电厂循环水泵电机进水事件分析报告

电厂循环水泵电机进水事件分析报告
电厂循环水泵电机进水事件分析报告

电厂循环水泵电机进水事件分析报告

文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

电厂#1、#2循环水泵电机进水事件分析报告1、事件经过

2008年10月22日,#1-#4机全部满负荷运行,#2、#3、#4循环水泵运行,#1循环水泵检修(9月21日因泵盘根漏水致使轴承套损坏转检修)。

10:30时,检修将#1循环水泵上盖吊起。由于#1循环水泵的出口电动门不严,#1循环水泵上盖吊起后,由#1循环水泵出口管倒流回来大量的水从泵壳中涌出,流入到#1循环水泵泵坑内。为方便工作,检修在#1循环水泵泵坑内加一台20T/H的临时排水泵,边排水边工作,且规定每半小时监视一次排水情况。

12:00时运行人员到循环水泵房巡检时,检修已撤离工作现场,临时排污泵工作正常。13:10时和14:20时又有运行人员巡视,也未发现异常情况。14:35时运行值班员巡检发现#1循环水泵泵坑已满水,水正向#2循环水泵泵坑内灌,便立即重新启动临时排水泵无效,马上向值长报告,同时检修人员也到场,因原临时潜水泵已经无法启动,便另接新的潜水泵。

14:45时,#2循环水泵泵坑的水已接近电机底部。14:48时,停止#2外循运行,并将两台燃机负荷减到85MW,此时#2循环水泵泵坑的水已接近电机台面。

15:05时新接入的排污泵开始打水时,#2循环水泵泵坑已满水,相邻的#1泡沫消防泵泵坑进入水已淹没电机一半。15:10时测量#1、#2外循电机绝缘为0。

15:20时乙、丙两值交接班,此时#2机发电机冷风温度64/48度,热风温度77/70度,真空-92.74kPa;#4机发电机冷风温度37/39度,热风温度56/57度,真空-93.32kPa,余设备及系统参数均正常。由于#2发电机空冷器冷、热风温度上升较快,采用了降负荷最低(全厂至269MW)和截流#2、#4机凝汽器回水门等措施,将#2发电机冷热风温度控制到67/80左右、#2发电机定子绕组温度(最高点)控制94.3度以内。

18:50时,检修将汽机#2外循环水泵电机烘干完毕,测量绝缘

1000MΩ,送电投运正常。#2发电机风温、定子温度逐渐下降。19:30时,#1、#2机恢复正常,带至基本负荷。

2、原因分析

(1)#1循环水泵的出口门不严,造成循环水由出口管大量返水到#1循环水泵泵体并溢流到地坑内,虽然安装了一台临时排水泵,但从中午休息到下午二点半前无一名检修班人员在现场查检查临时排水泵的运行情况,导致排水泵将水排净后空转烧泵,这是造成此次故障的直接原因。

(2)检修工作期间,对排水泵运行情况,没有派人专门看守,工作安排有漏洞;对排水泵可能故障,排水过低等情况预想不到位;这是故障发生的主要原因。

(3)电厂综合水泵房各泵坑的排水汇总管道太小,在流入泵坑的水量稍大一些,就会造成排水不畅通的情况,这是原设计上的一个缺陷。这也是造成此次淹水泵的一个原因。

3、防范措施

(1)检修部应对综合水泵房各泵坑的排水汇总管道定期进行清理,并计入定期工作中。

(2)后期的工业水泵站改造的中,在工业水泵内加设一组固定排污泵,并于循环水泵坑连通。在未加设固定排污泵前,应在#1循环水泵坑处放置一临时排污泵备用。

(3)运行应加强对综合水泵房的检查,遇有特殊情况应缩短巡检时间,及时发现问题,及时处理。

(4)由此次故障反映出的#2发电机定子温度高的问题,请检修部根据情况对#2发电机空冷器和各个循环水泵的轴端密封情况进行检查。

给水泵再循环系统介绍_2

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 给水泵再循环系统介绍 给水泵再循环系统介绍泵再循环系统介绍一、综述在火电厂,作功的过程是依靠水的循环(即水由给水泵加压送到锅炉,在锅炉内受热产生蒸汽,蒸汽在气轮机内膨胀作功后经冷凝器冷凝为水,并如此循环往复。 )来实现的。 在整个循环过程中,给水泵的安全运行是实现这个循环的关键。 给水泵的出水量是随锅炉负荷而变化的。 在启动时或在负荷很低时,给水泵很可能在给水量很小或给水量为零的情况下运行,水在泵体内长期受叶轮的摩擦发热,而使水温升高,水温升高到一定程度后,会发生汽化,形成汽蚀。 造成给水泵的损坏。 为防止上述现象的发生,在给水泵出口至除氧器(或冷凝器)水箱之间安装再循环系统,在给水泵刚启动或在给水量小到一定程度时,可打开再循环系统。 将一部分水返回除氧器水箱,以保证有一定的水量(一般约为额定流量的 30%)通过水泵,而不致使泵内水温升高而汽化。 而当给水量处于正常条件下时,再循环系统关闭。 再循环系统由最小流量阀、止回阀、流量测量系统组成。 . . 系统中流量测量系统确定何时开启或关闭再循环系 1/ 18

统; . . 止回阀的目的是只允许水泵往外送水,而不允许水反向流回水泵。 防止水泵突然停止运转时,高压水反向流回水泵造成水泵倒转; . . 最小流量阀保证在再循环系统处于开启状态时高压水经过减压使阀出口压力与除氧器(或冷凝器)水箱压力接近而不致造成除氧器(或冷凝器)水箱压力震荡和发生汽蚀。 在再循环系统中很明显最主要的、工作条件最恶劣的无疑是最小流量阀。 二、最小流量阀的运行工况及其对最小流量阀可能产生的破坏最小流量阀是火电厂中运行工况最为恶劣的几种调节阀之一。 因其安装位置处于给水泵出口与除氧器水箱(或冷凝器)之间,两者间巨大的压差由该阀门承受。 无论在开启或关闭状态下,再循环系统最小流量阀始终是在高压差下工作。 在最小流量阀处于开启状态时,将高压水通过逐级减压后排至除氧器水箱(或冷凝器),并且在减压过程中不能发生气蚀;而当其处于关闭状态时,应能承受高达 350bar 甚至更高的静压差,并做到关闭紧密。 众所周知,液态介质在高压差下会产生空化。 有研究表明,空化产生于液态区的气泡,生成气泡的必要条件是液态介质所处的绝对压力低于该液体的饱和蒸汽压力。 当高压液体流经节流元件,静压能与动压能相互转换,流速增

水泵扬程与流量计算全解

水泵扬程与流量计算全解 水泵在工作时的实际流量受扬程的制约,实际扬程越高,流量越小。如果扬程已定,而想减小流量,简单的办法可用阀门控制。即可调节流量,又可省电的办法是采用变频调速,降低转速即可减小流量。 一、水泵的扬程、流量和功率是考察水泵性能的重要参数: 1. 流量水泵的流量又称为输水量,它是指水泵在单位时间内输送水的数量。以符号Q来表示,其单位为升/秒、立方米/秒、立方米/小时。 2. 扬程水泵的扬程是指水泵能够扬水的高度,通常以符号H来表示,其单位为米。离心泵的扬程以叶轮中心线为基准,分由两部分组成。从水泵叶轮中心线至水源水面的垂直高度,即水泵能把水吸上来的高度,叫做吸水扬程,简称吸程;从水泵叶轮中心线至出水池水面的垂直高度,即水泵能把水压上去的高度,叫做压水扬程,简称压程。即水泵扬程= 吸水扬程 + 压水扬程应当指出,铭牌上标示的扬程是指水泵本身所能产生的扬程,它不含管道水流受摩擦阻力而引起的损失扬程。在选用水泵时,注意不可忽略。否则,将会抽不上水来。 3. 功率在单位时间内,机器所做功的大小叫做功率。通常用符号N来表示。常用的单位有:公斤·米/秒、千瓦、马力。通常电动机的功率单位用千瓦表示;柴油机或汽油机的功率单位用马力表示。动力机传给水泵轴的功率,称为轴功率,可以理解为水泵的输入功率,通常讲水泵功率就是指轴功率。 由于轴承和填料的摩擦阻力;叶轮旋转时与水的摩擦;泵内水流的漩涡、间隙回流、进出、口冲击等原因。必然消耗了一部分功率,所以水泵不可能将动力机输入的功率完全变为有效功率,其中定有功率损失,也就是说,水泵的有效功率与泵内损失功率之和为水泵的轴功率。 二、泵的扬程、流量计算公式: 泵的扬程H=32是什么意思? 扬程H=32是说这台机器最多可以把水提高32米 流量=横截面积*流速 流速需要自己测定:秒表 三、泵的扬程估算: 水泵的扬程与功率大小没有关系,与水泵叶轮的直径大小和叶轮的级数有关,同样功率的水泵有可能扬程上百米,但流量可能只有几方,也可能扬程只有几米,但是流量可能上百方。总的规律是同样功率下,扬程高的流量少,扬程低的流量大,没有标准计算公式来确定扬程,与你的使用条件和出厂的水泵型号来确定。 可以按泵出口压力表来推算即可,如泵出口是1MPa(10kg/cm2)那扬程大约是100米,但是还要考虑吸入压力的

电机与水泵功率选择修订稿

电机与水泵功率选择 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

电机功率一般为泵功率的~倍。 用电机提升60KG重的货物以min的速度提升。我计算出来的电机功率为 电机功率计算公式可以参考下式: P= F×v÷60÷η 公式中 P 功率 (kW) ,F 牵引力 (kN),v 速度 (m/min) ,η的效率,一般左右。 例如本例中如果取η=, k=; F=60×=588(N)=(KN) P=F×v÷60÷η×k =×÷60÷× =(KW) 由于货物重量轻,提升速度慢,用以上电机足够。可以选大些。 要用电机带动小车,小车在轨道上行驶,不知电机的功率要选多大的,可以假设小车加载荷的质量为40吨,行驶速度为60m/min,行驶轨道为钢轨, 计算公式可以参考下式: P= F×v÷60÷η 公式中 P(kW) ,F(kN),v 速度(m/min) ,η的效率,一般左右。 在匀行时F 等于小车在轨道上运动时的,F=μG , μ是,与和的状态有关; G = 400kN (40 吨)。 启动过程中小车从静止加速到最高速,还需要另一个加速的力, F = ma, m是小车和负载的总质量,a 是,要求越短,a 越大,F 也越大。 所以还要加上这一部分。可以把上面考虑计算出的乘一个系数 k (可取~2倍)作为总。k 越大,加速能力越强。

例如本例中如果取η=, μ=, k=,则 P= F×v÷60÷η×k = ×400 ×60 ÷60 ÷ × = kW 顺便说一下,质量较大的物体加速过程可能较长,还要考虑采用什么,什么样的启动方式。 这句话帮我修改一下“每个电机的kW额定值将超过驱动设备在负荷点时所吸收功率的至少10%,它也将超过驱动设备在所有其它可能的操作条件下吸收功率的至少5%。对于作为变速驱动操作的电机,在本运算中所使用的kW额定值将为允许减少冷却增加损失所需的电机降低额定值后的标称kW额定值。 电机功率应根据机械所需要的功率来选择,使电动机在额定负载下运行P=F。V/ 1000 F—拉力(N),线速度---V(M/S) P1=P/N1N2 N1—生产机械效率 N2—电动机效率 在实际工作中判断匹配合理,电机动行测得工作电流与电机铭牌额定电流相差不大,则选择合理。 电动机功率与转矩 P=TN/9550 T—电机输出转矩 Nm N—电机额定转速r/mim 机械功率 P=TN/97500 T—转矩克/cm N—转速r/mim 伺服电机 :

炉水循环泵冷却水系统

3、炉水循环泵冷却水系统 为了满足炉水循环泵电机腔口的冷却水温度不超过60℃,就必须有一套可靠的冷却水系统,以消除由于电机在运转时绕组的铜损和铁损发热、转动件的磨擦生热,以及从高温的泵壳侧传来的热量而造成电机温升的不安全影响。 电动机冷却水循环回路是:高压一次冷却水从电机底部进入,经由电机下端的推力盘带动辅助叶轮,以推进循环的流动,冷却水继而流经电机的转子和静子绕组及轴承间隙,从电机上端的出水口流出,温度升高了的高压一次水经外置的高压冷却器的高压侧将热量传给低压侧的低压二次冷却水,然后被冷却后的高压一次水再进入电机,形成高压一次水的闭路循环系统。 炉水循环泵冷却水系统由高压管路及低压管路两部分组成。高压管路与电机相连接,其流通的水按其不同的工作阶段有不同的作用目的,分别称为充水、清洗水和高压冷却水。低压管路中流通的则为低压冷却水。 3.1 充水管路清洗 炉水循环泵电机轴承需冷却水润滑,电机是靠水来冷却,所以在泵投入前必须电机进行充水。水润滑轴承的润滑膜非常薄,容不得任何细小杂质混入,因此在进行电机充水前应进行充水管路的开放冲洗,待冲洗合格后才能与电机接通。充水水源取自凝结水泵出口的低压凝结水,其水质浊度小于20ppm,铁含量<3.00ppb,对电机充水后也需进一步对电机冲洗,并将贮留在电机腔内的空气排净为止。因为电机腔内水中含有空气,轴承与空气接触而得不到水的润滑与冷却,使轴承损坏,所以泵启动前充水排气是非常重要,而且其操作要自下而上缓慢进行,直至把电机内空气排净为止。 对电机的充水和清洗分为两个步骤进行:第一步充水阶段,在锅炉尚未进水前,电机必须首先进行充水,电机充水排气,直至泵体排水门(疏水门)排出不含空气的稳定水流。第二步为清洗阶段,在锅炉上水过程中必须将清洗水连续不断地注入电机,以保证清洗水连续地从电机溢出,而决不能让锅炉的炉水倒灌入电机。以上称为静态清洗,静态清洗合格后再进行动态清洗,首先将炉水循环泵的出口门保持开启,将锅炉进水至正常水位,然后对炉水循环泵先后进行三次点动,第一次点转5s,间隔15min后再点转,其目的是提高清洗效果和进一步驱赶电动机中残留空气。 在锅炉启动阶段,必须连续地投入清洗水,清洗水的投用一直要延续到确保电机冷却水系统不含有污染杂质,直至锅炉的炉水浊度小于10ppm时才可停止电机充水。 3.2 高压冷却水 一次冷却水有分别取自凝泵出口的低压水源和给水母管来的高压水源。低压一次冷却水(凝结水)供管路冲洗、电机充水、清洗以及炉水循环泵电机注水用。炉水泵在正常运行时

液压泵液压马达功率计算

液压泵液压马达功率计算 This model paper was revised by the Standardization Office on December 10, 2020

应用:(1)已知液压泵的排量是为136毫升/ 120kgf/cm 2,计Q=qn=136(毫升/转)×970转/分 =131920(毫升/分) =131.92(升/分) 系统所需功率 考虑到泵的效率,电机功率一般为所需功率的1.05~1.25倍 N D =()N=28.5~32.4(kW ) 查有关电机手册,所选电机的功率为30kW 时比较适合。 (2)已知现有液压泵的排量是为136毫升/转,所配套的电机为22kW ,计算系统能达到 的最高工作压力。 解:已知Q=qn=131.92(升/分),N D =22kW 将公式变形 考虑到泵的效率,系统能达到的最高工作压力不能超过90kgf/cm 2。 液压泵全自动测试台 液压泵全自动测试台是根据各国对液压泵出厂试验的标准设计制造,可测 试液压叶片泵(单联泵、双联泵、多联泵)、齿轮泵、柱塞泵等的动静态性能。测试范围、测试项目、测试要求符合JB/T7039-2006、JB/T7041-2006、JB/T7043-2006等有关国家标准,试验测试和控制精度:B 或C 级。液压泵全自动测试台是液压泵生产和维修企业的最重要检测设备。 液压泵全自动测试台:主要由驱动电动机、控制和测试阀组、检测计量装 置、油箱冷却、数据处理和记录输出部分等组成,驱动电动机选用了先进的变频电机,转速可在0—3000rpm 内进行无级调速,满足各类不同转速的液压泵的试验条件,也可测试各类液压泵在不同转速下的性能指标。控制阀选用了目前先进的比例控制装置,同时配置手动控制装置,因此测试时可以采用计算机自动控制和检测,也可以切换为手动控制和检测。压力、流量、转速和扭矩的测量采用数字和模拟两种方法,数字便于用计算机采集、整理和记录,模拟便于现场观察控制。油箱的散热是由水冷却装置完成,可以满足液压泵的满功率运行要求。测试台还可根据客户要求进行设计和开发,满足不同用户的特殊的个性要求。 功率回收式液压泵全自动测试台:功率回收式液压泵性能测试台是目前最 先进的节能试验方式,它解决了被压加载方式使油温上升过快,不能做连续试验和疲劳寿命试验的缺点。这种新型测试台最高可节省70%的能耗,可直接为用户带来可观的经)(9.2561292.131120612kW Q P N =?=?=

给水泵最小流量控制阀(再循环阀)

一、概述 最小流量控制阀是给水泵的重要设备,与125、200、 300、600MW 机组锅炉给水泵配套使用。当给水流量由于机 组运行工况所限低于某一最小值时,将导致给水泵内介质 汽化而使设备无法工作甚至损坏。最小流量控制阀就是当 给水流量减小到最小流量时,立即打开,介质经控制阀回 到除氧器;当给水流量达到一定量时,最小流量控制阀关闭, 系统进入正常工作。运行时给水泵出口压力很高,而除氧 器压力很低(0.8MPa 以下),所以,最小流量阀须承受很 高的压差。开高公司采用多级套筒小孔式节流罩,通过阀 芯上下移动改变节流面积,实现流量的调节;小孔式节流 罩即是一只节流元件,又是消音器,故该阀门噪音小,耐 气蚀;密封面采用免冲刷结构,选用合理的耐冲刷不锈钢 材料和适当的表面硬化处理,大大延长使用寿命 ;合理安 排压降,通道设计顺畅,避免产生闪蒸、气蚀和涡流;平 衡型阀芯设计使阀杆受力较小,操作机构较小。该阀调节 平稳、气蚀小、振动轻、噪音低、磨损小、寿命长,该阀 门采用简易装配结构,拆装方便、维修简单。 另外一种结构为迷宫式节流罩。该型阀门采用多片迷 宫片叠合而成的迷宫盘构成节流件,水流在迷宫中曲折来回而节流降压,通过阀芯上下移动来改变节流面积实现调节流量。具有抗气蚀、耐磨损、低噪音、调节平稳的特点。是当今高压差阀门技术新潮流。 二、工作原理 该系列调节阀由执行机构和阀门本体两部分构成。执行机构可选用IQL 智能型电动执行机构或DKZ 型电动执行机构及用户指定的执行机构。IQL 智能型电动执行机构接受DC4-20mA 信号,且输出DC4-20mA 反馈信号,实现比例控制,它无须开盖,可通过红外遥控器完成阀位限位、扭矩设定,阀位校准等各种参数的调整。DKZ 型电动执行器性能好、价格低、通用性强。 执行机构(或伺服放大器)接受输入信号,产生驱动力,带动阀杆动作,调节介质流量或压力,同时,执行机构反馈一个阀的位置信号,与输入信号比较,使调节阀始终处在与输入信号相对应的位置上,完成伺服调节任务。 给水泵最小流量控制阀(再循环阀)

炉水循环泵电机冷却水系统优化措施

炉水循环泵电机冷却水系统优化措施 本文主要介绍电厂锅炉炉水循环泵驱动电机冷却水的清洁度对炉水循环泵的危害,并针对炉水循环泵驱动电机冷却水系统清洁度的要求,炉水循环泵各系统安装过程中的控制措施、调试过程中的工艺控制及炉水循环泵增加外置循环滤网的优点等几个方面进行阐述;通过这些措施,达到提高炉水循环泵驱动电机冷却水系統清洁度的目标,极大提高了炉水循环泵的安全运行保障。 标签:炉水循环泵;清洁度;滤网改进措施 1、目的 炉水循环泵可以比作控制循环锅炉的起搏心脏,离开了炉水循环泵锅炉就影响运行。应充分认识该泵的性能和特点,尤其要注意冷却水系统对炉水循环泵安全运行的重要性。为有效控制发电厂锅炉炉水循环泵驱动电机冷却水清洁度的状况,降低炉水循环泵在运行过程发生设备损坏、冷却水管道堵塞、冷却水清洁度差的概率,特在锅炉炉水循环泵驱动电机冷却水系统内部清洁度常规控制、检查措施的基础上,通过现场进行革新增加外置滤网,改良安装过程等方法来提高炉水循环泵驱动电机冷却水内部清洁度目标。 2、影响炉水循环泵驱动电机冷却水清洁度原因分析 造成电厂炉水循环泵驱动电机冷却水清洁度差的过程主要有两个因素,一个因素是材料在生产、存放和运输过程中形成的;一个因素是在管道系统施工过程中形成的;经过对以上两个因素的细化分析,造成循环泵驱动电机冷却水清洁度差的主要原因有一下几点: (1)锅炉启动冲洗运行过程炉水中的杂质; (2)冷却水管道管子内部的杂质等; (3)炉水循环泵运行过程中产生的铁离子等杂质。 3、电机冷却水清洁度差对炉水循环泵造成的危害 炉水循环泵冷却水系统是用来消除由于电机在运行时绕组的发热、转动件的摩擦生热,以及从高温的泵壳侧传过来的热量而造成电机升温的不安全影响。高压冷却水从炉水泵电机的底部进入,经电机下端的推力轴承带动辅助叶轮,以建立循环的流动。温度升高的电机冷却水再经电机热交换器将热量传给低压冷却水,然后,被冷却过的高压冷却水再返回进入电机,形成闭路循环流动。锅炉炉水循环泵在运行过程中,锅炉水中的杂物会随着锅炉循环泵驱动电机冷却循环水的流动进入驱动电机中,加之循环泵本身采用内置于电机内过滤器,过流面积小,极易堵塞循环水路,造成冷却循环水流量减小,另外在这些杂物中含有铁质颗粒,

水泵设计计算分析

平顶山工学院市政工程系0214081-2班 《水泵及水泵站》课程设计任务书 一、课程设计的目的 1、通过课程设计,使学生所获得的专业理论知识加以系统化,整体化,以 便于巩固和扩大所学的专业知识; 2、培养学生独立分析,解决实际问题的能力; 3、提高设计计算技巧和编写说明书及绘图能力; 4、为适应工作需要打一下的基础。考虑美观以及便于施工等要求,根据可 能和合理方案进行技术经济比较选定工程枢纽的布局,建筑物的结构型式,材 料和施工方法等。 二、设计题目:海口城市净水厂送水泵站 三、设计原始资料 1、任务书 某城市所需用水量22.8×104 m3/d,用水最不利点地面标高66.60 m、服务水头24m,泵站处的地面标高65.3 m、水池最高水位64.60m、水池最低水位标 61.60m,经计算管网水头损失19.93m。试进行泵站工艺设计。 2、地区气象资料: 最低气温:-5~15℃,最高气温:35~41℃,最大冰冻深度15㎝。 3、泵站地址1∕100~1∕500地形图(暂缺) 4、站址处要求抗震设计烈度为7°。 5、电源资料:采用双回路供电,电压等级为:220V、380 V、10KV。 四、课程设计内容 城镇给水厂送水泵站扩初设计。 五、设计成果: 1. 说明书:概述:包括设计依据、机组选择、台数、泵站形式和建筑面积、 启动方式等。 2.计算书:按教材中所要求步骤计算,写明计算过程并附必要草图。 图纸:泵站平、剖面图各一张(比例1∕50~1∕200)。 六、设计依据

1、《水泵与水泵站》教材 2、《给排水设计手册》第一、十、十一册 3、《快速给排水设计手册》第四、第五册 七、设计时间安排 给水排水工程泵站课程设计时间18周一周(2010年12月27日—31日),要求学生集中时间完成全部内容,时间安排如下: 1、基础资料收集0.5d 2、泵站规模计算及运行方式确定1d 3、水泵选型及泵房布置0.5d 4、泵房平面图、剖面图绘制2d 5、整理设计计算书和说明书1d 八、设计纪律要求 1、设计中要自主完成,杜绝抄袭现象。 2、正常上课期间所有设计学生必须到教室进行设计,上午8:00 ~ 12:00,下午2:00 ~ 3:45,不得迟到和早退。 3、设计期间指导教师实行不定期点名制度,两次无故不到者设计成绩降级。四次无故不到者设计成绩为不及格。 4、由于设计时间较紧,希望同学们克服困难,按时、认真完成本次设 计任务。 九、成绩评定 学生的课程设计成绩由指导老师根据学生在设计期间的设计图纸、设计计算说明书、答辩、出勤等情况综合评定。成绩分:优、良、中、及格、不及格五个等级。 其中,设计图纸占50%,设计说明书占30%,答辩占10%,出勤占10%。成绩评定标准如下: 优:能认真完成设计指导书中的要求,设计过程中,严格要求自己,独立完成设计任务,图纸整洁、绘制标注规范,设计方案合理,思路清晰,设计说明书内容充实工整,应用理论正确,有创新性。答辩正确,设计期间出满勤。 良:能较好的完成设计指导书中的要求,能独立完成设计任务,设计思路

炉水循环泵马达腔冷却水温度升高的原因分析及预防措施

第6期锅炉制造 No.62012年11月 BOILER MANUFACTURING Nov.2012 文章编号:CN23-1249(2012)06-0058-03 炉水循环泵马达腔冷却水温度升高的 原因分析及预防措施 赵现华,张国伟 (哈尔滨锅炉厂有限责任公司,黑龙江哈尔滨150046) 摘 要:根据某电厂提出我公司超临界660MW 锅炉的启动循环泵马达腔冷却水温度升高的问题,给出了炉 水循环泵的结构及产生问题的原因分析。关键词:锅炉;循环泵;热屏蔽;马达腔;高压冷却器中图分类号:TK223.7 文献标识码:A Analysis and Ameliorative Methods for High Temperature of Cooling Water in Motor Cavity of Boiler Water Circulating Pump Zhao Xianhua ,Zhang Guowei (Harbin Boiler Co.,Ltd.,Harbin 150046,China ) Abstract :According to the problem of high temperature of cooling water in motor cavity of circulat-ing pump for 660MW supercritical boiler of some power station ,analyze the reasons and bring for-ward the ameliorative methods. Key words :boiler ;circulating pump ;heated shield ;motor cavity ;high pressure cooler 收稿日期:2012-03-15 作者简介:赵现华(1982-),男,工程师,2004年毕业于辽宁工程技术大学热能与动力工程专业,现从事电站锅炉的安装工作。 0引言 某电厂扩建机组2?660MW 锅炉,在运行初期就发现锅炉炉水循环泵马达腔内温度异常,但是在运行时能够保证马达腔内的冷却水温度稳定在40?左右,温差不超过2?,但是在停炉后转湿态的情况下却发现马达腔内的冷却水温度急剧升高,短时间内升到58?,且有上升趋势,因马达腔内的温度正常运行值为40 50?,报警值为60?,到达65?时锅炉将MFT ,因而当温度急剧升高时为锅炉的安全运行留下隐患。 1设备概述 我公司超临界600MW 及以上锅炉都配备一 台炉水循环泵,炉水循环泵是属于离心式单级泵, 马达与泵由一立式主轴连接,所有内件包藏在一只主要由泵壳体,隔热体及马达组成的筒体(泵壳体位于最上部分),马达筒体外面装有高压冷却器,马达组件与泵壳体通过16条主螺栓与主螺母连接。 2 循环泵主要部件及作用 2.1 泵 泵基本上是由壳体及水力组件组成(水力组 件如:叶轮,扩散器等),它是在高温高压下循环炉水用的。在旋转的叶轮中,传送液体的压力和速度能量在增加,一部分速度能在扩散器中转化成静压能,扩散器的用途是将液体导至排出管口。

泵轴功率和电机配置功率之间的关系

泵轴功率和电机配置功率之间的关系 额定功率即铭牌功率,也是电动机的轴输出功率,也是负荷计算所采纳的数据。Pe=1.732*0.38*Ie*额定功率因数*电动机效率。因此,电动机额定电流Ie=Pe/(1.732*0.38*额定功率因数*电动机效率)电动机的输入功率P1=Pe/电动机效率。P1跟我们关系不大,一般不再换算此值。例如:一台YBF711-4小型电机的铭牌数据:额定功率250W,额定电压380V,额定电流0.85A,功率因数0.68,无效率数据。 如果不算效率,额定电流=0.25/(1.732*0.38*0.68)=0.56A,跟0.85A 不符。如果算效率:额定电流=0.85=0.25/(1.732*0.38*0.68*效率)。由此可以反算效率为:0.25/(1.732*0.38*0.68*0.85)=0.66。 水泵所需功率与电动机额定功率的关系。假设水泵的扬程为H (m),流量为Q(L/s),那么很容易推算其实际需要的有效功率P3为:P3=H*Q*g(g=9.8,常数)(W);因为水泵本身也存在效率,因此需要提供给水泵的实际功率P2=P3/水泵效率。P2算出来往往跟电机的额定功率不会正好相等,因此就选择一个大于(但接近)P2的一个电机功率Pe。比如P3=10KW,水泵效率为0.7,电机功率为0.9,那么P2=P3/0.7=14.3kw,可选择Pe=15KW或18.5KW的配套电机;电机的实际输入功率P1=15/0.9=16.7kw(或18.5/0.9=20.1KW)。 泵轴功率是设计点上原动机传给泵的功率,在实际工作时其工况点会变化,另电机输出功率因功率因数关系会有变化。因此,原动机传给泵的功率应有一定余量,经验作法是电机配备功率大于泵轴功率。轴功率余量见下表,并根据国家标准Y系列电机功率规格选配。

KSB炉水再循环泵的安装与运行

KSB炉水再循环泵的安装与运行 摘要:介绍了德国KSB炉水再循环泵的结构原理、安装和运行情况,对以后安装调试维护德国KSB炉水泵提供指导意义。 关键词:循环泵电机一次二次冷却水高压冷却器热屏蔽装置 0引言 随着火电大型机组的应用,德国KSB公司生产的再循环泵在电厂中应用越来越多。近年来,我司对德国KSB炉水泵电机进行了比较多的安装。KSB炉水泵电机在安装及运行中曾出现了泄露、电机超温、电流过大一些问题,对此总结了大量经验。 1KSB炉水循环泵的设计原理 KSB无填料循环泵设计用于进行循环炉水。循环泵和驱动电机形成一个封闭偶联装置。装置垂直安装,电机在泵壳的正下方。整套泵装置充注液体,压力与整个系统压力相同。电机部分和泵壳之间通过泵壳紧固螺栓连接。整套泵装置处于密封状态。泵壳和热屏蔽装置之间的热区域的密封通过螺旋缠绕的垫片来实现。泵装置悬挂在管线上,没有支撑架。它在管线系统中不形成一个固定点。 2循环泵基本装配规程 2.1锅炉循环泵安装前的准备工作 确保进出口内部绝对清洁。确保循环泵的周围有足够的空间,以允许装配组件本身和管道能够容纳安装时所产生的热膨胀。循环泵的任何附属设施,即供电线路、电缆等的铺设必须是挠性的并且长度要足够可以允许循环泵装置的热态膨胀。在电机部分的下方应有足够的空间以便拆卸电机装置。安装循环泵需要提升装置。使用的每个提升装置都必须能够单独承载泵装置的全部重量。只有泵壳需要提供保温(热绝缘)。保温界限为泵壳的下边缘。电机和紧固螺栓不要保温,因为这会在温度过分升高时对电机造成损坏。 2.2锅炉循环泵泵壳的安装 使用足够尺寸的提升器具将泵壳放到所需要的垂直安装位置,吸入管口要朝向上方。矫直泵壳。垂直偏离度不应该超过1°。泵壳应先定位点焊在管道上。点焊完后,再检查一下垂直偏离度。如果有必要的话,矫直泵壳。将进口管线和出口管线焊接到泵的管口上,注意不要有应力或应变传递到泵上。在焊接时要确保不要有焊接微粒进入管道开口。 2.3循环泵电机的安装

炉水循环泵电机腔室注水注意事项

炉水循环泵电机腔室注水注意事项 炉水泵注水思路: 用凝结水对炉水泵电机腔室进行注水,先对注水滤网进行冲洗,开启注水滤网放水门,冲洗滤网不小于5分钟,然后对注水管路进行冲洗,冲洗化验水质合格后通过调整阀门开度调整注水,然后对炉水泵电机腔室进行注水,从炉水泵泵体排放管处排空,有连续水流出并且化验水质合格,注水才算合格。 炉水泵电机测绝缘(建议进行三次测绝缘): 1、炉水泵注水前测绝缘记录数据。 2、炉水泵注水结束后测绝缘记录数据。 3、储水箱上水后测绝缘。 注水步骤及注意事项: 1、开始注水前首先确认以下阀门确在关闭状态: 炉水泵电机注水一次手动门(悬空)、炉水泵电机注水二次手动 门(悬空)、给水到炉水泵电机注水手动门。 2、炉水泵注水滤网冲洗: 1)要求凝结水系统运行正常,凝结水水质合格,炉水泵注水滤 网后手动门关闭。 2)开启注水滤网放水一次门、二次门。 3)开启凝结水来注水手动一次门、二次门。 4)对注水滤网进行大流量冲洗不小于5分钟,并目测水流干净。

5)冲洗完毕后关闭注水滤网放水一次门、二次门。 3、炉水泵注水管路进行冲洗 1)冲洗前再次确认炉水泵注水一次手动门(悬空)、炉水泵电机注水二次手动门(悬空)在关闭状态。 2)开启炉水泵注水管道冲洗放水手动门。 3)开启注水冷却器后注水手动门。 4)开启注水冷却器前注水手动门。 5)开始注水管路进行大流量冲洗,目测水质干净后在冲洗10分钟,联系化验对水质取样化验,期间仍然保持冲洗管路大 流量冲洗状态直到水质合格。 6)注水水质要求:导电度不大于0.2us/cm、PH值8~9(以化验专业为准),注水水温(以凝结水温度做参考)大于4℃ 小于54℃。 4、炉水泵电机腔室注水: 1)要求第三步水质化验合格。 2)调整凝结水来注水手动一次门开度,用量桶和秒表测量注水流量大约为2~3L/min,严格控制注水流量不能大于 5L/min。 3)调整好流量后保持凝结水来注水手动一次门开度不变,关闭炉水泵注水管道冲洗放水手动门。 4)开启泵体排空气管手动门。 5)缓慢开启炉水泵注水一次手动门(悬空)、炉水泵电机注水

炉水循环泵说明书915-1-8609

说明 对于炉水循环泵(简称炉水泵)应包括两方面的内容,其一是炉水泵设备本身,其二是为炉水泵成套的冷却系统,两者结合一起才构成一个完整体。没有冷却系统,炉水泵无法使用。 关于炉水泵设备本身(包括泵体与电机两部分及其附属的仪表装置等)是由泵的制造厂家完成配套出厂,而冷却系统则由锅炉制造厂承担设计并配套供货。故炉水泵的说明书也由二部分组成,第一部分是有关炉水泵设备本身的(包括技术性能、结构介绍、设备保养、安装、运行、维修等)说明书(中英文版)由泵厂提供,第二部分是关于冷却系统说明书(即本说明书)则由上海锅炉厂有限公司进行编写,主要是结合上海锅炉厂有限公司提供的炉水循环泵冷却系统布置图(501915-E1-08)加以阐明,用户可在此基础上再进一步制订具体的操作规程。 阅读本说明书时,请对照501915-E1-08循环泵冷却系统图。

1.概述 1.1锅炉机组水循环系统是以投运三台循环泵中的二台即能带满负荷进行设计,另一台泵可作为备用。若单台泵运行则锅炉负荷必须减低到BMCR(最大连续出力)的60%,即连续运行负荷在60%BMCR以下,可以单台泵投运,若所有循环泵都停转,则不允许锅炉运行。 三台泵可任意切换,当二台运行时,若任一泵出现故障则通过自控装置能自动切换到另一泵工作,此时如备用泵启动条件不满足,在5秒种内不能启动时,则自动降负荷至60%BMCR,在此期间水循环仍然安全。如无泵运行,则通过与循环泵压差测量仪表连锁的燃料跳闸起保护作用而自动停炉(MFT)。推荐以三泵投运方式为宜,以避免二泵运行时一旦某泵突然故障而备用泵又一时启动不了,会影响到锅炉的负荷,若三泵运行,则即使一台泵故障而停用,对负荷毫无影响,这种运行方式偏于保守,当然三泵运行时对厂用电耗有所增加,但耗电有限,通常可不加计较。 从锅炉水循环角度考虑,不论投运三泵、二泵、一泵,任何运行方式都可保证安全。 1.2炉水泵电机的冷却系统由高压管路和低压管路两部分组成。 高压管路与炉水泵电机腔体相连接,其流通的水按其不同的工作阶段有不同的作用目的,分别称为充水(Filling Water)、清洗水(Purge Water)和高压冷却水(H、P、Cooling Water),而在低压管路中流通的则始终是低压冷却水(L、P、Cooling Water)。 (a)充水和清洗水 水源取自凝水泵出口的低压冷凝水母管。泵电机在安装或检修后,必须先对高压管路进行冲洗,直至管路冲洗干净合格后才能与电机相连。接着对电机充水,并进一步对电机进行冲洗,直到电机冲洗合格。在此期间,电机尚未启动,锅炉尚未升压,故此时的充水和清洗水不需要高压,但进入电机的水有一定要求,故要控制水质。 (b)高压冷却水 冷却水从泵电机的底部进入,经电机下端的推力轴承带动辅助叶轮,以建立循环的流动,继而流过电机的转子和定子绕组及轴承间隙,从电机上端的出水口流出。温度升高了的电机冷却水(亦称高压一次水)再经外置的热交换器高压

炉水循环泵及其系统调试方案(内容)

目录 1. 编制依据 (1) 2. 调试目的 (1) 3. 调试对象及范围 (1) 4. 试转应具备条件及系统启动前检查 (2) 5. 调试工作程序 (3) 6. 调试步骤 (3) 7. 组织与分工 (5) 8. 环境、职业健康、安全、风险因素识别和控制措施 (6)

1. 编制依据 1.1 《中国国电集团公司火电厂基本建设工程启动及验收管理办法(2006年版)》1.2 《中国国电集团公司火电工程启动调试工作管理办法(2006年版)》 1.3 《中国国电集团公司火电工程调整试运质量检验及评定标准(2006年版)》1.4 《中国国电集团公司火电机组达标投产考核办法(2006年版)》 1.5 《超临界火电机组水汽质量标准》(DL/T 912-2005) 1.6 《锅炉启动调试导则》DL/T852-2004 1.7 《防止电力生产重大事故的二十五项重点要求》 1.8 国电双鸭山发电有限公司三期工程2×600MW机组有关文件、图纸 1.9 国电双鸭山发电有限公司三期工程2×600MW机组调试大纲 1.10《电力基本建设热力设备化学监督导则》DL/T889-2004 2. 调试目的 为了指导及规范锅炉炉水循环泵及其系统的调试工作,保证系统及设备能够安全正常投入运行,特制定本调试方案。 3. 调试对象及范围 炉水循环泵系统主要包括炉水循环泵、冷却水管道、阀门及热工测点。 炉水循环泵设备规范见表1。

4. 试转应具备条件及系统启动前检查 试运现场照明充足,通讯畅通。试运设备及周围垃圾、杂物等已清理干净,脚手架拆除,地沟盖板完好,附近无易燃易爆品。试运设备及系统的热工保护试验已完成,测量仪表、保护装置正常投入。 4.1 炉水循环泵的安装、保温工作全部结束,经检查验收合格; 4.2 炉水循环泵各低压冷却水系统、高压充水和清洗管道及低压临时充水管道的安装工作结束,经水压试验合格; 4.3 炉水循环泵电机及各有关的测量表记接线完毕,接线正确; 4.4 炉水循环泵的有关安装检查、验收、签证工作结束; 4.5 有关的临时设施拆除; 4.6 设备厂家服务人员到位,现场指导工作。

炉水循环泵电机冷却系统设计特点

2011年8月Vol 34No.4 广西电力 GUANGXI ELECTRIC POWER 炉水循环泵电机冷却系统设计特点 Design Features of Motor Cooling System for Boiler Circulation Pump 卓宁 ZHUO Ning (广西电力工业勘察设计研究院,广西南宁530023) 摘要:火力发电厂炉水循环泵运行时,因电机超温导致被迫停泵的事件时有发生。电机超温的原因除了电机本身的设计缺陷外,电机冷却水系统设计不合理是主要原因。通过对炉水循环泵高压冷却水系统和低压冷却水系统的工作原理分析,并结合炉水循环泵冷却系统在电厂中的实际设计,以及炉水循环泵实际运行过程中出现的一些问题,进而采取的一些优化整改措施,解决了因电机超温导致被迫停泵的问题,保证炉水循环泵安全稳定运行。 关键词:炉水循环泵;冷却水系统;应急冷却水泵;屏蔽泵中图分类号:TM 752文献标志码:B 文章编号:1671-8380(2011)04-0036-03 收稿日期:2010-03-22;修回日期:2011-05-26 目前,炉水循环泵技术在大型发电厂已得到广泛应用,发挥了其应有的作用,但也逐渐暴露出一些 问题。其中电机超温导致被迫停泵是主要问题,这个问题的原因除了电机本身的设计缺陷外,电机冷却系统设计完善与否是另一重要因素。 1炉水循环泵设备简介 锅炉炉水循环泵驱动炉水强制循环,可减小水冷壁在锅炉启动时的壁温差,降低由温差引起的热应力,满足机组快速灵活启动,提高锅炉使用寿命。 循环泵垂直安装,电机在泵的正下方。亚临界控制循环炉的炉水循环泵安装在下降管底部。给水经省煤器进入汽包,然后经下降管进入炉水循环泵的吸入联箱,再由炉水循环泵打入前水冷壁下集箱,采用循环泵加快了炉水的循环升温速度,控制汽包上下壁温差的效果优于自然循环炉。超临界直流炉的炉水循环泵安装在贮水箱下方,主要作用是在锅炉点火前进行循环清洗,在启停或低负荷的状态下保证水冷壁最低直流负荷,保护水冷壁的受热面,也称为启动再循环泵。 炉水循环泵是一种屏蔽泵。屏蔽泵的特点是使用了潜水湿式电机。电机和泵通过泵壳紧固螺栓连接,泵与电机形成一个封闭的偶联装置,电机运行时充满液体,导向轴承、推力轴承、电机绕组、隔热屏和 转子等部件浸泡在水中,电机工作时腔室温度不能大于65℃(一般温度达60℃时报警),其产生的热量由高压冷却水吸收带走。泵与电机之间有1个热屏蔽装置,将热的泵体和冷的电机隔开,将二者之间的热传导降低到最小程度,热量通过冷却水流过的 冷却室散发。 电机底部的推力盘上有径向孔,可以起到辅助叶轮的作用,推力盘跟随转子转动,维持高压冷却水在电机和高压冷却器之间的循环。 2电机冷却水系统的设计 炉水循环泵电机冷却水系统由高压冷却水和低 压冷却水组成。高压冷却水系统循环于电机体内,由泵厂设计,低压冷却水系统一般由电厂建设工程的设计单位设计。2.1高压冷却水 炉水循环泵电机腔室高压冷却水水质要求与锅炉给水相同,高压冷却水来自锅炉给水泵高加前的给水,从电机底部注入,由推力盘辅助叶轮提供动力,冷却水在轴承、电机绕组和外部热交换器间建立循环流动,见图1。发生以下3种情况,辅助叶轮随电机停转,此时,高压冷却水主要靠热虹吸效应实现自然循环,带走电机热量。①全厂厂用电失电,电机 失去动力电源; ②1台炉水循环泵作为备用泵,泵的进出口不设关断门,电机不转动,而泵腔内的炉水随 36

水泵轴功率计算公式

水泵轴功率计算公式 英文词条名: 1)离心泵 流量×扬程×9.81×介质比重÷3600÷泵效率 流量单位:立方/小时, 扬程单位:米 P=2.73HQ/Η, 其中H为扬程,单位M,Q为流量,单位为M3/H,Η为泵的效率.P为轴功率,单位KW. 也就是泵的轴功率P=ΡGQH/1000Η(KW),其中的Ρ=1000KG/M3,G=9.8 比重的单位为KG/M3,流量的单位为M3/H,扬程的单位为M,1KG=9.8牛顿 则P=比重*流量*扬程*9.8牛顿/KG =KG/M3*M3/H*M*9.8牛顿/KG =9.8牛顿*M/3600秒 =牛顿*M/367秒 =瓦/367 上面推导是单位的由来,上式是水功率的计算,轴功率再除以效率就得到了. 设轴功率为NE,电机功率为P,K为系数(效率倒数) 电机功率P=NE*K (K在NE不同时有不同取值,见下表) NE≤22 K=1.25 22

流量Q M3/H 扬程H 米H2O 效率N % 渣浆密度A KG/M3 轴功率N KW N=H*Q*A*G/(N*3600) 电机功率还要考虑传动效率和安全系数。一般直联取1,皮带取0.96,安全系数1.2 (3)泵的效率及其计算公式 指泵的有效功率和轴功率之比。Η=PE/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。有效功率即:泵的扬程和质量流量及重力加速度的乘积。 PE=ΡG QH (W) 或PE=ΓQH/1000(KW) Ρ:泵输送液体的密度(KG/M3) Γ:泵输送液体的重度Γ=ΡG(N/ M3) G:重力加速度(M/S) 质量流量QM=ΡQ (T/H 或 KG/S) (4)水泵的效率介绍 什么叫泵的效率?公式如何? 答:指泵的有效功率和轴功率之比。Η=PE/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。有效功率即:泵的扬程和质量流量及重力加速度的乘积。 PE=ΡG QH W 或PE=ΓQH/1000(KW)

炉水循环泵试运措施

1、设备系统概述 1.1 总体概述 天津国投津能发电有限公司一期工程#2 机组锅炉为上海锅炉厂引进美国ALSTOM公司的技术生产的超超临界参数变压运行螺旋管圈直流锅炉,型号为 SG-3102/27.46-M532,单炉膛双切圆燃烧方式、一次中间再热、平衡通风、固态 排渣、全钢架悬吊结构、半露天Π 型布置。设计煤种为平朔安太堡煤,校核煤 种 I 为晋北烟煤,校核煤种 II 为云峰混煤。采用中速磨冷一次风正压直吹式制粉系统,配 6 台 MPS275 辊盘式磨煤机,正常运行, 5 运 1 备,其中 A 磨采用微油点火方式。燃烧方式采用低 NOx 同轴燃烧系统(LNCFS),48 只直流燃烧器分 6 层布置于炉膛下部四角和中部,在炉膛中呈双切圆方式燃烧。 炉膛宽度 34290mm,深度 15544.8mm。炉膛由膜式壁组成,炉底冷灰斗角度 为 55°,从炉膛冷灰斗进口集箱(标高 7500mm)到标高 51996.5mm 处炉膛四周 采用螺旋管圈,在此上方为垂直管圈。螺旋管圈与垂直管圈过渡采用中间混合集箱。炉膛上部及水平烟道从前至后分别布置分隔屏过热器、后屏过热器、末级过热器、 末级再热器,后烟井分成前后两个分隔烟道,前烟道布置有低温再热器和省煤器, 后烟道布置有低温过热器和省煤器,在前后烟道中省煤器下部布置调温挡板,用于 调节再热汽温。锅炉采用机械干式出渣系统。 锅炉启动系统采用带循环泵的内置式启动系统,锅炉炉前沿宽度方向垂直布置 4 只汽水分离器和 2 个贮水箱。当机组启动,锅炉负荷低于最低直流负荷 30%BMCR 时,蒸发受热面出口的介质流经分离器进行汽水分离,蒸汽通过分离器 上部管接头进入炉顶过热器,而饱和水则通过每个分离器下方连接管道进入贮水箱中,贮水箱上设有水位控制。贮水箱下疏水管道引至一个三通,一路疏水至炉水 循环泵入口,另一路接至大气扩容器疏水系统中。 过热器汽温通过煤水比调节和三级喷水来控制,第一级喷水布置在低温过热 器出口管道上,第二级喷水布置在分隔屏过热器出口管道上,第三级喷水布置在 后屏过热器出口管道上,过热器喷水取自省煤器进口管道。再热器汽温采用尾部 挡板调节,燃烧器摆动仅作为辅助调节手段,另外低温再热器出口管道上设置微量 喷水,微量喷水取自给水泵中间抽头。 锅炉一次汽系统采用100%高压旁路(三用阀)+ 65%低压旁路配置,过热

排气再循环(EGR)系统原理说明

排气再循环系统(EGR) 燃烧原理:燃烧温度越高,NOx产生越多,在最适合于燃烧的点火时期点火及最经济的空燃比时,产生的NOx最多。为了减少NOx的排放,应该考虑不利于燃烧的空燃比及点火时期,可是这样又容易产生不完全燃烧,增加HC及CO的排放,还会使发动机的功率下降。可以较好地解决这一矛盾的技术称为排气再循环技术 (Exhaust Gas Recirculation),缩写为EGR。EGR可使发动机排出气体的一部分重新进入进气系统,引入不活性气体(主要是CO2)到燃烧室,增加燃烧室内气体的热容量,使最高燃烧温度下降,故可抑制 NOx的生成。 下面简单介绍一下EGR系统的工作原理: EGR(废气再循环系统),主要用来降低废气中氮氧化合物的排放量。其原理如上图所示。

ECU根据发动机转速、负荷(节气门开度)、温度、进气流量、排气温度控制电磁阀适时地打开,进气管真空经电磁阀进入EGR阀真空膜室,膜片拉杆将EGR阀门打开,排气中的少部分废气经EGR阀进入进气系统,与混合气混合后进入气缸参与燃烧,降低了燃烧时气缸中的温度,因NOx是在高温富氧的条件下生成的,故抑制了NOx的生成,从而降低了废气中的NOx 的含量。EGR系统的主要元件是位于进气歧管上的EGR阀。在发动机暖机运转和转速超过怠速时,EGR阀开启,使少量的废气进入进气歧管,与可燃混合气一起进入燃烧室;当发动机在怠速、低速、小负荷、及冷机时,为了避免发动机的动力性能受到影响,ECU控制EGR阀关闭。 EGR阀中有一与其做成一体的EGR阀位置传感器(EVP Sensor),该传感器是一电位计式位移传感器,用于检测EGR阀的实际位置,输出相应电压信号给控制器,控制器据此判断阀门是否对ECU的指令做出正确响应。同时,它的信号输出也是发动机ECU计算废气再循环流量的依据。通常,EVP 传感器是一个三线传感器,一条是发动机ECU提供的电源电压,另外一条是传感器的接地线,第三条是传感器给发动机ECU的反馈信号输出线;在EGR 阀关闭时产生1V以下的电压,在EGR阀打开时产生5V以下的电压。它是EGR系统中的重要传感器,一个损坏的EVP传感器会造成喘车现象、发动机产生爆震、怠速不良和其他行驶性能故障,甚至检查维护(I/M)尾气测试也不正常。 过度的废气参与再循环,将会影响混合气的着火、性能,从而影响发动机的动力性,特别是在发动机怠速、低速、小负荷及冷机时,再循环的废气会明显地影响发动机性能。所以,当发动机在怠速、低速、小负荷及冷机时,电脑控制废气不参与再循环,避免发动机性能受到影响;当发动机超过一定的转速、负荷及达到一定的温度时,电脑才控制少部分废气参与再循环。而且,参与再循环的废气量根据发动机转速、负荷、温度及废气温度的不同而不同,以达到废气中的NOx最低。

相关文档
最新文档