地表沉降机理

在盾构法隧道施工过程中,总会不可避免的产生土体扰动,这种扰动引起地层损失和隧道周围地层土体剪切破坏的再固结。扰动效应传导到地面便形成了地表沉降,大都在盾构施工期间呈现出来。从整体来看,影响地表沉降的因素是十分复杂的,但主要的关键因素有以下几个方面:

1)盾构隧道掘进时前方土压力的松弛。盾构舱内土压力是可以控制的,舱内土压力与围岩压力的平衡关系控制着地表沉降的大小。直观地说,当舱内土压力大于围岩侧压力时,会造成开挖面上方土体上隆;当舱内土压力小于围岩侧压力时,会造成开挖面上方土体下沉。

2)盾构机与围岩之间的摩擦作用。当盾构机向前掘进时,势必推动周边的土体向前移动,这种移动表现在盾构掘进机附近的土体发生侧移,而导致开挖面后方漏空,地表产生下沉;

开挖面前方土体挤压,地表产生上隆。

3)盾构机掘进过程中对孔隙水压力平衡的破坏。在盾构机掘进扰动土体的过程中,会破坏地下水的平衡。土体开挖后,地下水被截断,向隧道内排泄,隧道上方土体排水固结,从而引起地表沉降。或是隧道注浆堵水,衬砌防水密封后地下水径流受阻,土体饱和膨胀,从而引起地表隆起。

4)盾尾空隙。在盾构机尾部脱出后,围岩和管片之间存在一定的间隙,为土体下沉提供了空间,一般会造成沉降速率较大的变化。

5)盾构机掘进过程中的姿态。在掘进过程中,盾构机的行进方式并不是完全按照设计路线前进的,而是在一定的误差范围蛇形前进。这样的波动增大了对土体的扰动,也增加了地表沉降的可能性。盾构推进过程中,盾位纠偏、仰头推进、叩头推进、曲线推进等都会使实际开挖面形状偏大于设计开挖面,从而引起地层损失。实际轴线与设计轴线偏离越大,所引起的地层损失也越大。

6)围岩的固结沉降。在盾构机穿越后,后期受扰动土体的重新固结也会增加地表沉降的幅度。就影响因素而言,一般可以概括为以下几个方面:地质水文条件、施工参数、设计参数和盾构机械本身等。

3盾构施工进度引起地表沉降分析

影响盾构隧道地表沉降因素有渣土仓压力、地层性质、盾尾注浆开始时刻、注浆量和注浆压力、出土量及盾构推进速度等,而地表沉降是这些因素综合影响的结果。地表沉降主要取决于地层类型、盾构机类型及施工状况。沉降历时曲线可分为五个阶段,如图l所示:

图1 地表沉降发展示意图

(1)先行沉降:指自隧道开挖面距地面观测点还有相当距离(数十米)开始,直到开挖面到达观测点之前所产生的沉降。主要是由于土体受挤压其有效应力增加而引起的。

(2)开挖面前的沉降和隆起:指自开挖面距观测点很近(约几米)时直至开挖面位于观测点正下方之间所产生的沉降或隆起现象。它是由于盾构推进引起土体应力状态改变而产生的变形。当这部分土体受到挤压时地表即隆起。

(3)盾尾沉降。指从开挖面到达观测点的正下方之后直到盾构机尾部通过观测点为止这一期间所产生的沉降。其原因是,盾构外壳与土层之间会形成剪切滑动面,剪切滑动面附近的土层内产生剪切应力,剪切应力引起地表变形。盾构机推进速度越快,剪切应力越大,地表位移也越大。

(4)盾尾空隙沉降。指盾构机的尾部通过观测点的正下方之后所产生的沉降,是盾尾空隙的土体应力释放所引起的弹塑性变形。这种沉降速率很大,但只要当支护结构及时施做以后就能控制。沉降量一般不大。

(5)后续沉降。指固结和蠕变残余变形沉降,主要是地基扰动所致。这些沉降多非同时

发生,地基条件和施工状况不同,沉降的类型也有所不同。前面四种变形可以通过选择机械和施工参数加以控制,但无论什么样的机械和施工参数,盾构推进总会在一定程度上扰动土体,因此,后期固结变形如会或多或少地存在,是无法消除的。地面后期固结变形多数只占地面总变形量的较小部分,大约占总变形量的5%~30%。地面后期固结沉降与地面即时变形量有很好的对应关系,地面即时变形越大,周围土体的扰动程度越大,地面后期固结变形也越大。

4工程实例

关于盾构隧道施工引起的地表沉降监测一般采用精度较高的电子水准仪进行,采用闭合线路或者附和线路。测点布置主要以监测断面为单位划分,每个断面上布置奇数个测点,在隧道的中心布设一个测点,然后在两侧对称“近密远疏”的布置若干测点。监测断面的间距一般在5~30 m范围内。具体的测点布设视工程的具体情况而定。

北土城东路站——芍药居站区间位于规划的土城北路下方,东起地铁5号线北土城东路站西端,由西向东下穿惠新东街、城铁13号线芍药居站、京承高速公路,西至10号线芍药居站。区间隧道高程范围内的地层主要为第四纪全新世冲洪积层:粉土层、粉质黏土层、黏土层和粉细砂层。地下水主要为地表浅层滞水和潜水。隧道采用盾构法施工,隧道直径为6000mm,普通衬砌环结构,环宽1200 mm,由6块预制钢筋混凝土管片错缝拼装构成。经过现场布点监测,获得了大量的实测数据,通过对典型数据的分析获得以下结果(见图2)

图2 典型地表沉降监测数据的历时曲线

由图2可以看出,隧道正上方的Qs206测点沉降量最大,达到-20.5mm,而两侧的测点沉降量则要小很多。但几乎所有测点都在一定程度上表现出了一种变化规律:在6月23日之前,沉降量都比较小,约在2.5mm,属于图1所示的第一阶段。在6月27日之前沉降量增大,但速率较小属于第二阶段。在6月29日,沉降量突然增大,而且沉降速率也很大,属于第三阶段。在6月30日产生小量上隆,这是二次补浆的作用,属于第四阶段,在此之后基本上呈现平缓的变化,地表沉降量趋于稳定,属于第五阶段。各阶段的划分没有清晰的界限,但各阶段的变化特征却是不同的,这与引起地表沉降的主要影响因素有关系。盾构隧道施工进度的不同,其控制作用的影响因素也不同,表现在地表沉降的量值和变化速率上也出现了不同的特征。

5结论

根据以上分析,结合实际监测情况,可以得出结论:

1)地面沉降的基本原因是盾构掘进所引起的地层损失和隧道周围地层受到扰动或剪切破坏的再固结。地层损失引起的地面沉降,大都在施工期间呈现出来。

2)把地表沉降的时程分为五个阶段比较适合实际情况;

3)在影响地表沉降的众多因素中,盾尾间隙的影响可以说是比较重要的,在控制地表沉降时,应以针对盾尾间隙为主采取有效的措施来达到预期的沉降控制目标。

4)为了减少地表沉降,在盾构隧道的施工过程中都会采取同步注浆和二次补浆,这会在一定程度上减少沉降速率,但处置不当会形成地表隆起。

5)在孔隙比和灵敏度较大的软塑和流塑性粘土中,次固结沉降往往要持续几年以上,它所占总沉降量的比例高达35%以上。

6)一般地,地表沉降的范围在盾尾40m内,之后基本没有影响。

参考文献

[1] 杜建华、王玉林、沈仁强.浅谈盾构隧道施工引起的地表沉降[J].山西建筑,2006.

[2] 边金、陶连金、郭军.盾构隧道开挖引起的地表沉降规律[J].地下空间与工程学报,2006.

[3] 李东海、刘军、刘继尧、郑知斌.盾构隧道施工引起的地表沉降因素分析[J].市政技术,2008.

[4] 刘建航、侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.

武汉地铁2号线盾构施工对地表沉降影响分析

武汉地铁2号线盾构施工对地表沉降影响分析 【摘要】对武汉地铁2号线盾构掘进施工过程中地表沉降监测数据统计,并根据Peck理论进行拟合对比分析,得到盾构施工引起纵横断面地表沉降的特点:纵向上,盾构机切口前30m以内和后50m以内为影响区域,其中又以切口后50m为显著影响区,盾构通过该区域产生的沉降占总沉降量的80%~90%,盾构对某断面上影响范围在沿盾构中心轴线向左右两侧延伸10~18m;对武汉粉质黏土夹粉土粉砂层,盾构掘进引起的地表沉降数据累计变化控制指标宜为-40mm,盾构机切口通过监测断面6~20m范围内单次平均变化速率控制值宜为-15mm/d。 【关键词】地铁;盾构施工;地表沉降;Peck公式 武汉汉口地区工程地质、水文地质非常复杂,既有深厚软土,又有粉土、粉砂、互层及承压水的影响。在此种地质条件下进行地铁盾构施工,对变形控制有更加严格的要求。本文结合Peck理论对武汉地区盾构施工引起地表沉降变化情况进行初步分析,以期得到适用于武汉特殊地质情况下盾构施工对地表扰动的沉降控制标准。 1、工程概况 武汉地铁2号线一期工程某区间位于汉口,线路周边各种建筑物密集、地下管线密布,场地地貌为长江北岸冲积I级阶地。盾构起讫里程为:CK4右+743.906~CK5右+758.399,右线长1 014.493m,左线长1 017.576m,总长2 032.069m。区间设一个联络通道,与泵房合建,里程为:CK5(右)+220.000;设有2个平面曲线,最小曲线半径700m,线间距12~15m。线路最大纵坡坡度14‰,最小坡度2‰,区间结构平均覆土厚度约11m。 该区间隧道为外径6m、内径5.4m、管片拼装衬砌的单洞圆形隧道,管片环宽1.5m,管片采用C50,P12混凝土。 区间左线掘进采用新购法国维尔特EPB盾构机,开挖直径6 280mm,护盾直径6 262mm,主机长9.5m,整机长约77m,盾构及后配套总重450t(主机约300t),最小转弯半径250m,最大坡度35‰,整机使用寿命10km。 2、水文地质条件 盾构区间地层物理力学指标如表1所示。盾构隧道掘进地层主要在③4,③5层。地层静止水位埋深3.8m左右,且与长江、汉江有较密切的水系联系,整个盾构施工全部在地下水位以下。 3、地表沉降监测方法 3.1监测点布置 隧道纵向上沿中心轴线每隔20m布设一个监测断面;横向上,每个断面沿轴线中心点向两边每隔3m布设一个监测点,共5个。为减小路面结构对观测效果的影响,所有沉降监测点均埋设于原状土层内,由套管保护至地面。监测点埋深约1.5m,到原状土为止。

盾构现场施工隧道监测方法

精心整理上海长兴岛域输水管线工程盾构推进 环境监测 技术方案

目录 一工程概况 二盾构推进对周边环境影响程度的分析和估计三监测施工的依据 四监测内容

上海长兴岛域输水管线工程盾构推进环境监测技术方案 前言 科学技术的发展与试验技术的发展息息相关。历史上一些科学技术的重大突破都得益于试验测试技术。因此,试验测试技术是认识客观事物最直接、最有效的方法,也是解决疑难问题的必要手段,试验测试对保证工程质量、促进科学的发展具有越来越重要的地位和作用。测量技术在土建工程中同样占有重要地位,它在各类工程建筑,尤其是在地下工程中已成为一个不可或缺的组成部分。随着科学技术的发展,测量的地位更显关键和重要。早期地下工程的建设完全 工作井相连。 输水管线总长约10563.305m,其中东线长5280.993m,西线长5282.312m。全线最小平曲线半径为R=450m;最大纵坡为8.9‰。具体详见下表。

施工工序,第一台盾构自原水过江管工作井始发推进(东线)至中间盾构工作井进洞后盾构主机解体调头,继续西线隧道推进施工。第二台盾构自中间盾构工作井始发推进(东线)至水库出水输水闸井进洞后盾构转场回中间盾构工作井,继续进行西线隧道推进施工。总体筹划详见下图: 二盾构推进对周边环境影响程度的分析和估算 因很复杂,其中隧道线形、盾构形状、外径、埋深等设计条件和土的强度、变形特征、地下水位分 V l S (x )i Z -地面至隧道中心深度。 φ-土的内摩擦角。 在已知盾构穿越的土层性质、覆土深度、隧道直径及施工方法后,即可事先估算盾构施工可能引起的地面沉降量,同时可及时地采取措施把影响控制在允许范围内。在推进过程中根据盾构性能及监测数据及时调整施工参数,控制变形量,确保周边环境的绝对安全,实现信息化施工。 三监测施工的依据 3.1技术依据 1) 上海长兴岛域输水管道工程技术标卷(甲方提供)

城市地铁隧道施工引起的地面沉降及处理

龙源期刊网 https://www.360docs.net/doc/857113483.html, 城市地铁隧道施工引起的地面沉降及处理 作者:王涛涛 来源:《科学与技术》2018年第19期 摘要:在基本建成小康社会的今天,城市化进程越来越快,为了满足人们出行交通便利需求,缓解地上交通压力,很多地区开始建设地下地铁,而建设地铁时的隧道施工不当又会引起地面沉降等问题,为了预防和解决有可能发生的地面沉降问题,本文对由城市里地铁隧道施工所引起的地面沉降的原理进行分析,并提出预防和应对方法。 关键词:城市地铁;隧道施工;地面沉降;解决措施 引言: 在我国,为达到基本建成小康社会目标,城市化进程越来越快,政府对于基础设施建设方面的投资力度也在逐渐加大,为了满足人们出行方便的愿望,缓解城市公路交通压力,越来越多的地铁正在被建设,而建设地铁的难度较大,常表现在建造时常会伴随地面沉降等问题,如何预防和处理问题的发生,对地铁建设有重要意义,本文旨在对地面沉降进行原因分析和讨论解决方法,以促进城市化发展,特别是最近几年,广泛引起各界关注和思考。 1、地面沉降 地面沉降分区域性下沉和局部下沉两种沉降类型。一般来说,发生地面沉降常会使建筑物倾斜或倒塌,还会破坏地基的稳定性等等,特别的,若在滨海城市发生地面沉浸,除了会出现上述问题,还会造成海水倒灌,极大地增加了社会损失。建筑倒塌造成的人员伤亡,电线毁坏,海水倒灌等问题都给人们的生产和生活带来很大影响。 据研究,引起地面沉降的原因有很多,如地壳运动、海平面上升等都会引起地面沉降,其中还包括有城市地铁隧道施工,城市地铁隧道施工也是引起城市地面沉降的主要原因,據统计,世界各国,出现地面沉降的城市多为正在建造地铁或刚建成地铁不久的城市,其事故的源头多为地下隧道施工,21世纪地铁得到快速发展的今天,如何解决事故源头,减少地面沉 降,探索有效施工方法,是我们需要仔细深入研究的课题。 2.地面沉降原理分析 2.1盾构法隧道施工引起的地面沉降机理 盾构法施工是一种普遍用于修建地下遂道的施工方法。主要步骤为先确定开挖位置,然后在确定的位置开始挖掘,又用千斤顶用力推进到已开挖的位置,继续下一步挖掘,边挖边推进,边推进边挖,要确保挖掘和推进同时进行,节奏一致,而且要确保在缩回千斤顶的同时,使用液压举重拼装器一段段地再向前挖掘,直到整条遂道施工结束。由盾构法引起的地面沉降

Peck法计算的盾构隧道地面沉降量及沉陷槽计算公式

8.1.4 地层变形预测与分析 通常设计阶段的地面沉降预测方法可分为两类,一是根据实测数据的统计方法—Peck 公式是其典型代表:二是采用有限元和边界元的数值方法。 采用Peck 法计算的盾构隧道地面沉降量及沉陷槽计算公式如下式;其沉陷槽横向分布见图。 exp(max )(S x S -22 2i x )

? ?? ? ? Φ-?= 2452tg Z i π 式中:V —地层损失(地表沉降容积); i —沉降槽曲线反弯点; z —隧道中心埋深 根据本标段的地质条件和埋深等,得i=6.9m ,由此根据以往的工程实践及经验公式,沉陷槽宽度B ≈5i ,可得单个隧道盾构推进引起的地表横向沉陷槽宽度约为35m ,两座隧道盾构推进引起的地表横向沉陷曲线叠加后其沉陷槽宽度约为50m ,并且沉陷槽的主要围在隧道轴线两侧6m 围,离轴线3m 的沉降量约为最大沉降量的60%~70%,离轴线6m 的沉降量约为最大沉降量的25%。 地层损失V 值主要是由盾尾空隙引起的土体损失量,它与盾构机盾壳厚度、盾构推进时粘附在盾构上的土体厚度及注浆量等有关,即 V=V 尾+V 粘-V 浆 盾构推进时粘附在盾构钢板上的土体厚度约为20~40mm ,盾壳厚度为70mm ,则:V=V 尾+V 粘-V 浆=1.36+0.58α-(1.36+0.58)β α为折减系数, β为同步注浆的充填系数。 取α=0.6 β=0.5 得 V=0.73m2 由此可得地表最大沉陷值:Smax=23.4mm 最大斜率:Qmax=0.0013 以上分析值主要是在以往工程经验基础上结合本地铁盾构标段的实际情况,隧道埋深16m 左右情况下得出的,最大沉降量满足规和标书要求。 虽然地表沉降形态是大体相同或相似的,但其最大沉降量总是随着施工工况和地质条件的改变而千差万别,目前控制沉降的主要手段是同步注浆和二次注浆,而注浆的环节常有各种各样的问题发生,如缺量、过量、滞后、漏浆等等,不同的沉降情况常是施工工况和工作状态的反映,同时不同的地质条件沉降亦有所不同,如粉砂土较粘土隆降起量要少,沉降速率要快,淤泥质粘土后期固结沉降则要大点。以上这些都要求盾构施工时要加强监测工作,以随时了解地面沉降信息,以便及时采取有效措施,以达到控制沉降和减少损失的目的。 8.2 理论分析

地铁隧道施工引起的地表沉降及变形测量

地铁隧道施工引起的地表沉降及变形测量 【摘要】地表沉降及变形是地铁盾构隧道施工过程中最需要重点关注的问题,其直接影响周围地面建筑和地下设施的正常使用,因此,对地表沉降及变形测量至关重要。论文首先分析了盾构掘进引起地表沉降及变形产生的原因,重点探讨了地铁隧道施工引起的地表沉降及变形测量方法。 【关键词】地铁隧道施工;沉降及变形;测量 盾构法隧道施工技术经过一百多年的发展,已经有了很大的进步,由于盾构施工引起的周围建筑物的损坏也在减轻,但是盾构施工还是会不可避免地引起地层的扰动,引起地层变形以及地面的沉降及变形。地层扰动导致的土体强度和压缩模量的降低将会引起长时间内的固结和次固结沉降及变形。当地层变形超过一定范围时,就会危及到邻近建筑物和地下管网的安全,进而引起一系列的岩土环境问题。由此可见,研究盾构施工产生地表沉降及变形的机理具有重大的意义。 1 盾构掘进引起地表沉降及变形产生的原因 虽然不同学者基于各自的出发点提出了不同的盾构施工引起地表沉降及变形的机理,但是不可否认的一点就是土体位移源于开挖引起的扰动及由此产生的地层损失和扰动土的重新固结。1)地层损失。所谓地层损失是盾构施工中实际开挖土体体积和理论计算的排土体积之差。地层损失率以地层损失体积占盾构理论排土体积的百分比来表示。地层损失一般包括盾构开挖面的地层损失、盾构纠偏产生的地层损失、盾构沿曲线推进时产生的地层损失以及盾壳外径和管片直径之间空隙引起的地层损失。引起地层损失的施工及其他主要因素有:盾构掘进时,开挖面土体受到的水平支护应力小于原始侧向应力,则开挖面土体向盾构内移动,引起地层损失而导致盾构上方地面沉降及变形;当盾构推进时如作用在正面土体的推应力大于原始侧向应力,则正面土体向上向前移动,引起地层损失(欠挖)而导致盾构前上方土体隆起。2)在盾构暂停推进时,由于盾构推进千斤顶漏油回缩,可能引起盾构后退,使开挖面土体塌落或松动,造成地层损失。3)由于向盾尾后面、隧道外围建筑空隙中压浆不及时、压浆量不足或压力不适当,使盾尾后坑道周边土体失去原始三向平衡状态,而向盾尾空隙中移动,引起地层损

隧道监控量测观测标埋设要求

隧道监控量测观测标埋设要求 根据10月14日隧道监控量测现场检查结果,各隧道监控量测观测标均未严格按照要求进行埋设,为加强本标段监控量测工作管理,保证监控量测作业满足规范要求,确保隧道工程施工安全,监控量测标志埋设要求进一步明确如下: 1.地表沉降观测标 1.1埋设时间 地表沉降观测标志应在隧道正洞开挖施工前埋设,并于正洞开挖前及时采集初始读数。 1.2断面布置 地表沉降断面应超前隧道开挖面至少30米,地表沉降测点和隧道内测点应布置在同一里程。一般情况下,地表沉降测点间距按下表要求布置: 地表沉降测点横向间距为2~5m,隧道开挖范围内地表沉降点横向间距按2m要求布设,开挖范围外按照5m要求布设。在隧道路线附近测点应适当加密,隧道中线两侧量测范围不应小于H+B,地表有控制性建(构)筑物时,量测范围应适当加宽。 岩石地段地表沉降观测标志埋设入岩深度不小于0.5m,黄土地段地表沉降观测标志埋设深度不小于1.0m。采用钻孔的方式进行埋设并用混凝土进行加固,观测标直径不小于20mm。

图1.2.1 地表沉降横向测点布置示意图 注:上图中H为隧道埋深,B为隧道开挖宽度。 2.洞内监控量测观测标 2.1埋设时间 洞内拱顶下沉及净空变化监控量测观测标应在隧道开挖后12小时内布设,并及时读取数据,最迟不得大于24小时。 2.2断面布置 顶拱下沉测点和净空变化测点应布置在同一断面上。拱顶下沉测点应布置在隧道轴线上,偏差不大于3cm,隧道拱顶下沉及净空变化测点断面按下表要求布置: 注:Ⅱ级围岩视具体情况确定间距。 根据《铁路隧道监控量测技术规程》(TB10121-2007)及隧道工程监控量测设计图纸要求,本标段隧道均采用三台阶法进行开挖,隧道监控量测顶拱下沉测点及周边收敛测点埋设形式如图2.2.1所示:

城市地铁隧道施工引起的地面沉降与处理

城市地铁隧道施工引起的地面沉降与处理 1 城市地铁隧道施工引起地面沉降的机理分析城市地铁隧道在施工过程中最常采用的方法为盾构施工法,其指的是在工程施工前, 利用像挖掘机一样的机械把地下的泥土挖出,勾画出隧道工程的大体框架。由于施工地区土质密度、强度或特殊地形的影响,因此很容易在地铁隧道建设施工中出现一些误差。如地铁隧道挖出的土与隧道体积不相等,土质密度过于松散出现塌方、施工地出现不同程度的沉降现象等等。其中,最严重的问题就是施工地区的沉降现象, 其具体指的是人们在挖土的过程中,由于先挖走的土层空隙水压强度不大,应力很小,施工点只会出现小面积的推移;但随着工程建设施工进程的加快,被挖出的土壤越来越多,推动力和应力会不断增强,导致施工点出现大面积移动或者施工地面出现突起等现象。施工人员为了防止盾构施工法对地质、土壤造成的影响,在施工过程中会使用千斤顶支撑上地面,等到地铁隧道中多余的泥土全部被运输离开后再撤走千斤顶,但这样的缺点是本来被千斤顶支撑的地面突然没有了支持力,从而出现隧道塌陷,即我们所说的施工沉降现象。因为机械设备在地下作业过程中相对困难,若隧道施工时再遇上粘质土壤,施工难度不仅会加大,而且施工地沉降的偏差也会增加。 2 某地铁工程隧道施工引起地面沉降与处理工艺

2.1 工程概况 某地铁工程一号地铁线北起升仙湖,南下华阳,中间途经火车北站、天府广场以及火车南站等多个重要地点,是人们出行选择的首选交通工具。其全长31.6千米,隧道外径7.8m,内径6.4m, 并且地铁一号线还有继续向南扩展的趋势,在继续向南的隧道建设施工也采用同地铁一号线相同的盾构施工法,并预计在2018 年就能够完成地铁三号线的修建,并开始运行。 根据地质资料分析得出:盾构主要穿越的土层有灰色粘质粉土层、灰色淤泥质粘土层和灰色粘土层等多种土层。地铁隧道穿越地基土层的基本物理力学指标见表 1 ,部分施工地的沉降现象分别用横断面和纵断面图来表示,如图 1 和图 2 所示。 2.2 监测方案 在实际施工中, 需要对施工地进行地面沉降的监测。作者所在的项目工程中,计划是每隔200m就进行一次横断面的监测,像天府广场这样建筑物密集的地方,会缩短监测距离,每隔50m 就进行一次横断面的监测, 而每个横断面监测之间, 可再细化到每个监测点。一般情况下,每个横断面监测间会设置10个监测点,并且为了监测所得的数据具有连续性, 施工人员在隧道中还布置了沉降观测点, 对施工周围的管线是否沉降也进行了相应的观察。 2.3 具体计算及沉降各阶分析 (1)刚出现沉降的时间段,即前期沉降,其是工程刚刚施 工的阶段,由于没有过多的挖土和破坏土层、地质,沉降的最大

铁路隧道地表沉降监测及数据分析

铁路隧道地表沉降监测及数据分析 [摘要]:隧道监控量测在整个铁路隧道施工具有重要作用。文章以新歌乐山隧道地表沉降监测项目为例,阐述了测桩点的布设、现场监测方法、数据获取与处理,并对数据做出合理判断分析和有益探讨,对实际生产工作具有一定指导意义。 [关键词]:铁路隧道施工监控量测地表沉降数据分析 0引言 隧道监控量测贯穿于整个隧道施工过程中,是一项非常重要的工作。监测的目的主要包括:保证施工安全;预测施工引起的地表变形;验证支护结构设计,指导施工;总结工程经验,提高设计、施工技术水平。 隧道地表沉降是隧道工程应进行的日常监控量测的必测项目。本文以新歌乐山隧道地表沉降为例,阐述了监测项目现场操作具体过程、数据获取及处理方法。 1新歌乐山隧道工程概况 新歌乐山隧道属新建兰渝铁路引入重庆枢纽工程,位于既有渝怀线歌乐山隧道左侧约25~50m,设计时速120km/h。隧道进口里程K1106+280,出口里程K1108+547,全长2267m。隧道进出口为浅埋段,洞顶覆盖层仅4~8m,出口洞顶及周边有大量民房,且下穿公路,出口段约300m采用非爆破法开挖。不良地质有岩溶、煤窑采空区、富水软弱围岩,特殊岩土为盐溶角砾岩及石膏。施工难度极大,安全风险高,为极高风险隧道,如图1所示。 图1 新歌乐山隧道现场图图2新歌乐山隧道地表下沉测点布设示意图 2. 地表沉降 隧道洞口浅埋层覆盖薄,堆积松散、自身稳定性差。在施工过程中易受自重、雨水和施工爆破的影响,极易发生坍塌,沉降等大变形事故,威胁隧道的整体稳定。隧道开挖后,洞口浅埋段地层中的应力扰动区延伸至地表,围岩力学形态的变化在很大程度上反映于地表沉降,且地表沉降可以反映隧道开挖过程中围岩变形的全过程。因此,必须对地表沉降情况进行严格的监测和控制,保证施工安全。 3. 监控量测方案设计

盾构隧道开挖引起的地表沉降规律

摘要:地表沉降值是衡量开挖方式是否合适的关键指标,因此监测和预测地表沉降有重要的实际意义。在文中,根据对盾构法开挖隧道引起的地表沉降监测资料,做出了观测断面中心点的速度直方图和观测断面中心点位移随盾构机推进的位移变化图。通过分析 ,发现当盾构机到达测量断面前5m~8m后,地表测点的变形达到最大隆起值,然后测点的变形速度为负值,开始向下运动;在盾构机通过测量断面大约25m后,测点位移几乎不再增加,变形速度也变得很小。 关键词:地表沉降;盾构机;测量断面 由于盾构法具有不影响地面交通、对周围建(构)筑物影响较小、适应软弱地质条件、施工速度快等优点,在地铁工程中得到广泛应用。地下施工不可避免地会对周围土层产生扰动,从而引起地面沉降(或隆起),这将使邻近建筑物受到不同程度的影响,并可能危及地下电缆、水管、煤气管道等设施的正常使用。因此,究竟会发生多大的沉降或隆起,会不会影响相邻建筑物的安全,是地铁隧道盾构施工中最关键的问题。所以,在施工中对隧道沿线进行地表沉陷监测是必不可少。它能使现场施工人员及时了解由盾构推进所引起的地面沉陷及附近建筑物或地下管线因此受到的危害程度,以便拟定有效保护措施,并对其实施效果进行跟踪监督[1]~[3]。本文以某地铁盾构隧道的地面沉降观测为基础,详细分析了开挖过程中和完成后的沉降规律 ,这对评价开挖对地面建筑及地下管线的影响有一定的指导意义。1 地表沉降的影响因素及其发展过程影响盾构隧道地表沉降因素有渣土仓压力、地层性质、盾尾注桨开始时刻、注浆量和注浆压力、出土量及盾构推进速度等,而地表沉降是这些因素综合影响的结果。地层沉降主要取决于地层类型、盾构机类型及施工状况。沉降历时曲线可分为5个阶段,如图1所示[4]:(1) 先行沉降:指自隧道开挖面距地面观测点还有相当距离(数十米)开始,直到开挖面到达观测点之前所产生的沉降。(2) 开挖面前的沉降和隆起:指自开挖面距观测点极近(约几米)时直至开挖面位于观测点正下方之间所产生的沉降或隆起现象。(3) 盾尾沉降。指从开挖面到达观测点的正下方之后直到盾构机尾部通过观测点为止这一期间所产生的沉降,主要是土的扰动所致。(4) 盾尾空隙沉降。指盾构机的尾部通过观测点的正下方之后所产生的沉降,是盾尾空隙的土体应力释放所引起的弹塑性变形。(5) 后续沉降。指固结和蠕变残余变形沉降,主要是地基扰动所致。这些沉降多非同时发生,地基条件和施工状况不同,沉降的类型也有所不同。 2 地质概况该隧道位于新华夏系第二沉降带的区域构造背脊之上,在勘探深度范围内未见断层活动迹象。其埋深为15m左右;开挖直径为5.7m。从上往下,土层依次为人工填土层、粘质粉土砂质粉土、粉细砂和中粗砂、圆砾和卵石、粘质粉土砂质粉土。 3 观测数据分析在隧道沿线地表共连续布置了17个断面,每个断面布置了7个测点。在测量断面上测点分布形式,如图2所示。测量断面上的中心点位于隧道中心线上。随着盾构机推进,测量各个测量断面上各测点的高程变化,得到各点的沉降值。 3.1 观测断面沉降曲线分析根据观测到的每个断面上各个测点的沉降值,画出测量断面沉降曲线。通过做出的各个断面的沉降曲线,得出如下规律:(1) 当盾构机工作面在测量断面前大约3m之前,各个测点的沉降值基本相等,即发生整体隆起或下沉,如图3a所示。(2) 当盾构机通过测量断面后9~27m之间位移增加值变小,这说明从这以后盾构的推进对该断面的影响不大。(3) 位移增加最快的点一般位于盾构机通过测量断面0~12m。在这段距离内,产生的沉降值在4~5mm之间。因此,在该区间要加强观测,以防发生大的沉降。(4) 沉降标准正态分布曲线不是在沉降最初阶段就出现,而是在沉降发生的图1所示的第2、3、4阶段出现,如图3b所示;而且其出现点也没有规律。这说明地层沉降的变化过程无法用正态分布曲线(即peck公式)描述,只能用它来描述在该点以后的沉降发展。(5) 在有些断面,沉降标准

盾构法施工引起地面沉降原因分析及防治措施

盾构法施工引起地面沉降原因分析及 防治措施

盾构法施工引起地面沉降原因分析及控制方法进入21世纪,世界经济的迅猛发展使城市化建设得到了大幅度的提速。当前,人口不断地向城市聚集,使城市人口和建筑的密集度快速上升,造成能被利用的地面空间越来越少,因此,当今城市现代化建设的重要课题之一便是开发地下空间,为人类创造价值。但各种用途的管线被布置在地下,这便产生了在地下工程施工背景下的一种最佳方法——盾构法。盾构法施工虽然优点颇多,可是也存在诸多问题。本文就盾构法施工过程中引起的地面沉降问题展开讨论,分析产生的原因及寻找控制方法。 一,地面沉降产生原因 1、地层隆沉的发展过程 盾构推进引起的地面沉降包括五个阶段:最初的沉降、开挖面前方的沉降、盾构机经过时沉降、盾尾空隙的沉降以及最终固 结沉降,如图l所示。 第一阶段:最初的沉降。该压缩、固结沉降是因为地基有效上覆土层厚度增加而产生的沉降,也是盾构机向前掘进时因为地下水水位降低造成的。指从盾构开挖面距地面沉降观测点还有一

定距离(约3~12m)的时候开始,直至开挖面到达观测点这段时间内所产生的沉降。第二阶段:开挖面前方的沉降(或隆起)。这种地基塑性变形是由土体应力释放、开挖面的反向土压力、或机身周围的摩擦力等作用而产生的。它是从开挖面距观测点约几米时开始至观测点处于开挖面正上方这段时间所产生的沉降(或隆起)。第三阶段:盾构机经过时沉降。该沉降是在土体的扰动下,从盾构机的开挖面到达测点的正下方开始到盾构机尾部经过沉降观测点该段时期产生的沉降(或隆起)。第四阶段:盾尾空隙沉降。该沉降产生于盾尾经过沉降观测点正下方之后。土的密实度下降,应力释放是其土力学上的表现。第五阶段:固结沉降,它是一种由地基扰动所产生的残余变形沉降。经前人研究发现,第一阶段沉降占总沉降的0~4.5%,第二阶段沉降占总沉降的0~44%,第三阶段沉降占总沉降的15~20%,第四阶段沉降占总沉降的20~30%,第5阶段沉降占总沉降的5~30%。 2、地表沉降的因素影响分析 该因素影响分析的平台是当前使用较为广泛的大型三维有限元分析软件ANSYS,盾构开挖面掘进引起的地表沉降的客观因素包括盾构直径、土体刚度、隧道埋深、施工状况等设计条件;而其主观因素包含施工管理、盾构机的选用形式、盾尾注浆、辅助施工方法等。下面对盾尾同步注浆、覆土厚度、管片宽度、掌子面顶进压力、土体弹性模量和盾构直径六个方面的因素进行分析。

盾构法隧道施工引起的地面沉降的原因与对策

盾构法隧道施工引起的地面沉降机理与控制 摘要:本文首先分析了盾构法隧道引起的地面沉降规律和沉降 影响范围,总结了盾构隧道地面沉降的主要影响因素;指明地面沉 降主要源于开挖面的应力释放和附加应力等引起的地层变形,并对地铁施工中的地面沉降安全判断标准和控制原则进行了探讨,为城市地铁工程建设提供有益的参考。 关键词:盾构隧道地铁工程地面沉降沉降控制 中图分类号:u45 文献标识码:a 文章编 号:1672-3791(2012)06(b)-0071-02 abstract:this paper analyzes the shield tunnel caused by land subsidence law and settlement of affected areas,and summarizes the main factors of land subsidence of the shield tunnel;specified land subsidence is mainly due to the excavation surface stress release and the additional stress causedstrata deformation,land subsidence and subway construction safety criteria and control principles are discussed to provide a useful reference for the construction of urban subway project. key words:shield tunnel;subway project;land subsidence;subsidence control 盾构法具有不影响地面交通、对周围建(构)筑物影响小、适应复

隧道监控量测观测标埋设要求(仅供参考)

一.地表沉降监测点 在与隧道中线垂直的横断面上布置监控量测测点,间距2~5m,在一个断面上布置7~11个点,靠近中线位置测点适当加密,量测范围为中线两侧不小于HO+B,明挖段量测范围为基坑开挖边线两侧不小于3倍开挖深度。其测点布置如下图所示。

地表沉降测点纵向间距 测点埋设:在地表开挖90cm 深基坑,浇筑混凝土基础,同时放入长300mm ,直径22mm 的圆头钢筋,外露5mm ,四周填实。在开挖影响范围以外设置水平基准点2~3个,水平基准点埋设方法见"基准点布置示意图"。 基准点布置示意图(单位cm )

二.洞内监控量测 1.洞内观察 开挖后及初支后及时采用肉眼观察和地质罗盘仪对开挖面揭示的地质情况进行描述,包括围岩岩性、岩质、断层破碎带、节理裂隙发育程度和方向、有无松散坍塌、剥落掉块现象、有无渗漏水等;初期支护状态包括喷层是否产生裂隙、剥离和剪切破坏、钢支撑是否压屈进行观察分析。详细描述、记录、并予以评估,作为支护参数选择的参考及量测等级选择的依据。 2.洞内净空收敛监测点 净空收敛点量测断面间距根据围岩级别、隧道断面尺寸、埋置深度及工程重要性确定,参考下表确定。 必测项目监控量测断面间距表 净空收敛量测点距开挖面应小于1~2m,在每次开挖后尽早埋设读数,初始读数应在开挖后12h内读取,最迟不得大于24h,而且在下一循环前必须完成初期支护变形的读数。

测线布置和数量与地质条件、开挖方法、位移速度等因素有关,本段隧道施工工法包括全断面法、台阶法、三台阶法、三台阶临时仰拱方法、六步CD法,其主要布置形式见图“拱顶下沉和净空收敛测线布置图” 3.拱顶下沉监测点 拱顶下沉量测断面间距、量测频率、初读数的测取等同收敛量测。每个断面布置1~3个测点,测点设在拱顶中心或其附近。量测时间应延续到拱顶下沉稳定后。主要布置形式见图“拱顶下沉和净空收敛测线布置图” 洞内监控量测点不得焊于钢拱架上,必须单独打孔直接安装于岩体中,预埋测点由钢筋加工而成,采用冲击电锤或风钻钻孔,埋入钢筋采用直径不小于16mm的螺纹钢,前端外露钢筋(外露部分不得小于6mm)与正方形钢板焊接(60*60),然后贴上反射膜片(50*50)。测点用快凝水泥或锚固剂与围岩锚固稳定,埋入围岩深度不小于20cm,若围岩破碎松软,应适当增加测点埋入深度不得小于50cm。

隧道施工引起地面沉降的原因及控制研究

隧道施工引起地面沉降的原因及控制研究 发表时间:2018-10-01T19:32:49.427Z 来源:《基层建设》2018年第27期作者:杨辉彪[导读] 摘要:在隧道施工容易引起地面沉降等问题,这就需要加强对地面沉降原因和控制方法的研究工作。 身份证号码:51130319861226xxxx 四川省南充市 637000 摘要:在隧道施工容易引起地面沉降等问题,这就需要加强对地面沉降原因和控制方法的研究工作。本文首先探究隧道地面沉降机理,分析沉降的主要原因,进而提相应的控制措施,旨在保障隧道施工安全性。 关键词:隧道施工;地面沉降;原因;控制措施隧道工程作为完善交通网络的重要一环,让人们的出行、商品运输更加方便、快捷。在实际施工过程中,往往会产生隧道地面沉降问题,会对周围结构和地下设施造成严重的破坏。虽然很多仪器都能够测试隧道的沉降量,也有很多文献阐述了隧道沉降机理,但是却没有考虑到隧道沉降会随着时间变化而变化。这就需要工作人员对隧道地面进行实时检测和观察,分析隧道地面沉降的是否均匀、动态,这样 才能够针对性找出控制方法,保证隧道工程保质保量的按期完工。 1地铁隧道施工引起的地面沉降机理当今隧道施工都是采用盾构施工法,在实际施工过程中的开挖面会释放应力、附加应力,从而导致地面出现弹塑变形等问题,也就是引发地面沉降问题。沉降通常是在开挖卸载时开挖周围土体向隧道内涌入从而造成地面下沉;支护结构空隙闭合导致地面下沉;管片衬砌结构自身变形造成地面下沉;隧道结构整体地面下沉。这些下沉问题可以统称为开挖地面下沉问题。盾构法在实际应用中主要包括开挖沉降、固结沉降、次固结沉降,其中次固结沉降是一个长期控制的过程,特别是在隧道运营期间,需要考虑沉降的动态变化。盾构施工会造成地层损失和隧道周围受到扰动或剪切力破坏出现土体再次固结,这也是导致隧道沉降的根本原因。 2导致隧道施工引发沉降的因素第一,在隧道施工过程中可能遇到软弱围岩、富水砂层等问题,如果对此类问题没有进行及时处理,拱顶塌方等问题就会导致地面沉降。通常情况下,隧道软弱围岩都是Ⅴ级、Ⅵ级,如果所应用的施工方法不够合理、支护不够及时、前期支护无法快速闭环,就会产生掉块、塌方、冒顶等问题。同时,在隧道开挖过程中遭遇了富水砂层没有提前进行加固处理,同样会造成沉降,沉降程度与含水量有直接关系。第二,扰动土固结问题。如果开挖面涌水或衬砌出现漏水问题时,会导致地下水位下降,因此导致土体下降(地基下降),造成这一问题主要是因为地基有效应力增加,从而导致固结沉降问题。第三,地面损失。在盾构施工中会出现地层损失,并且收到了剪切力影响出现固结沉降问题。地层损失会导致土体开挖到竣工阶段产生的体积差,因此周围土体在弥补地层损失中产生了地层位移问题。导致地层损失的主要因素为:①开挖土体移动。在盾构掘进过程中,由于土体水受到水平支护应力较小的情况(小于原始测量力),土体就会朝向盾构内侧移动,从而导致地层损失问题,导致地面下降;在盾构突进时,如果正面土体侧压力在原始侧向力之上,会让土体产生上、前移动,同样会造成土层损失,导致都够前上方的土体隆起。②盾构后退。盾构施工过程中往往会出现暂停推进的情况,如果此时盾构千斤顶出现漏油回缩就会导致后退问题,导致土层面坍落、松动问题,出现地面损失问题。③土体进入到盾尾空隙。在施工中如果盾尾后隧道外部空隙中压浆不够及时,会导致压浆压力或压浆量不足等问题,这时的盾尾周边土体会打破原始三维平衡状态,土体朝向盾尾空隙当中移动,造成地层损失问题。④推进方向改变。盾构施工当中会产生曲线推进、抬头等情况,理论上开挖面是圆形,但实际上缺失椭圆,从而引发地层损失。 3隧道施工引起的地面沉降控制方法 3.1加强开挖面控制工作 在隧道开挖过程中如果遇到软弱围岩情况,需要保证施工的稳定性,进尺要短、控制爆破力度、快速封闭、定时测量,特别是针对Ⅴ级、Ⅵ级围岩,需要采用双侧壁导坑法、CD施工法、CRD施工法进行,加强循环进尺的控制工作,严格控制每一个开挖循环、支护循环,避免因提高施工效率而贸然挖进。在应用土压平衡掘进过程中,需要保证开挖面呈现出流塑状态,加强开挖面的控制工作,采用输送机并调整复数装置平整,保持碴仓土一定的压力,这样即可抵抗开挖面的土压和水压。如果出现水体,可以应用螺旋输送机和碴仓土进行止水,配合同步注浆系统和二次注浆操作进行控制。这样即可保障盾构开挖面的稳定性,避免地下水流出问题,从而实现地面沉降控制的目的。在应用土压平衡掘进过程中,碴土需要保持良好的流塑形态、稠度适中、摩擦角要低、渗透性要低,如果无法满足这些要求,可以对混合仓、螺旋输送机、开挖面中加入外加剂,实现软塑化处理,提高挖图器械性能,保证流动性。对于一些黏土地面(渗透小、易流动、摩擦力小),可以采用刀盘切下或螺旋输送机搅拌后提高流塑性。同时,针对砂性土止水性差的问题,如果开挖掘进水压较高,会产生地面涌水问题,这就需要注入一定量的添加剂,提高止水性,保证开挖面水压和土压,维持表面的稳定性。在实际应用中,将膨润土和泡沫注入到输送机口中,必要情况可以向盾壳上注入,这样可以填补盾壳空隙,从而起到控制沉降的目的。 3.2控制注浆量 注浆加固能够有效应对砂层、富水砂层问题,从而填补土体缝隙,减少沉降量问题。在隧道施工中,注浆防沉控制已经成为应用最为广泛的技术,如果不填充浆液,会导致沉降体积等于地面损失。理论上注浆率(填充率)达到100%即可控制地面沉降,但由于实际影响因素较多,通常注浆率要高于100%,甚至达到了200%以上(效果不够明显,因此不需要盲目注浆导致材料浪费)。在淤泥类黏土注浆中,每立方米采用2.3-2.7L浆液即可,浆液稠度控制在10左右;如果是粉质砂土层,每立方米注入0.1L浆液即可;针对不同深埋地区浆液量需要所有增加。浆液压入时间需要和管片脱开同步进行,否则只能控制上部沉降,无法控制下部土层沉降问题。在实际操作过程中,可以根据每环注浆量计算出手按次数;根据掘进速度计算出手按间隔时间,这样即可保证掘进工作和注浆工作同时结束。 3.3地层失水控制 由于地下水流动会产生砂土位移问题,导致砂土间隙缩小、水位下降,从而提高了土体内部应力,出现固结问题,表面沉降。由于砂土渗透性强,仅凭借土仓和络酸输送机压缩不能起到良好的效果,这就需要结合实际情况进行施工。在掘进过程中需要关注开挖面出水情况,如果碴土稀、水量大问题时,需要关闭螺栓输送机舱门,加入泡沫或膨润土外加剂,从而补充空隙,提高土层的止水性。在注浆过程中,需要保证管片壁注入量充足,对周围土体加固,从而起到止水目的,避免管片背后漏水。在通过富含地下水的地层时,需要让盾构机快速通过,并且在刀盘前方注入泥浆,在管片背后注入玻璃双浆液,这样可以封堵地下水,避免因为水量过多产生沉降问题。 4结束语

盾构施工对地表沉降影响的预估

盾构施工对地表沉降影响的预估 摘要:以杭州地铁1号线过江隧道为背景,采用经验公式法和有限元数值模拟方法研究分析盾构隧道施工引起的钱塘江北岸标准海塘地表沉降规律,比较两种方法的计算结果,验证了有限元数值模型的合理性,为隧道工程的顺利实施提供参考依据。关键词:盾构隧道;数值模拟;地层变形 杭州地铁1号线南起萧山湘湖杭州乐园,穿过滨江新中心,至钱塘江时在最低冲刷高程以下通过江底,直达江北岸进入婺江路下,并沿该路西行。过江隧道采用加泥式土压平衡盾构施工,采用钢筋混凝土管片单层装配式衬砌。盾构隧道外径6.2m,内径5.5m,衬砌厚度35cm,环宽1.2m,衬砌环全环由6块组成,环与环、块与块间均采用弯螺栓连接。 过江隧道盾构掘进时不可避免地引起地层扰动,引起地层变形及地面沉降。扰动导致土体强度和压缩模量的降低,这将引起长时间的固结和次固结。当地层变形超过一定范围时,会严重危及周围建筑物的安全。因此,掌握地层沉降规律并预先评估其影响程度,对工程的顺利实施极为重要。本文采用经

验公式法和有限元数值模拟方法对钱江通道盾构隧道施工过程中明清鱼鳞石塘的地表沉降规律进行研究,以期对海塘的保护措施及隧道工程的顺利实施提供参考依据。 1盾构隧道引起土层变形的发展过程盾构推进引起的地面沉降分为5个阶段[1-2]: 1)初期沉降:即盾构开挖面到达某一位臵之前,在盾构推进前方的土体滑裂面以外产生的沉降。因初期沉降量较小,所以一般不被人们觉察。 2)盾构到达时的地面变形:为在开挖面靠近观测点并到达观测点下方过程中所产生的沉降或隆起现象。当盾构机的正面土压力等于开挖面静止土压力时,掘进对土体影响最小;当盾构机推力不足,其正面土压力小于开挖面的静止土压力时,开挖面土体下沉;当盾构机推力过大则会引起开挖面土体的隆起。 3)盾构通过时的地面变形:为盾构机开挖面到达观测点至盾构机尾部通过观测点这一过程所产生的沉降。该沉降主要是由于盾构机的通过破坏了原来的土体状况,造成土体的扰动所致。

地铁隧道盾构施工引起的地面沉降规律分析

土压平衡盾构施工引起的地面沉降规律分析 城轨公司杨小飞 【摘要】本文对广州地铁6号线盾构2标区间盾构隧道施工过程的地面沉降监测数据进行分析,探讨了盾构施工过程地表沉降规律及其影响范围和程度,包括沉降槽分布形式、沉降随时间发展规律、沉降量概率分布的统计分析等,并用数学函数加以表达。研究结果对今后类似工程施工过程的隧道周边建(构)筑物的保护,施工参数的优化以及工程的顺利实施具有参考价值。 【关键词】盾构沉降拟合 1.引言 地铁交通在我国正处于发展阶段,由于盾构施工法的安全性和先进性,盾构技术在城市地铁隧道施工中得到越来越广泛的应用。由于地铁隧道多位于城市中心繁华地带,地下管线和地面建筑物众多,施工过程多少都会扰动地层,要完全消除地表沉降是很困难的。盾构施工过程的沉降会对地面建筑物的安全造成威胁甚至引起破坏,国内外已对施工沉降进行了大量研究,提出了许多沉降计算模型[1,2],如Peck 模型(1969),Attewell 模型(1981),O’Reilly-New 模型(1982),藤田模型(1982)等。国内专家也对国内地铁盾构施工过程的沉降规律进行了总结 [3 ]- [5 ],得到了许多具有共性的认识。但由于广州地区地质条件复杂,对沉降规律的定量研究还比较少。本文对广州地铁6号线2标区间盾构隧道施工过程的地表沉降规律及其影响范围进行研究,以期对今后类似工程建(构)筑物的保护,施工参数的优化提供参考依据。 2.工程概况 广州地铁6号线2标区间隧道采用盾构法施工。区间隧道由两条并行的单线隧道组成,其中已完成施工的【大坦沙站-如意坊站盾构区间】左右线隧道间距8.1~26m,左右线隧道总长2859.2m,隧道埋深4.7~27.8m,线路最小水平曲线半径500m,最大坡度30‰。盾构机采用德国HERRENK AG 公司生产的土压平衡式盾构(EPB),盾构机刀盘直径6280mm,采用盾尾同步注浆(砂浆)方式。隧道衬砌采用预制钢筋混凝土管片,管片环外径6000mm,内径5400mm,管片宽度1500mm。【大-如盾构区间】上覆第四系为人工填土层、淤泥层、淤泥质土层、淤泥质粉细砂层、粉质粘土、粉土层、冲积-洪积粉细砂层、冲积-洪积中、粗、砾砂层、冲积-洪积土层、可塑或稍密~中密残积土层、硬塑或密实状残积土层。下伏基岩白垩系、石炭系棕红色、红褐色岩石,风化程度不均一,软硬夹层较多。 3.沉降观测方法 3.1 观测仪器及要求 采用精密水准尺仪,铟钢水准尺、30m 检定过的钢卷尺进行沉降观测。线路沿线一般的多层建筑物和地表沉降,按国家三等水准测量技术要求作业,高程中误差≤±2.0mm,相邻点高差中误差≤±1.0mm。 3.2 沉降观测点的布设 正常情况下,沿隧道中线上方地面每隔5m 布设一个沉降观测点,每隔20m 建立一个监测横断面,该断面垂直于隧道中线,每个断面上布设5个观测点,其中隧道中线上方一个点,左右间隔5m 各一个点。对于软弱土层、或埋深较浅的区域,应根据隧道埋深和围岩地质条件,加密监测断面和测点。 当隧道上方为混凝土路面时,常布设两种沉降观测点,即分混凝土路面及路面以下土层两种,路面部分沿线路中线每20m布设一个观测断面,观测点直接布设在路面上,以量测路面沉降量;为了防止路面硬壳层不能及时、准确反映地层实际沉降情况,造成路面下方虚空,需钻穿混凝土路面并在路面以下地层中打入短钢筋布设观测点,以便对地层的沉降情况进行监测。 3.3 项沉降观测频率 盾构机机头前10m和后20m范围每天早晚各观测一次,并随施工进度递进;范围之外的监测点

隧道沉降观测方案

中交第一公路工程局有限公司 CHINA FIRST HIGHW A Y ENGINEERING CO.,L TD. 新建沪昆铁路客运专线长沙至昆明段(贵州)CKGZTJ-4 标二工区 隧道沉降变形观测方案中交第一公路工程局有限公司沪昆客专贵州段工程指挥部二工区 二○一一年一月

目录 一、总则 (2) 二、主要依据的标准及规范 (2) 三、沉降变形监测网建立及测量技术要求 (2) 四、一般规定 (3) 五、沉降观测的内容 (4) 六、沉降观测点的布置 (4) 七、观测精度 (4) 八、沉降观测频度 (4) 九、分析评估方法及判定标准 (5) 十、组织与管理 (6) 一、总则 1、为指导沪昆客运专线贵州段土建工程四标段二工区做好施工期间的沉降观测,通过对隧道工程的沉降观测资料进行分析,预测工后沉降,确定无碴轨道的铺设时间,评估路基工后沉降控制效果,确保无碴轨道结构的安全,制定本方案。 2、无碴轨道铺设条件评估的重点是线下工程的变形,评估综合考虑沿线路方向各种结构物间的变形关系进行实施。 3、基础工程的沉降观测数据必须采用先进、成熟、科学的检测手段取得,且必须真实可靠,全面反映工程实际状况。 4、本规定适用于施工期及正式验收通过前的沉降观测评估工作。 二、主要依据的标准及规范 1、《客运专线无碴轨道铺设条件评估技术指南》(铁建[2006]158号); 2、《高速铁路工程测量规范》及条文说明(TB10601-2009); 3、《工程测量规范》(GB50026-2006) 4、《国家一、二等水准测量规范》GB12897-2006 5、《客运专线铁路变形观测评估技术手册》工管技2009-77号 6、沪昆客专隧道设计图纸 三、沉降变形监测网建立及测量技术要求 1、沉降监测网的建立、精度要求等应符合相关规范的要求; 2、沉降监测网应在施工高程控制网的基础上进行加密建立,按二等水准测

浅埋暗挖地铁隧道施工地表沉降规律分析

浅埋暗挖地铁隧道施工地表沉降规律分析

————————————————————————————————作者:————————————————————————————————日期:

摘要:为了研究大连地铁202标段促进路站-春光街站暗挖区间人工素填土地段单双线隧道施工地表沉降规律,通过现场实测和数据分析整理的方法,在地铁隧道开挖期间建立了地表沉降监控量测测站,运用精密水准仪进行3个月的监测,监测结果表明浅埋暗挖隧道在开挖期间地表沉降最大位置处于隧道中心线的正上方,沉降量约为25.66~31.82mm.提出了距跨比β的概念,距跨比β的有效工程取值范围-4<β<4,地表沉降与距跨比β密切相关,其中-2<β<2地表沉降剧烈阶段,约占整体变形的67.5~77.6%,沉降速率约达0.84~0.93mm/d.建议应加强监测频率,增加现场巡视.现场测试结果与文克尔地表沉降计算模型相吻合,监测成果对大连地铁及类似的浅埋暗挖隧道建设有借鉴作用. 关键词:地铁隧道;人工素填土;地表沉降;文克尔沉降模型 0引言 随着社会经济的迅速发展和城市化步伐的加快,我国的地铁建设进入高速发展时期.在地铁隧道施工过程中不可避免地扰动隧道周围的地层,产生地表沉降,严重时将影响到周边建筑物和地下管线的安全[1-3].国内外学者展开了许多地铁隧道施工引起地表沉降变形方面的研究[4-5],对指导工程建设具有重要的理论与实际意义.由于大连地铁202标段促春区间是在人工素填土层中的地铁隧道施工,地层含水量大,地层软弱,底下管线密布,因此,对人工素填土地层中隧道施工引起的地表沉降规律进行总结研究,有着非常重要的理论和现实意义. 1工程背景 大连地铁202标段促进路站至春光街站区间设计范围为里程DK11+365.945~DK12+013.350,区间地貌为剥蚀低丘陵、冲洪积沟谷,地形起伏较大,整体上看中央高,两侧低,地面高程7.69~22.78m.沿线穿越街道、工厂、居民住宅区,建筑物密集,管线、管道众多.本文以暗挖区间为主要研究对象,右线先于左线开挖.左、右线隧道长分别为732.127m和734.273m.隧道主体横断面为单拱圆形断面,断面尺寸为6.3×6.5m.隧道范围内上覆第四系人工堆积层(人工堆积素填土、杂填土层),第四系全新统冲洪积层(卵石层),第四系上更新统坡洪积层(粉质粘土),下伏震旦系五行山群长岭子组强(全风化岩、强风化岩、中风化岩).隧道断面范围上方自上而下分别为:素填土(0.50~11.00m)和杂填土层(1.40~8.50m),卵石层(0.70~13.30m),粉质粘土(1.10~11.00m),全风化岩(2.20~29.60m).采用新奥法台阶法施工,上、中、下三个台阶依次进行施工,每次进尺1m.暗挖结构超前支护采用超前小导管注浆对地层进行预注浆加固.施工后,及时进行隧道初期支护,支护方式采用立钢拱架和挂钢筋网喷混凝土方法,初期支护贯通后即采用二次衬砌. 2地表沉降监测方案 在隧道地表上方每隔30m布置一个观测断面,每个断面布置12个点,沿着隧道轴线垂直方向地表均匀布置,间距为1.5m,采用莱卡DNA03电子水准仪按照二级水准要求进行地表沉降观测,自从2011年11月1日到2012月1月31日,共计90天的观测,为了便于分析,选取DB03、DB04、DB05个断面数据进行分析. 3监测结果分析 3.1右线隧道开挖沿着隧道方向地表沉降分析 为了便于分析总结规律,以监测断面为基准,当掌子面通过监测断面后,掌子面与监测断面的距离为正值;当掌子面未通过监测断面时,掌子面与监测断面的距离为负值.设掌子面与监测断面间的距离为L,隧道拱径为D,即为拱跨,定义L/D比值为距跨比β,即 β=L/D(1)

相关文档
最新文档