复杂高层结构包括的结构内容

复杂高层结构包括的结构内容

复杂高层结构包括的结构内容

带转换层的高层建筑结构

在高层建筑结构的底部,当上部楼层部分竖向构件,如剪力墙、框架柱不能直接连续贯通落地时,应设置结构转换层。在结构转换层布置转换结构构件。

转换结构构件可采用梁、桁架、空腹桁架、箱形结构、斜撑等;非抗震设计和6度抗震设计时转换构件,以及7、8度抗震设计的地下室的转换构件可采用厚板。

关于转换层的设置位置《高规》规定,底部大空间部分框支剪力墙高层建筑结构在地面以上的大空间层数,8度时不宜超过3层.7度时不宜超过5层,6度时其层数可适当增加;底部带转换层的框架一核心筒结构和外筒为密排柱的筒中筒结构,其转换层位置可适当提高。

(2)带加强层高层建筑结构

当框架-核心筒结构的侧向刚度不能满足设计要求时,可沿竖向利用建筑避难层、设备层空间,设置适宜刚度的水平伸臂构件,构成带加强层的高层建筑结构如图4-1所示。必要时,也可设置周边水平环带构件。加强层采用的水平伸臂构件、周边环带构件可采用斜腹杆桁架、实体粱、整层或跨若干层高的箱形梁、空腹桁架等形式。

加强层的位置和数量要合理有效。当布置1个加强层图4-1带加强层的高层建筑结构时,位置可在0 6H附近;当布置2个加强层时,位置可在顶层和0 5H附近;当布置多个加强层时,加强层宜沿竖向从顶层向下均匀布置。

高层建筑结构设计试题及复习资料

高层建筑结构设计 名词解释 1. 高层建筑:10层及10层以上或房屋高度大于28m 的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而 设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置 轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力?-P 效应的主要参数。 10. 抗推刚度(D ):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产 生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的 变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受 轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹 塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固 端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。 第一章 概论 (一)填空题 1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002)规定:把10层及10层以上或房屋高度大于28m 的建筑物称为高层建筑,此处房屋高度是指室外地面到房屋主要屋面的高度。 2.高层建筑设计时应该遵循的原则是安全适用,技术先进,经济合理,方便施工。 3.复杂高层结构包括带转换层的高层结构,带加强层的高层结构,错层结构,多塔楼结构。

高层建筑结构设计的影响因素有哪些

高层建筑结构设计的影响因素 目前国内高层建筑的四大结构体系:框架结构、剪力墙结构、框架剪力墙结构和筒体结构。我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特点及其结构体系,只有这样才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。 一、高层建筑结构设计的特点 高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有:(一)水平力是设计主要因素 在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。 (二)侧移成为控指标 与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H的4次方成正比(△=qH4/8EI)。 另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况: 1.因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。 2.使居住人员感到不适或惊慌。 3.使填充墙或建筑装饰开裂或损坏,使机电设备管道损坏,使电梯轨道变型造成不能正常运行。 4.使主体结构构件出现大裂缝,甚至损坏。 (三)抗震设计要求更高 有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。 (四)减轻高层建筑自重比多层建筑更为重要 高层建筑减轻自重比多层建筑更有意义。从地基承载力或桩基承载力考虑,如果在同样地基或桩基的情况下,减轻房屋自重意昧着不增加基础造价和处理措施,可以多建层数,这在软弱土层有突出的经济效益。 地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。

高层建筑结构设计习题

一、简答题 1..试述高层建筑结构的受力特点。 2. .框架结构抗震延性设计的原则是什么? 3..剪力墙按受力特性的不同分为哪几类?各类的受力特点是什么? 4.对于剪力墙结构,平面及竖向结构布置有哪些基本要求? 5.在什么情况下,框架——剪力墙结构的计算简图应采用刚接体系? 二、选择题 1、计算框架结构梁截面惯性矩I时考虑楼板影响,对现浇楼盖,中框架取I= ()。 A.2 I B.05.1I C.02.1I D.0I 2、整体小开口剪力墙计算宜选用()分析方法。 A. 连续化方法 B. 材料力学分析法 C. 壁式框架方法 D. 有限元法 3、在下列地点建造相同高度的高层建筑,什么地点所受的风力最大?() A. 建在大城市郊区 B. 建在小城镇 C. 建在有密集建筑群的大城市市区 D. 建在海岸

4、对现浇框架支座处弯矩可以进行调幅,以下不正确的论述是( ) A.负弯矩调幅系数为0.8—0.9 B.只需对竖向荷载作用下的弯矩进行调幅 C.调幅必须在荷载效应组合之前完成 D.对水平和竖向荷载效应均需要调幅 5、关于框架结构的变形,哪个结论是正确的( ) A. 框架结构的整体变形主要呈现为弯曲型 B. 框架结构的层间变形一般为下大上下 C. 框架结构的层间变形一般为下小上大 D.框架结构的层间位移仅与柱的线刚度有关,而与梁的线刚度无关 6、在有地震作用组合设计表达式RE E E R S γ≤中,承载力抗震调整系数RE γ满足 ( ) A. 大于1 B. 小于1 C. 不一定 D. 1 7、剪力墙中,墙肢刚度不变时,如果增加连梁刚度,整体系数α将( ) A 、增加 B 、减小 C 、不减 D 、不增 8、结构在水平静荷载的作用下其内力计算方法为( ) A 、底部剪力法 B 、力矩分配法 C 、反弯点法 D 、时程分析法 9 ) A. 框架结构体系 B. 剪力墙结构体系 C. 筒体结构 D. 框架剪力墙结构

复杂高层与超高层建筑结构设计要点 朱剑敏

复杂高层与超高层建筑结构设计要点朱剑敏 发表时间:2019-01-08T12:59:43.810Z 来源:《防护工程》2018年第29期作者:朱剑敏 [导读] 近几年城市化建设高速发展,复杂高层及超高层建筑也随之不断增多,建筑的结构也逐渐向多元化和功能化的方向发展摘要:近几年城市化建设高速发展,复杂高层及超高层建筑也随之不断增多,建筑的结构也逐渐向多元化和功能化的方向发展,对于建筑结构的设计要求也在不断的增加。本文通过对复杂高层及超高层的建筑设计要点进行分析,从而提高复杂高层及超高层建筑的建设过程中的效率和质量。 关键词:复杂高层;超高层;建设结构;设计要点 1复杂高层和超高层建筑设计要求 1.1重视概念设计的重要性 由于我国科学技术的飞速发展,复杂高层和超高层建筑的结构设计也不断创新和发展,在结构设计方面积累了更多的经验,其中最具代表性的就是概念设计。在概念设计的概念中,结构设计的规律性和统一性得到了提高,其力量得到了明确的传达。除了其高标准要求得到充分体现外,通过有效应用节能减排理念,也增强了结构设计的科学性和合理性。在其具体设计中,其建筑材料的有效使用也符合可持续发展的基本要求。在结构设计过程中,通过概念设计的有效应用,可以大大提高建筑的整体质量。 1.2合理分析复杂高层与超高层的建筑结构 合理分析建筑结构对结构设计有着根本的影响,它直接关系到建筑的合理性与科学性。在设计复杂高层与超高层建筑时,重点也在于对建筑结构的分析。首先,复杂高层与超高层建筑的基本要求是确保建筑安全稳定,这要求提高建筑承重结构的可靠度。其次,自然环境对复杂高层与超高层建筑的影响较大,一些气候、温度、地质方面的因素都需要考虑在内。因此,设计人员在进行结构设计之前必须全面了解当地的自然环境,尽量减少客观因素对复杂高层与超高层建筑造成施工障碍。最后,承重能力的考虑对复杂高层与超高层的结构设计有重大影响,设计人员必须对施工材料提出较高的标准,有必要时可以做出较为硬性的规定,最大限度的减少施工材料的出现问题。 1.3重视建筑的抗震设计 在所有建筑物的设计中,建筑物的抗震设计都有一个非常重要的通道,特别是对于复杂的高层和超高层建筑的结构设计,其抗震设计将直接影响到建筑物的安全。在抗震救灾规划的选择过程中,必须首先对建筑材料进行有效的选择,但必须保证材料的质量。同时要减少地震中的能量膨胀,检查验收楼成员的承载能力。在地震环境下计算建筑物结构的位移值也是必要的。 2复杂高层与超高层建筑结构设计中存在的不足之处 2.1抗风结构中出现的问题 复杂的高层和超高层建筑具有楼层较多的特点,建筑高度也高于正常建筑许多。这样,建筑表面的风蚀面积将会增加,高层和超高层建筑表面的风的流动性将会改变建筑表面的质量。这种情况的出现会在高层建筑的表面和空气之间造成动态的影响。在这样的动力作用下,风力会在高层和超高层建筑的软结构中产生静态或动态振动。这种振动将对整个建筑产生更大的影响。因此,在设计抗风结构时,必须科学合理,以保证高层和超高层建筑的质量。 2.2做好地基基础 地基相当于建筑物的地基。对于不同的地区,由于地质不同,对地基的要求不同,但必须在任何地区奠基。例如,在地质较软的地区,复杂的高层和超高层建筑需要用桩箱作为地基;在有岩层的地区,需要根据岩层的年代采取不同的地基建造措施。混凝土桩一般用来加固岩层。对于地下地基条件较好的底层,通常选用筏型进行地基加固。根据不同的地形选择不同的地基,对整个工程的施工具有重要的意义。 2.3建筑消防在结构设计中出现的问题 在建筑物中,特别是高层与超高层建筑物中,消防结构的设计是整个建筑结构设计过程中需要重点设计的内容。在我国的建筑行业相关标准中,对高层与超高层建筑物的消防结构提出了明确的要求。规定在高层与超高层建筑物中,必须确保高层结构具有科学性以及合理性。但是,据当前的状况来看,在高层与超高层建筑物结构的设计中还存在着许多问题。例如:在高层与超高层建筑物中,所使用的材料具有易燃性,一旦发生火灾,极易在高层及超高层建筑物中蔓延,造成不可挽回的损失。 3复杂高层与超高层建筑结构设计的要点 3.1合理的使用高强钢筋 高强钢筋的使用在高层及超高层建筑中的使用情况,在很大程度上影响着工程造价。故在进行高层及超高层建筑的结构设计时,应当合理的利用高强钢筋,将建筑工程造价降到最低,并减少钢筋的使用量。当建筑的地基出现深厚软弱时,应当适当的将高强钢筋的尺寸进行优化,以减小地基的承载量,这样,不仅方便了施工,还为建筑企业带来了经济效益。与此同时,高层及超高层建筑减少自身的重量可降低地震对建筑物的干扰,为高层建及超高层筑提供了保障。 3.2提升结构设计的舒适度 随着人们生活水平的不断提高,对建筑的要求也在不断提高,尤其体现在建筑的外观和结构舒适性的要求上。因此,在复杂的高层和超高层建筑的结构设计过程中,不仅要保证建筑的整体安全性和可靠性,而且要让人们充分满足建筑的结构舒适性。这些实际要求促使相关人员在高层建筑设计过程中确保了混凝土规则、钢规则等结构设计的保护,同时保证了结构设计的质量和水平。满足人们对结构设计舒适性的要求。 3.3抗震性能设计 对于一些地震频繁发生的地区而言,该地区的复杂高层与超高层建筑面临的抗震压力更大,这些地区的抗震目标也相对高一些,主要包括两个目标。其一是使用水准。比如说,强度较低的地震对事物造成的危害较小,对建筑物的影响也无足轻重,这对建筑的结构设计要求也不高,保证基本的弹性反应状态就可以。其二是倒塌水准。首先,不同强度地震的破坏力不同,为了更好地应对不同强度的地震,应该对复杂高层与超高层建筑非延性部件提出更高的标准。其次,针对建筑物的控制构件而言,应当保证大部分的复杂高层与超高层建筑具

探讨复杂高层与超高层建筑结构设计要点

探讨复杂高层与超高层建筑结构设计要点 随着我国城市化进程的发展,越来越多的人口聚集到城市,为了利用有限的空间解决人口容量,使城市压力得到缓解,逐渐增多了复杂高层与超高层建筑。在这一现象下,相关人员应重视结构设计,以保障建筑使用安全。 标签:复杂高层;超高层;建筑结构;设计要点 近年来城市土地资源非常稀缺,建筑工程逐步向着复杂高层和超高层方向发展,因此结构设计越来越难,作为设计人员必须和实际工程相结合,加强自身相关专业技术,加强分析和理解设计规范,从而更好的设计建筑结构,让客户认可并得到市场青睐。 1 与普通高层建筑结构设计的区别 在结构设计过程中,复杂高层和超高层与普通高层有着很大的差别,在一般情况下普通高层建筑其高度不会超过200米,而相对来说复杂高层与超高层建筑其高度通常不会低于200米,更甚者其高度会达到上千米左右。除此之外,通常情况普通高层建筑都是钢筋混凝土结构,而复杂高层与超高层建筑则是钢结构和混合结构类型。另外在合计阶段中,复杂高层与超高层建筑结构需要对抗震情况、缝荷载能力、避免层次以及环境等因素进行综合性考虑。从这些情况中我们可以看出,在结构设计上复杂高层与超高层建筑有更大的难度[1]。 2 结构设计控制要素 2.1 地基基础。地基基础质量影响着复杂高层和超高层建筑其整体稳定性,在设计地基结构时,要各种地基形态和设计标准进行全面考虑,以实际情况进行出发,只有这样才可以设计出更好的方案。在对软地基进行施工时,应使用桩箱和桩筏基础,并对根据不同地质制定出相应的措施使地基强度得到强化。当深层岩基进入地下100米以下时,可使用连续墙将地基巩固,当采用年轻且浅的岩基时,可将混凝土桩基加进去增加其支撑强度,当地基很好时采取筏形基础[2]。 2.2 重力荷载。复杂高层和超高层建筑会随着高度的攀升,增加地面受力以及重力荷载,增加墙上轴压力和竖向构件压力,使复杂高层和超高层建筑困难性加大。另外,随着楼层高度的上升会加大高风效应,在风的影响下合力点就会越高,从而加大自然风效应。在建筑结构设计过程中,结构自重关系着建筑稳定性,而结构自重又和重心位置有关,重心位置会随着楼层的升高而升高,从而加大结构自重,其强度就会非常薄弱。 2.3 风振加速。建筑楼层的高低关系着风力的大小,在一般情况下楼层越高时风力越强,因此超高层建筑有着非常明显的风力作用。但人们能够感知到风的舒适度,当风振太强时人们就会有不适感,使居住品质得到下降。在这种情况下,在设计复杂高层和超高层建筑结构时,需要将这些问题考虑进去,一定要控制好

高层住宅结构设计统一技术措施 (上部结构)

-结构构件设计与构造 7.1 板设计 7.1.1 除工程建设当地有专门规定外,高层住宅标准层楼板板厚一般取100mm。板的厚度规格一般宜取100、120、140、160、180、200mm,大于200mm时按实际需要取值。 表 7.1.1 住宅最小板厚取值表 以考虑采用CRB550钢筋。 7.1.2电梯厅、加强部位及薄弱连接部位板厚一般取140mm,并设置不小于 10@200的双层双向拉通钢筋。 7.1.3地下室顶板作为上部结构的嵌固端时,楼板厚度不宜小于180mm;混凝土强度等级不宜小于C30,应采用双层双向配筋,且每层每个方向的配筋率不宜小于0.25%。普通地下室顶板厚度不宜小于160mm。 7.1.4部分框支—剪力墙结构的转换层楼板厚度不宜小于180mm,除计算要求外,板配筋不应小于双层双向10@150。当框支转换范围较小时,可仅对框支转换梁相连的板按转换层楼板进行加强,其他部位楼板按实际情况可取120~150mm。转换层楼板不宜采用冷轧带肋钢筋。 7.1.5 地震设防区跨度L≥1500mm 的楼层悬臂结构,如无特殊要求时,宜采用梁板式结构。当悬挑跨度L<1500mm且其降板高度未超过相邻板厚或嵌固梁有足够抗扭刚度时,可采用悬臂板式结构,但其根部厚度不应小于L/10 且不小于100mm。悬臂板计算时截面有效高度h0=h-25~30(考虑施工时面筋可能被踩低,h0稍取小值),并应验算裂缝和挠度。 7.1.6 标准层楼板宜按弹性板计算,板与剪力墙支座按嵌固端计算;板与边梁按简支边计算;支座两侧板面标高相差大于梁宽时按简支边计算;当支座两侧板面标高相差小于梁宽时及确认边梁可作为嵌固时可按嵌固计算配筋。对于按简支计算的板支座,可不按受力钢筋的最小配筋率控制,统一取0.18%,钢筋直径不宜小于8或фR7;板面受力钢筋配筋率不宜小于0.2%,悬挑板和较大角板面筋不宜小于0.25%,板底钢筋配筋率不小于0.18%。 7.1.7楼板受力钢筋间距(mm)建议采用100、125、150、175、200,局部附加钢筋后间距不宜小于75mm。除分布钢筋外楼板钢筋间距不应大于200mm。 7.1.8考虑温度收缩的板配筋(如屋面板),可利用原有板的底、面筋拉通布置,也可另行设置构造分布筋,但必须与原有钢筋按受拉要求搭接或在周边构造中锚固。当面筋采用拉通筋布置时,其支座实际需要的配筋量不足时可采用另加相同间距的短筋补足。屋面板拉通钢筋不宜小于双层双向8@200且配筋率不小于0.2%。 7.1.9因建筑使用要求而局部降板的较大跨楼板,当板底不要求平整时,可做成折板的形式(如卫生间沉箱不宜拉直梁的情况),并应绘制折板配筋大样,平面上板配筋可以同普通楼板。通跨折板按设梁考虑。当局部降板并要求板底平整时,

高层建筑的常见结构形式及特点

高层建筑的常见结构形式及特点 高层建筑的结构体系主要有:框架结构、框架―剪力墙结构、剪力墙结构、、框支剪力墙结构、筒体结构等。 框架结构,是由纵梁、横梁和柱组成的结构,这种结构是梁和柱刚性连接而成骨架的结构。框架结构的优点:强度高,自重轻,整体性和抗震性好,柱网布置灵活,便于获得较大的使用空间;施工简便,较经济;框架结构的弱点:抗侧移刚度小,侧移大;对支座不均匀沉降较敏感等。根据分析,框架房屋高度增加时,侧向力作用急剧地增长,当建筑物达到一定高度时,侧向位移将很大,水平荷载产生的内力远远超过竖向荷载产生的内力。一般适用于10层以下、以及10层左右的房屋结构。 框架―剪力墙结构,又称框剪结构,框架-剪力墙结构体系是指由框架和剪力墙共同作为竖向承重结构的多(高)层房屋结构体系。它是在框架纵、横方向的适当位置,在柱与柱之间设置几道钢筋混凝土墙体(剪力墙)。在这种结构中,框架与剪力墙协同受力,剪力墙承担绝大部分水平荷载,框架则以承担竖向荷载为主,这样,可以减少柱子的截面。剪力墙在一定程度上限制了建筑平面布置的灵活性。框架-剪力墙结构体系则充分发挥框架和剪力墙各自的特点,既能获得大空间的灵活空间,又具有较强的侧向刚度。所以这种结构形式在房屋设计中比较常用。这种体系一般用于办公楼、旅馆、住宅以及某些工艺用房。框架一剪力墙结构,一般用于25层以下房屋结构。

剪力墙结构,是由纵向、横向的钢筋混凝土墙所组成的结构,即结构采用剪力墙的结构体系。墙体除抵抗水平荷载和竖向荷载外,还对房屋起围护和分割作用。剪力墙结构优点是整体性好,侧向刚度大,适宜做较高的高层建筑,水平力作用下侧移小,并且由于没有梁、柱等外露构件,可以不影响房屋的使用功能。缺点是由于剪力墙位置的约束,使得建筑内部空间的划分比较狭小,不能提供大空间房屋,结构延性较差。因此较适宜用于宾馆与住宅。全剪力墙结构常用于25~30层结构。 筒体结构,是用钢筋混凝土墙围成侧向刚度很大的筒体的结构形式。筒体在侧向风荷载的作用下,它的受力特点就类似于一个固定在基础上的筒形的悬臂构件。迎风面将受拉,而背风面将受压。筒式结构可分单筒、筒中筒体系、桁架筒体系、成束筒体系等。筒体可以为剪力墙,也可以采用密柱框架;也可以根据实际需要采用数量不同的筒。筒体结构多用于高层或超高层公共建筑中。筒式结构则用于30层以上的超高层房屋结构,经济高度以不超过80层为限。

关于高层建筑结构设计的几点见解

关于高层建筑结构设计的几点见解 摘要:在科技迅猛发展的21世纪,建筑是越建越高,至于建筑结构的设计就越发的复杂,建筑的结构体系、建筑的类型,建筑的风险计算都成为设计的要点。本文从高层建筑的特点出发,对高层建筑结构体系设计的基本要求等方面进行了分析探讨。 关键词:框架结构;荷载;抗震设计 1 前言 随着我国城市化建设进程的加快,城市人口的高度集中,用地紧张以及商业竞争的激烈化,促进了高层建筑的出现和不断发展。高层建筑结构设计给工程设计人员提出了更高的要求,下面就结构设计中的问题进行一些探讨。 2 高层建筑结构体系的特点 我国《高层建筑混凝土结构技术规程》规定,10层或10层以上或者房屋高度超过28m的建筑为高层建筑物。随着层数和高度的增加,水平作用对高层建筑结构安全的控制作用更加显著,包括地震作用和风荷载。高层建筑的承载能力、抗侧刚度、抗震性能、材料用量和造价高低,与其所采用的结构体系密切相关。不同的结构体系,适用于不同的层数、高度和功能。 2.1 框架结构体系 框架结构体系一般用于钢结构和钢筋混凝土结构中,由梁和柱通过节点构成承载结构,框架形成可灵活布置的建筑空间,具有较大的室内空间,使用较方便。由于框架梁柱截面较小,抗震性能较差,刚度较低,建筑高度受到限制;剪切型变形,即层间侧移随着层数的增加而减小;框架结构主要用于不考虑抗震设防、层数较少的高层建筑中。在考虑抗震设防要求的建筑中,应用不多;高度一般控制在70m以下。 2.2 剪力墙结构体系 利用建筑物墙体作为承受竖向荷载、抵抗水平荷载的结构,称为剪力墙结构体系。剪力墙结构体系于钢筋混凝土结构中,由墙体承受全部水平作用和竖向荷载。现浇钢筋混凝土剪力墙结构的整体性好,刚度大,在水平荷载作用下侧向变形小,承载力要求也容易满足;剪力墙结构体系主要缺点:主要是剪力墙间距不能太大,平面布置不灵活,不能满足公共建筑的大空间使用要求。此外,结构自重往往也较大。当剪力墙的高宽比较大时,是一个受弯为主的悬臂墙,侧向变形是弯曲型,即层间侧移随着层数的增加而增大。剪力墙结构在住宅及旅馆建筑中得到广泛应用。因此这种剪力墙结构适合于建造较高的高层建筑。根据施工方法的不同,可以分为:全部现浇的剪力墙;全部用预制墙板装配而成的剪力墙;

复杂高层建筑结构

11.7.1 复杂高层建筑结构的分类 如第l章所述,复杂高层建筑结构可分为带转恢层的结构、带加强层的结构、错层结构、连体结构和多塔结构5类。这几种结构竖向布置不规则。传力途径复杂,有的结构平面布置也不规则。这些特征是某些建筑多功能发展的需要决定的。 11.7.2 复杂高后建筑结构的适用范围 由于复杂高层建筑结构属于不规则结构.在地震作用下容易形成敏感的薄弱部位,所以应对其在地震区的适用范围予以限制。我国《高规》指出,为了使其抗震性能良好并能满足有关抗震设防的要求,复杂高层建筑结构的应用范囤应符合下列规定: (1)9度抗震设计时,不应采用带转换层的结构、带加强层的结构、错层结构和连体结构。对于多塔结构,9度抗震设计时不允许采用。 (2)7度和8度抗震设计时、不宜同时采用超过两类的复杂高层建筑结构。否则,在比较强烈的地震作用下,难以避免发生严重震害。 (3)对含有框架—剪力墙和剪力墙错层结构的适用建筑高度应严格限制。7度和8度抗震设计时,错层剪力墙结构的高度分别不宜大于80m和60m;错层框架—剪力墙结构的高度分别不应大于80 m和60 m。因为错层结构竖向不规则,错层附近的竖向抗侧力结构容易形成薄弱部位,楼盖体系山因错层受到较大的削弱,严格限制其适用高度十分必要。 (4)抗震设计时,B级高度高层建筑不宜采用连体结构。震害表明,连体的位置越高,越容易倒塌;房屋越高,连体结构的地震反应越大。 (5)对于B级高度底部带转换层的筒中筒结构.当外筒采用剪力墙构成壁式框架时,其最大适用高度可比无转换层时的限高降低10%一20%,视设防烈度大小、转换层位置高低而定。这一限制是考虑到转换层上、下刚度和内力传递途径突变的不利影响。 以下重点介绍带转换层的结构和带加强层的结构。 11.8 带转换层高层建筑结构设计 11.8.1 转换层在高层建筑中的应用 为了实现高层建筑内部上下层结构形式与柱网的变化,可以采用图11—12所示的各种形式的转换层结构,即: (1)梁式转换层:见图11—12a及b。

高层建筑结构分析

高层建筑结构分析 一、高层建筑结构设计特点 1.水平荷载成为决定因素。一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。 2.轴向变形不容忽视。高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。 3.侧移成为控制指标。与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。 4.结构延性是重要设计指标。相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。 二、高层建筑的结构体系 1.框架-剪力墙体系。当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,便形成了框架-剪力墙体系。在承受水平力时,框架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系。在体系中框架体系主要承受垂直荷载,剪力墙主要承受水平剪力。框架-剪力墙体系的位移曲线呈弯剪型。剪力墙的设置,增大了结构的侧向刚度,使建筑物的水平位移减小,同时框架承受的水平剪力显著降低且内力沿竖向的分布趋于均匀,所以框架-剪力墙体系的能建高度要大于框架体系。 2.剪力墙体系。当受力主体结构全部由平面剪力墙构件组成时,即形成剪力墙体系。在剪力墙体系中,单片剪力墙承受了全部的垂直荷载和水平力。剪力墙体系属刚性结构,其位移曲线呈弯曲型。剪力墙体系的强度和刚度都比较高,有一定的延性,传力直接均匀,整体性好,抗倒塌能力强,是一种良好的结构体系,能建高度大于框架或框架-剪力墙体系。

高层建筑结构特点、现状及发展趋势

高层建筑结构特点、现状及发展趋势 摘要:高层建筑是社会生产的需要和人类生活需求的产物,是现代工业化、商业化和城市化的必然结果。而科学技术的发展,高强轻质材料的出现以及机械化、电气化在建筑中的实现等,为高层建筑的发展提供了技术条件和物质基础。简要论述了高层建筑结构的特点、现状及今后的发展趋势。 关键词:高层建筑结构;特点;现状;趋势 前言 超过一定层数或高度的建筑称为高层建筑。高层建筑的起点高度或层数,各国规定不一,且多无绝对、严格的标准。它与各个国家和地区的地理环境、地震强度、建筑材料、建筑技术、电梯的设置标准以及防火的特殊要求等很多因素有关。如在美国,24.6m或7 层以上视为高层建筑;日本则为31m或8 层以上;英国为等于或大于24.3m;在我国一般8 层以上的房屋就需要设置电梯,对10 层以上的房屋就有提出特殊的防火要求的防火规范,因此我国的《民用建筑设计通则》(GB50352-2005)、《高层民用建筑设计防火规范》(GB50045-95)将10 层及10 层以上的住宅建筑与高度超过24m的公共建筑和综合性建筑称为高层建筑。从结构受力性态的角度来看,8 层以上的房屋,风和地震等水平荷载或作用显得越来越重要,甚至起控制作用,因此《高层建筑混凝土结构技术规程》(JGJ3-2002)将10 层及10 层以上或高层超过28m 的钢筋混凝土结构称为高层建筑结构。当建筑结构高度超过100m 时,称为超高层建筑。 1高层建筑的特点 建筑结构需同时承受水平和竖向的荷载或作用。低层建筑结构通常抵抗竖向荷载为主,水平荷载(如风荷载)或作用(如地震作用)的影响较小,它所产生的内力和位移较小,一般可以忽略。因此在低层建筑结构中,竖向荷载往往就是设计的控制因素。但在高层建筑结构中,较大的建筑高度造成了完全不同的受力情况,水平荷载不仅是主要荷载的一种,跟竖向荷载共同起作用,而且往往还成为设计中的控制因素。因此,在水平荷载作用下,若高层建筑结构的抵抗侧向变形能力或侧向刚度不足,将会产生过大的侧向变形,不仅使人产生不舒服的感觉,而且会使结构在竖向荷载作用下产生附加内力,会使填充墙、建筑装修和电梯轨道等服务设施出现裂缝、变形,甚至会导致结构性的损伤或裂缝,从而危及结构的正常使用和耐久性。因此设计高层建筑结构时,不仅要求结构有足够的强度,而且要求结构有合理的刚度,使水平荷载所产生的侧向变形限制在规定的范围内。同时,有抗震设防要求的高层建筑还应具有良好的抗震性能,使结构在可能的强震作用下当构件进入屈服阶段后,仍具有良好的塑性变形能力,即具有良好的延性性能。除了上述的结构受力特点之外,高层建筑还具有建筑功用上的特点。人们常说建筑是凝固的音乐,优美的高层建筑犹如艺术品,成为城市的一道道绚丽景观;建筑同时是时代跳动的脉搏,高层建筑占地面积小,符合了地价昂贵时代的需求,它可以节约建设用地或获得更多的空闲地面,以作为绿化等环境用地,并因向高空方向发展而缩短了城市道路和各种管线(如给排水管线等)的长度,减少了基础设施的投资。当然,大量高层建筑的建设,也会给城市带来不利的影响,如人口会密集化而造成交通拥挤问题;城市局部热场发生不利的变化以及地质的沉陷、消防的复杂化等问题。综合高层建筑的上述受力特点可知,与低层结构不同,高层建筑结构在强度、刚度和延性三方面要满足更多的设计要求。抗侧力结构的设计成为高层建筑结构设计的关键。 2 高层建筑的发展概况 随着工业化、商业化、城市化的进程,城市人口剧增,造成城市生产和生活用房紧张,地价昂贵,迫使建筑物向高空发展,由多层发展为高层。19 世纪末期,开始出现了现代形式的

浅析复杂高层与超高层建筑结构设计要点

浅析复杂高层与超高层建筑结构设计要点 发表时间:2016-03-22T17:26:31.493Z 来源:《基层建设》2015年24期供稿作者:胡惠民[导读] 浙江长兴汇丰建设工程有限公司复杂高层与超高层(下文统一简称为高层建筑)与普通高度建筑相比有着许多不同,因此在其设计上需要引起设计人员的重视。浙江长兴汇丰建设工程有限公司浙江长兴 313100 摘要:随着城市人口数量的增多,城市的用地越来越紧张,为了缓解城市用地的紧张程度,设计师们不得不提高建筑的高度,来满足城市中居民在居住空间上的需求。随着建筑高度的增加,建筑结构的安全性、可靠性以及建筑的持久性都面临着巨大挑战,设计也变得越 来越复杂,因此加强对复杂高层与超高层建筑结构设计的探讨是必要的。 关键词:复杂高层;超高层;建筑结构 复杂高层与超高层(下文统一简称为高层建筑)与普通高度建筑相比有着许多不同,因此在其设计上需要引起设计人员的重视。随着高层建筑的逐渐增多,在设计上也暴漏出了一些问题,随着问题的增多,高层设计师也积累到了一定的经验,这对提高工程建筑质量有着重要作用。 一、高层建筑结构设计与普通建筑的区别 高层建筑在结构设计上与普通建筑有着明显的差异,一般来说,普通建筑的高度都低于200米,高层建筑都在200米以上,甚至有一些高层建筑的高度能够达到1000米。针对普通高层,人们在设计上多数都采用混凝土结构,但是在高层建筑结构设计中,可以采用混合结构设计或全钢结构。此外,高层建筑对机电和消防设备的要求很高,因此在设计过程中,需要对机电设备和避难层的设计进行重点考虑,避免在自然灾害发生时,对高层建筑造成严重的破坏,并且设计需要满足《高层建筑混凝土结构技术规程》在抗震上的要求。除此之外,高层建筑在建筑设计过程中,还需要考虑风载荷作用下,建筑的舒适程度,在普通高层建筑中则不需要对这些内容进行考虑。 二、高层建筑机构设计中的重点问题 (一)抗震设防烈度对于高层建筑,不同高度的建筑抗震设防烈强度也会有所不同,因此对建筑物高度要求会有所不同。同常情况下,抗震设防烈强度如果在8度,则不宜建设超过300米的高层建筑。一般来说,高层建筑比较适合建设在6度的地区内。 (二)高层建筑结构方案一个优秀的设计师,在建筑设计过程中,要对建筑结构的方案进行考虑,特别是对高层建筑来说,如果选择的结构方案存在问题,在实际建设过程中,需要调整整个方案,因此在进行建筑方案设计时,需要对存在的问题进行详细分析,确保建筑结构的合理性。 (三)关注舒适度和施工过程 1、高层建筑水平振动舒适度 复杂高层与超高层建筑因其结构较柔,设计时,除保证结构安全外,还需满足室内居住人群的舒适度要求,高层混凝土规程、高钢规程均提出了明确的设计要求,需对高层建筑物在顺风向和横风向顶点最大加速度进行控制。复杂高层建筑需讲行舒适度分析,对混凝土结构阻尼比宜取0.02,对混合结构、钢结构阻尼比可根据情况取 0.01-0.02 舒适度验算时,可取10年重现期下风压值进行。高层混凝土规程和高钢规对舒适度验算的要求,公寓类建筑(如住宅、公寓)和公共建筑(如办公、旅馆)因功能不同,其水平振动指标限值也有所不同。当水平振动舒适度不满足或为进一步提高舒适度水平时,可采用增设TMD(可调质量阻尼器),TLD(可调液体阻尼器)等方法实现 2、大跨、悬挑柔性楼盖竖向振动舒适度控制 复杂高层建筑设计中常设计大跨度楼板、空中连桥、大跨悬挑等复杂建筑特征,此类部位由干结构竖向自振频率较低,与行人激励频率相近,彼时需对楼盖设计时的舒适度问题予以关注。高层混凝土规程要求楼盖结构的竖向振动频率不宜小于3Hz,且对不同竖向自振频率下的楼盖竖向振动舒适度峰值也提出了控制要求。因适用对象不同,住宅、办公建筑、商场及走廊建筑的竖向振动峰值加速度限值亦不相同。

高层建筑结构设计特点.

浅论高层建筑结构特点及其体系 [摘要]文章分析高层建筑结构的六个特点,并介绍目前国内高层建筑的四大结构体系:框架结构、剪力墙结构、框架剪力墙结构和筒体结构。 [关键词]高层建筑;结构特点;结构体系 我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特点及其结构体系,只有这样才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。 一、高层建筑结构设计的特点 高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有: (一水平力是设计主要因素 在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

复杂高层与超高层建筑结构设计分析

复杂高层与超高层建筑结构设计分析 摘要:在当代生活中,高层建筑与超高层建筑逐渐兴起,与传统建筑不同的是,高层建筑与超高层建筑在结构设计上均有着不同程度的复杂性。人们的居住需求 和审美需求,同时对复杂高层和超高层建筑提出了相当高的要求。本文主要针对 复杂高层和超高层建筑的结构设计进行分析。 关键词:复杂高层;超高层;结构设计 土木行业建筑领域迎来了大批的超高超限建筑,各地地标建筑如雨后春笋不 断涌现。各地相应出台超限建筑工程抗震设防专项审查技术要点和实施细则,对 于复杂及超限高层建筑的质量提出了新的要求和标准。针对复杂高层和超高层建 筑结构的抗震性能、抗风性能以及中大震下的性能设计,都已经有了很高的标准 和设计要求。 一、复杂高层与超高层建筑特点 复杂高层是指建筑物带有转换层、加强层、错层、连体结构和多塔楼结构等,属于比较复杂的建筑高层。具有超高的容纳量,形状独特,是现代生活的产物, 可以满足当代现代人的审美观,在主流审美中备受欢迎。而超高层建筑,一般是 指200m以上的建筑物,一般用于办公等。为了缓解土地矛盾,时代下的产物。 不同于普通的建筑工程,复杂高层和超高层的建筑设计都要更加复杂一些,考虑 的因素也要更多一些,这也就导致了复杂高层和超高层建筑在施工上的困难。若 想在复杂高层和超高层建筑安全的基础上,满足居民的舒适体验和审美体验,必 须要对复杂高层和超高层建筑的影响因素、设计重点进行深入分析,才能保证建 筑物能够满足人们的各项需求,受到人们青睐。 二、影响复杂高层和超高层结构设计的因素 (一)地基因素 地基因素是建筑物建设的基础。虽然我国土地资源辽阔,但具体情况具体分析,不同地区之间的地质差异还是相当明显的。不同的地质条件,施工条件不同,设计方案也不同。在进行复杂高层和超高层建筑设计时,必须首先考虑地基因素,对地基的复杂程度进行模拟,然后将可能受影响的因素在模拟的建筑物上表现出来,以此来推断建设条件。根据《建筑地基基础设计规范》当中所规定的抗力限 值以及作用效应,进行合理的建筑工程基础选型,保障建筑工程的安全性。地基 与建筑物的使用质量存在直接关系,无论是开展什么建筑,地基都是首先要考虑 的因素之一。 (二)施工技术与建筑材料因素 科学技术越来越发达,复杂高层和超高层建筑也越来越常见,建设复杂高层 和超高层建筑离不开科学技术的支持。正是科学技术的发展,为复杂高层和超高 层建筑的建设提供了先决条件,这也正是影响其建筑结构的一个重要因素。而建 筑材料因素,假若在建造过程中“偷工减料”,或者是应用劣质材料,将对建筑物 的安全造成非常大的威胁。因此,建造人员在建造过程中应选择优质材料,应用 新科技技术,严格遵从施工规范要求,合理制定施工组织设计,提高建筑结构施 工水平,促进提高复杂高层与超高层建筑结构的施工质量。 (三)其他建筑功能需求的影响 相对于普通建筑,高层建筑和超高层建筑的要求要更高一点,在使用过程中,

关于高层建筑的结构设计探讨

关于高层建筑的结构设计探讨 发表时间:2019-06-12T13:57:51.333Z 来源:《建筑学研究前沿》2019年4期作者:杨佳宁 [导读] 随着城市化发展以及建筑用地的紧张,高层建筑将日益增多。 摘要:随着城市化发展以及建筑用地的紧张,高层建筑将日益增多。高层建筑的结构设计不仅应保证高层建筑具有足够的安全性,还应保证结构的经济性、合理性。本文就结构设计中应注意的几方面问题进行了探讨。 关键词:高层建筑;高层建筑结构设计;问题 一、高层建筑设计的意义与依据 1.概念设计的意义 高层建筑能做到结构功能与外部条件一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。 2.概念设计的依据 高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验。 二、高层建筑结构设计的特点 高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有; 1.水平力是设计主要因素 在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。 2.侧移成为控制指标 与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。 3.抗震设计要求更高 有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。 4.轴向变形不容忽视 高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安垒的结果。 5.结构延性是重要设计指标 相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。 三、高层建筑结构设计的几个问题 1.高层建筑结构受力性能 对于一个建筑物的最初的方案设计,建筑师考虑更多的是它的空间组成特点,而不是详细地确定它的具体结构。建筑物底面对建筑物空间形式的竖向稳定和水平方向的稳定都是非常重要的,由于建筑物是由一些大而重的构件所组成,因此结构必须能将它本身的重量传至地面,结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,所以,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量和分布作出总体设想。 2.高层建筑结构设计中的扭转问题 建筑结构的几何形心、刚度中心、结构重心即为建筑三心,在结构设计时要求建筑三心尽可能汇于一点,即三心合一。结构的扭转问题就是指在结构设计过程中未做到三心合一,在水平荷载作用下结构发生扭转振动效应。为避免建筑物因水平荷载作用而发生的扭转破坏,应在结构设计时选择合理的结构形式和平面布局,尽可能地使建筑物做到三心合一。 在水平荷载作用下,高层建筑扭转作用的大小取决于质量分布。为使楼层水平力作用沿平面分布均匀,减轻结构的扭转振动,应使建筑平面尽可能采用方形、矩形、圆形、正多边形等简单平面形式。在某些情况下,由于城市规划对街道景观的要求以及建筑场地的限制,高层建筑不可能全部采用简单平面形式,当需要采用不规则L形、T形、十字形等比较复杂的平面形式时,应将凸出部分厚度与宽度的比值控制在规范允许的范围之内,同时,在结构平面布置时,应尽可能使结构处于对称状态。 3.高层建筑结构设计中的其它问题 3.1关于转换梁新的《高规》已经明确规定,当剪力墙墙肢与其平面外方向的楼面梁连接时,应采取在墙与梁相交处设置扶壁柱或暗柱,或在墙内设置型钢等至少一种措施,减小梁端部弯距对墙的不利影响。但有个别工程设计,将框支梁(转换梁)直接垂直支承于一般厚度的剪力墙上,而未对墙体采取上述加强措施。其中有些转换梁是大跨度单跨梁垂直支承于两端墙体;有些转换梁甚至位于支承墙的门洞边;有些支承墙因多层架空,高厚比不满足要求。这类情况,为增强转换梁两端的约束能力,满足其钢筋锚固要求,必须在转换梁两端的墙体中设置墙体端柱或扶壁柱,或加厚墙体设置暗柱(必要时加型钢),并按框支柱的要求进行设计。

相关文档
最新文档