红外图像非均匀性校正及增强算法研究

红外图像非均匀性校正及增强算法研究
红外图像非均匀性校正及增强算法研究

红外图像非均匀性校正及增强算法研究

受限于制造工艺的约束,红外焦平面中各探测像元的光电响应率不一致,即存在非均匀性问题,导致图像中出现固定样式噪声,且具有缓慢的时间漂移性。并且,红外探测器的光电响应动态范围较大,而单幅图像场景的温度范围通常在红外探测器总体动态范围中占比小,导致原始红外图像对比度低、物体边界模糊。

因此,非均匀性校正和图像增强是必不可少的红外图像预处理步骤。本文将围绕基于场景的非均匀性校正和红外图像增强技术展开研究,论文的主要研究内容如下:1.凝视型红外探测器中,传统的基于神经网络的非均匀性校正方法通常假设固定样式噪声满足独立同分布,但在低成本非制冷探测器中,非均匀性的条纹噪声强,噪声分布特性不满足假设,导致现有方法难以兼顾边缘保护与条纹噪声抑制。

针对该问题,本文提出了基于自适应稀疏表示以及局部全局联合约束学习率的非均匀性校正方法,引入稀疏表示理论,利用干净的红外图像集训练出的过完备字典中的原子可稀疏地表示图像场景信息的特性,在自适应的误差容限内重建图像,从而保护图像边缘、将噪声成分当作冗余去除。实验结果表明,在均方根误差指标上,本方法相比传统方法降低了1.1652至1.9107不等、降低了约17.92%至26.37%,能够在保护图像边缘的同时有效去除包括条纹噪声在内的固定样式噪声。

2.扫描型红外探测器中,若直接采用凝视型探测器的非均匀性校正方法,则仍需数百帧图像计算校正系数,算法收敛慢。传统的扫描型探测器校正方法利用扫描成像的特性逐列(假设沿行扫描)更新校正系数,在单帧图像内完成校正。

然而,单帧图像内场景辐射多样性通常有限,导致传统方法易陷入局部最优

解。对于可拍摄连续图像序列、不要求单帧完成校正的实时成像应用,本文提出了基于图像配准的扫描型红外探测器的非均匀性校正方法,利用帧间运动信息来提高校正精度,并结合扫描成像特性加快算法收敛。

实验结果表明,本方法仅需十几对配准图像对便能收敛,收敛速度快;在粗糙度指标上,本方法相比传统方法降低了0.0072至0.0306不等、降低了约8.15%至27.39%,减少了因单帧图像辐射多样性不足导致的校正误差,有效提高了校正精度。3.在红外图像增中,基于概率直方图的方法应用广泛。

然而,在安全监控、军事侦查等领域中,目标距离远、在图像中所占像素数少,其灰度级的出现概率低,而背景灰度级出现概率高,导致易出现背景过增强、目标欠增强。针对该问题,本文提出了基于显著度权重的全局映射红外图像增强方法,利用目标的显著度高、背景的显著度低的特性,计算出一种新的灰度级显著度权重。

在该显著度权重中,目标灰度级的权值大于背景灰度级的权值,从而能够重点增强目标与背景之间的对比度。实验结果表明,在模糊线性指数上,本方法相比传统方法降低了0.0404至0.1740不等、降低了约15.33%至40.48%,当目标在图像中所占像素数少时能有效抑制背景过增强、目标欠增强问题。

HDR及一些非均匀性校正算法

HDR High Dynamic Range ,即高动态范围,比如所谓的高动态范围图象(HDRI)或者高动态范围渲染(HDRR)。动态范围是指信号最高和最低值的相对比值。目前的16位整型格式使用从“0”(黑)到“1”(白)的颜色值,但是不允许所谓的“过范围”值,比如说金属表面比白色还要白的高光处的颜色值。在HDR的帮助下,我们可以使用超出普通范围的颜色值,因而能渲染出更加真实的3D场景。也许我们都有过这样的体验:开车经过一条黑暗的隧道,而出口是耀眼的阳光,由于亮度的巨大反差,我们可能会突然眼前一片白光看不清周围的东西了,HDR在这样的场景就能大展身手了。 HDR可以用3句话来概括:亮的地方可以非常亮暗的地方可以非常暗亮暗部的细节都很明显。HDR的处理在显卡中可以分为3个步骤:将画面用高光照动态范围渲染,并储存每个象素的亮度特性;将HDRI画面转成低动态范围的画面(RGBA或是sRGB);色彩和Gamma校正后传送到显示设备输出。 计算机在表示图像的时候是用8bit(256)级或16bit(65536)级来区分图像的亮度的,但这区区几百或几万无法再现真实自然的光照情况。HDR文件是一种特殊图形文件格式,它的每一个像素除了普通的RGB信息,还有该点的实际亮度信息。普通的图形文件每个象素只有0 -255的灰度范围,这实际上是不够的。想象一下太阳的发光强度和一个纯黑的物体之间的灰度范围或者说亮度范围的差别,远远超过了256个级别。因此,一张普通的白天风景图片,看上去白云和太阳可能都呈现是同样的灰度/亮度,都是纯白色,但实际上白云和太阳之间实际的亮度不可能一样,他们之间的亮度差别是巨大的。因此,普通的图形文件格式是很不精确的,远远没有纪录到现实世界的实际状况。所以,现在我们就要介绍一下高动态范围图像(简称HDRI)。 HDR高动态范围渲染目前是一种逐渐开始流行的显示技术,其技术出发点就是让计算机能够显示更接近于现实照片的画面质量。目前在民用领域看到最多HDR技术应用的必然是游戏了。 在现实中,当人从黑暗的地方走到阳光下时,我们的眼睛会不由自主的迷起来,那是因为在黑暗的地方,人为了更好的分辨物体,瞳孔张开很大,以便吸收光线;而突然到了光亮处瞳孔来不及收缩,视网膜上的视神经无法承受如此多的光线,人自然会迷上眼睛阻止大量光线冲击视神经。而电脑是不具备这种功能的。所以,HDR的最终效果因该是亮处的效果是鲜亮的,而黑暗处你也可以清晰的分辨物体的轮廓,位置和深度,而不是以前的一团黑。动态、趋近真实的物理环境是HDR的特效表现原则。 实际游戏中会发现井底水面反射的阳光在墙壁上动态的明亮反光,洞口的明亮天空也会稍微变弱些。这样就能更清晰的表现出水面的反光。如果此时低头看水面会发现水面直接将阳光反射到人眼中很刺眼,但仅仅1秒钟时间光线就会减弱,因为人眼适应了直接反射的阳光。 这就是游戏的曝光控制功能,模拟人眼自动适应光线变化的能力,而不是照相机。HDR并不仅仅是反射的光强度要高。在游戏中,如果你盯着一个面向阳光直射的物体,物体表面会出现丰富的光反射;如果盯着不放,物体表面的泛光会渐渐淡出,还原出更多的细节。HDR特效是变化的,因此称作高动态光照。 热成像的非均匀性校正算法有很多种,红外焦平面非均匀性校正算法主要分为基于定标的非均匀校正算法(如一点温度定标算法、二点温度定标算法、多点温度定标算法)和基于场景的自适应非均匀校正算法(如时域高通滤波(THPFC)算法、人工神经网络(ANNC)算法、恒定统计平均(Cs)校正算法等)。目前二点温度定标算法和多点温度定标算法是最为成熟的实用性算法,但是它需要周期性的对它维护,这给红外成像设备维护工作带来很多困难。而基于场景的非均匀

图像增强方法的研究

图像增强方法的研究 摘要 数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。在图像处理中,图像增强技术对于提高图像的质量起着重要的作用。本文先对图像增强的原理以及各种增强方法进行概述,然后着重对灰度变换、直方图均衡化、平滑和锐化等几种常用的增强方法进行了深入的研究,在学习数字图像的基本表示与处理方法的基础上,针对图像增强的普遍性问题,研究和实现常用的图像增强方法及其算法,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的适用场合,并对其图像增强方法进行性能评价。如何选择合适的方法对图像进行增强处理,是本文的主要工作,为了突出每种增强方法的差异,本文在Matlab的GUI图形操作界面中集合了四种常用算法的程序,以达到对各种算法的对比更直观和鲜明的效果。 关键词:图像增强直方图均衡化灰度变换平滑锐化

目录 1 图像增强的基本理论 (3) 1.1 课题背景及意义 (3) 1.2 课题的主要内容 (4) 1.3 数字图像基本概念 (5) 1.3.1数字图像的表示 (5) 1.3.2 图像的灰度 (5) 1.3.3灰度直方图 (5) 1.4 图像增强概述 (6) 1.5图像增强概述 (8) 1.5.1图像增强的定义 (8) 1.5.2常用的图像增强方法 (8) 1.5.3图像增强的现状与应用 (9) 2 图像增强方法与原理 (10) 2.1 图像变换 (10) 2.1.1 离散图像变换的一般表达式 (10) 2.1.2 离散沃尔什变换 (11) 2.2 灰度变换 (12) 2.2.1 线性变换 (12) 2.2.2 分段线性变换 (13) 2.2.3 非线性变换 (13) 2.3 直方图变换 (14) 2.3.1 直方图修正基础 (14) 2.3.2 直方图均衡化 (16) 2.3.3 直方图规定化 (17) 2.4 图像平滑与锐化 (18) 2.4.1 平滑 (18) 2.4.2 锐化 (19)

图像增强算法综述

图像增强算法研究综述 刘璐璐 宁波工程学院电子与信息工程学院计算机科学与技术071班,邮编:(315100) E-mail:375212239@https://www.360docs.net/doc/8612135244.html, 摘要:本文简要介绍图像增强的概念和图像增强算法的分类,从图像的直方图均衡化处理方法,直方图规定化处理方法和图像平滑处理方法三方面对图像增强算法进行讨论和研究,并说明了图像增强技术的应用和前景展望。 关键词:图像增强直方图均衡化直方图规定化平滑处理 近年来,随着电子计算机技术的进步,计算机图像处理得到了飞跃的发展,己经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。它利用计算机对数字图像进行系列操作,从而获得某种预期的结果。对图像进行处理时,经常运用图像增强技术以改善图像的质量增强对某种信息的辨识能力,以更好的应用于现代各种科技领域,图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。在图像处理过程中,图像增强是十分重要的一个环节。 1.图像增强概念及现实应用 1.1 图像增强技术 图像增强是数字图像处理的基本内容之一。图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息。这类处理是为了某种应用目的去改善图像质量,处理的结果更适合于人的视觉特性或机器识别系统,图像增强处理并不能增加原始图像的信息,而只能增强对某种信息的辨识能力,使处理后的图像对某些特定的应用比原来的图像更加有效。 1.2图像增强技术的现实应用 目前,图像增强处理技术的应用己经渗透到医学诊断、航空航天、军事侦察、纹识别、无损探伤、卫星图片的处理等领域,在国民经济中发挥越来越大的作用。其中最典型的应用主要体现以下方面。 1

MATLAB常用图像增强方法(精)

数字图像处理 实验报告 实验名称:常用图像增强方法 专业班级: 07级电子信息工程2班 姓名:王超 学号: 20077427 一、实验目的 1、熟悉并掌握MATLAB图像处理工具箱的使用; 2、理解并掌握常用的图像的增强技术。 二、实验步骤 1、显示图像直方图 选择一幅图像,转化为灰度图像后显示其直方图,建立M文件程序如下:a=imread('f:\chuan.jpg';

b=rgb2gray(a; subplot(1,2,1; imshow(b; subplot(1,2,2; imhist(b 结果如图: 2、直方图均衡化 建立M文件,程序如下:a=imread('f:\chuan.jpg'; b=rgb2gray(a; subplot(1,3,1;imshow(b; subplot(1,3,2;imhist(b;

c=histeq(b,64; [c,T]=histeq(b; subplot(1,3,3;imhist(c 结果如图: 3、采用二维中值滤波函数medfilt2对受椒盐噪声干扰的图像滤波,窗口分别采用3*3,5*5,7*7 建立M文件程序如下: a=imread('f:\chuan1.jpg'; x=rgb2gray(a; b=imnoise(x,'salt & pepper', 0.04; subplot(2,2,1;imshow(b; c=medfilt2(b,[3 3]; subplot(2,2,2;imshow(c;

d=medfilt2(b,[5 5]; subplot(2,2,3;imshow(d; e=medfilt2(b,[7 7]; subplot(2,2,4;imshow(e 结果如图:1图为加噪图像,2、3、4图分别为窗口采用3*3、5*5、7*7的滤波后的图像 4、采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 建立M文件程序如下: a=imread('f:\chuan1.jpg'; b=rgb2gray(a; subplot(1,2,1;imshow(b; h=[1,2,1;0,0,0;-1,-2,-1]; c=filter2(h,b;

图像增强研究现状

在借鉴国外相对成熟理论体系与技术应用体系的条件下,国内的增强技术与应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期与应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别就是出现了CT与卫星遥感图像,对图像增强处理提出了一个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,人们运用数字图像增强技术处理与分析遥感图像,以有效地进行资源与矿藏的勘探、调查、农业与城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X射线图像、超声图像与生物切片显微图像等进行处理,提高图像的清晰度与分辨率。在工业与工程方面,主要应用于无损探伤、质量检测与过程自动控制等方面。在公共安全方面,人像、指纹及其她痕迹的处理与识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。图像增强就是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入与发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了包括模糊松弛、模糊熵、模糊类等增强算法来解决增强算法中映射函数选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分割图像,然后在子层图像内做均衡处理,较好地解决了直方图均衡过程中的对比度过拉伸问题,并且可以控制子层灰度映射范围,增强效果较好。 20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择与亮度等级的分布等问题。在1921年年底提出了一种基于光学还原的新技术。在这一时期由于引入了一种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从5个灰度级增加到15个灰度等级,这种方法明显改善了图像复原的效果。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。1964年,研究人员在美国喷气推进实验室(JPL)里使用计算机以及其它硬件设备,采用几何校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等增强方法对航天探测器“徘徊者7号”发回的几千张月球照片进行处理,同时她们也考虑太阳位置与月球环境的影响,最终成功地绘制出了月球表面地图。随后她们又对1965年“徘徊者8号”发回地球的几万张照片进行了较为复杂的数字图像处理,使图像质量进一步提高。这些成绩不仅引起世界许多有关方面的注意而且JPL本身也更加重视对数字图像处理地研究与设备的改进,并专门成立了图像处理实验室IPL。在IPL里成功的对后来探测飞船发回的几十万张照片进行了更为复杂的图像处理,最终获得了月球的地形图、彩色图以及全景镶嵌图。从此数字图像增强技术走进了航空航天领域。 20世纪60年代末与20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测与天文学等领域。X射线就是最早用于成像的电磁辐射源之一,在1895年X射线由伦琴发现。20世纪70年代Godfrey N、Hounsfield先生与Allan M、Cormack教授共同发明计算机轴向断层技术:一个检测器围绕病人,并用X射线源绕着物体旋转。X射线穿过身体并由位于对面环中的相应检测器收集起来。其原理就是用感知的数据去重建切片图像。当物体沿垂直于检测器的方向运动时就产生一系列的切片,这些切片组成了物体内部的再现图像。到了20世纪80年代以后,各种硬件的发展使得人们不仅能够处理二维图像,而且开始处理三维图像。许多能获得三维图像的设备与分析处理三维图像的系统已经研制成功了,图像处理技术

图像增强理论简述

图像增强方法研究 一、图像增强研究现状 图像增强是图像处理的基本内容之一,图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要信息的处理方法,其目的是使得处理后的图像对某种特定的应用,比原始图像更合适。处理的结果使图像更适应于人的视觉特性或机器的识别系统。 二、图像增强所要借助的软件MATLAB MATLAB 是MATrix LABoratory(“矩阵实验室”)的缩写,是由美国MathWorks 公司开发的集数值计算、符号计算和图形可视化三大基本功能于一体的,功能强大、操作简单的语言。是国际公认的优秀数学应用软件之一。 三、图像增强方法分类 1、频域图像增强方法 2、小波域图像增强方法 3、空域图像增强方法 (一)频域图像增强方法 频域图像增强是对图像经傅立叶变换后的频谱成分进行操作,然后逆傅立叶变换获得所需结果。其原理如下图所示: 频域图像增强原理图 1、平滑噪声 有些图像是通过扫描仪扫描输入、或传输通道传输过来的。图像中往往包含有各种各样的噪声。这些噪声一般是随机产生的,因此具有分布和大小不规则性的特点。这些噪声的存在直接影响着后续的处理过程,使图像失真。图像平滑就是针对图像噪声的操作,其主要作用是为了消除噪声,图像平滑的常用方法是采用均值滤波或中值滤波,均值滤波是一种线性空间滤波,它用一个有奇数点的掩模在图像上滑动,将掩模中心对应像素点的灰度值用掩模内所有像素点灰度的平均值代替,如果规定了在取均值过程中掩模内各像素点所占的权重,即各像素点所乘系数,这时就称为加权均值滤波;中值滤波是一种非线性空间滤波,其与均值滤波的区别是掩模中心对应像素点的灰度值用掩模内所有像素点灰度值的中间值代替。 2、锐化 平滑噪声时经常会使图像的边缘变的模糊,针对平均和积分运算使图像模糊,可对其进行反运算采取微分算子使用模板和统计差值的方法,使图像增强锐化。图像边缘与高频分量相对应,高通滤波器可以让高频分量畅通无阻,而对低频分量则充分限制,通过高通滤波器去除低频分量,也可以达到图像锐化的目的。 (二)小波域图像增强方法 小波是近几年发展起来的一种时频分析工具,它同时具有时频局部化能力和多分辨率分析的能力,因此它更适用于信号处理领域。 之前的图像降噪大多采用低通滤波器直接滤除高频信息,因此使得在去除噪声的同时,也去掉了一些有用的高频信息,损失了图像的细节。而采用小波进行去噪,由于其多分辨率特性,它用不同中心频率的带通滤波器对信号进行滤波,把主要反映噪声频率的尺度系数去掉,再

图像增强研究现状

在借鉴国外相对成熟理论体系和技术应用体系的条件下,国内的增强技术和应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期和应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别是出现了CT和卫星遥感图像,对图像增强处理提出了一个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,人们运用数字图像增强技术处理和分析遥感图像,以有效地进行资源和矿藏的勘探、调查、农业和城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X 射线图像、超声图像和生物切片显微图像等进行处理,提高图像的清晰度和分辨率。在工业和工程方面,主要应用于无损探伤、质量检测和过程自动控制等方面。在公共安全方面,人像、指纹及其他痕迹的处理和识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。图像增强是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入和发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了包括模糊松弛、模糊熵、模糊类等增强算法来解决增强算法中映射函数选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分割图像,然后在子层图像内做均衡处理,较好地解决了直方图均衡过程中的对比度过拉伸问题,并且可以控制子层灰度映射范围,增强效果较好。 20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择和亮度等级的分布等问题。在1921年年底提出了一种基于光学还原的新技术。在这一时期由于引入了一种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从5个灰度级增加到15个灰度等级,这种方法明显改善了图像复原的效果。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。1964年,研究人员在美国喷气推进实验室(JPL)里使用计算机以及其它硬件设备,采用几何校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等增强方法对航天探测器“徘徊者7号”发回的几千张月球照片进行处理,同时他们也考虑太阳位置和月球环境的影响,最终成功地绘制出了月球表面地图。随后他们又对1965年“徘徊者8号”发回地球的几万张照片进行了较为复杂的数字图像处理,使图像质量进一步提高。这些成绩不仅引起世界许多有关方面的注意而且JPL本身也更加重视对数字图像处理地研究和设备的改进,并专门成立了图像处理实验室IPL。在IPL里成功的对后来探测飞船发回的几十万张照片进行了更为复杂的图像处理,最终获得了月球的地形图、彩色图以及全景镶嵌图。从此数字图像增强技术走进了航空航天领域。 20世纪60年代末和20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测和天文学等领域。X射线是最早用于成像的电磁辐射源之一,在1895年X射线由伦琴发现。20世纪70年代Godfrey N. Hounsfield先生和Allan M. Cormack教授共同发明计算机轴向断层技术:一个检测器围绕病人,并用X射线源绕着物体旋转。X射线穿过身体并由位于对面环中的相应检测器收集起来。其原理是用感知的数据去重建切片图像。当物体沿垂直于检测器的方向运动时就产生一系列的切片,这些切片组成了物体内部的再现图像。到了20

医学图像增强方法研究

医学图像增强方法研究 摘要:简要介绍医学图像增强的概念和主要目的。从传统图像增强方法、基于区域的增强方法和基于小波变换的增强方法三方面对医学图像增强方法进行讨论。最后介绍图像增强效果的评价方案。 关键词:图像增强,算法,区域,小波变换,评价 图像增强根据图像的模糊情况采用了各种特殊的技术突出图像整体或局部特征,常用的图像增强技术有灰度变换、直方图处理、平滑滤波(高斯平滑),中值滤波、梯度增强、拉普拉斯增强以及频率域的高通低通滤波等,然而,这些算法运算量大、算法复杂、处理速度低。 目前,图像增强没有统一的标准,医学图像增强的主要目的是满足医生诊断的临床应用需要。因此,如何提高医学图像质量,是图像处理的一个重要课题。 图像增强可归纳为两方面[2]:(1)消除噪声;(2)边缘增强和结构信息的保护。(图像增强方法的研究) 图像增强方法主要分为频域法、空域法两大类[2]。频域法通常计算量大,变换参数的选取需要较多的人工干预;空域法主要包括直方图均衡化、直方图变换、灰度拉伸、局部对比度增强、平滑滤波和反锐化掩模[4~ 6]等。直方图均衡化是最常见的图像增强方法,其主要缺点是图像易出现不平滑灰度过渡。当图像直方图含多个波峰时,会出现过度增强,不仅丢失了部分图像细节信息,而且会明显放大噪声,影响图像增强的效果。平滑滤波可去除一定噪声,但会使图像模糊,对比度增强不明显。反锐化掩模可以增强图像的边缘和细节,但同时也会增强噪声。此外,图像的高频细节区域相对低频区域增强显著,易出现过增强现象。利用这些空间域图像增强算法处理医学图像,存在对噪声敏感且易陷入欠增强或过增强等不足。(基于量子概率统计的医学图像增强算法研究) 图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的【3]。传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。 目前,许多新的增强算法都充分利用了周围邻域这一重要的信息,形成了很多局部处理的灰度调整算法,该方法主要利用了邻域的统计特性【4]。自适应增强的研究主要集中在以下三大类增强算法: 1.既能平滑又能保护边缘的自适应滤波器。自适应滤波的基本思想是滤波器的参数可根据像素所在的邻域情况而自适应选取,也可描述为加权平均滤波器。(1)在提高算法的抗噪性能方面,文献〔5]【6〕介绍了几种方法。这些方法可以较好的平滑噪声区域,并能保护较显著的边缘,但对图像细节的保护较差。(2)在提高算法的细节保护能力方面,Saint一Marc【7】利用梯度来决定权值,建立了指数形式的权函数,较好的保护了图像细节。但该算法对脉冲噪声敏感,而且模型的性能受参数的影响比较大。另外,文献【8〕【9]还提出了各向异性扩散思想的改进方法,需要求解热传导方程。这些改进算法多数集中在权值的自适应选取上,但是由于自适应调整的参数较少,仍然不能很好的解决细节保护的问题。 2.基于图像建模和估计理论的增强算法。这类算法的基本思想是提出一个图像的模型,如果这个模型的参数由一种估计方法估计出来,则窗口中心的灰度值可由估计出来的参数计算得到。最简单的例子就是中值滤波器,对脉冲型噪声有很好的效果。但是,这类算法由于是以估计理论为基础,所以所采用的估计方法的鲁棒性对算法的性能有很大的影响。估计方

基于matlab的数字图像增强算法研究与实现

基于matlab的数字图像增强算法研究与实现 摘要图像在获取和传输过程中,会受到各种噪声的干扰,使图像退化质量下降,对分析图像不利。图像的平滑或去噪一直是数字图像处理技术中的一项重要工作。为此,论述了在空间域中的各种数字图像平滑技术方法。 关键字:数字图像;图像增强;平滑处理

目录 第一章、概述 2 1.1 图像平滑意义 2 1.2图像平滑应用 2 1.3噪声模 型 (3) 第二章 、图像平滑方法 5 2.1 空域低通滤波 5 2.1.1 均值滤波器 6 2.1.2 中值滤波器 6 2.2 频域低通滤波 7 第三章、图像平滑处理与调试 9 3.1 模拟噪声图像 9 3.2均值滤波法 11 3.3 中值滤波法 14 3.4 频域低通滤波法 17 第四章、总结与体会 19 参考文献 20 第一章、概述 1.1图像平滑意义 图像平滑(S m o o t h i n g)的主要目的是减少图像噪声。图像噪声来自于多方面,有来自于系统外部的干扰(如电磁波或经

电源窜进系统内部的外部噪声),也有来自于系统内部的干扰(如摄像机的热噪声,电器机械运动而产生的抖动噪声内部噪声)。实际获得的图像都因受到干扰而有噪声,噪声产生的原因决定了噪声分布的特性及与图像信号的关系。减少噪声的方法可以在空间域或在频率域处理。在空间域中进行时,基本方法就是求像素的平均值或中值;在频域中则运用低通滤波技术。 图像中的噪声往往是和信号交织在一起的,尤其是乘性噪声,如果平滑不当,就会使图像本身的细节如边缘轮廓,线条等模糊不清,从而使图像降质。图像平滑总是要以一定的细节模糊为代价的,因此如何尽量平滑掉图像的噪声,又尽量保持图像的细节,是图像平滑研究的主要问题之一。 1.2图像平滑应用 图像平滑主要是为了消除被污染图像中的噪声,这是遥感图像处理研究的最基本内容之一,被广泛应用于图像显示、传 输、分析、动画制作、媒体合成等多个方面。该技术是出于人类视觉系统的生理接受特点而设计的一种改善图像质量的方法。处理对象是在图像生成、传输、处理、显示等过程中受到多种因素扰动形成的加噪图像。在图像处理体系中,图像平滑是图像复原技术针对“一幅图像中唯一存在的退化是噪声”时的特例。 1.3噪声模型 1.3.1噪声来源 一幅图像可能会受到各种噪声的干扰,而数字图像的实质就是光电信息,因此图像噪声主要可能来源于以下几个方面:光电传感器噪声、大气层电磁暴、闪电等引起的强脉冲干扰、

非均匀性矫正

一、图像的非均匀性矫正

二、图像增强

三、程序代码(MATLAB)%%%%%%%%%%%%%%%%%%%%555555555555555555555555555555555一点矫正HIGH_T=fopen('highdat_151.dat','rb'); HIGH=fread(HIGH_T,[200,200],'uint8'); HIGH=uint8(HIGH); %类型转化为uint8 subplot(321);imshow(HIGH); title('原始高温图像'); subplot(322);mesh(double(HIGH));title('原始高温图像三维显示'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LOW_T=fopen('lowdat_151.dat','rb'); LOW=fread(LOW_T,[200,200],'uint8'); LOW=uint8(LOW); subplot(323);imshow(LOW); title('原始低温图像'); subplot(324);mesh(double(LOW)); title('原始低温图像三维显示'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HAND_D=fopen('handdat_60.dat','rb'); HAND=fread(HAND_D,[200,200],'uint8'); HAND=uint8(HAND); subplot(325),imshow(HAND); title('原始手形图像'); subplot(326),mesh(double(HAND)); title('原始手形图像三维显示'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%选取低温图进行定标 S=mean2(LOW(:)); % S为定标值 S_LOW=S*ones(200,200); S_LOW=uint8(S_LOW); %S_LOW为定标矩阵 D_LOW=LOW-S_LOW; %校正系数D_LOW figure; HIGH_L=HIGH-D_LOW; subplot(321);imshow(HIGH_L); title('经低温矫正后的高温图像'); subplot(322);mesh(double(HIGH_L)); title('经低温矫正后的高温图像三维显示'); LOW_L=S_LOW; subplot(323);imshow(LOW_L); title('经低温矫正后的低温图像'); subplot(324);mesh(double(LOW_L)); title('经低温矫正后的低温图像三维显示'); HAND_L=HAND-D_LOW; subplot(325);imshow(HAND_L); title('经低温矫正后的原始手图像'); subplot(326);mesh(double(HAND_L)); title('经低温矫正后的原始手图像三维显示'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%选取高温图进行定标 S=mean2(HIGH(:)); % S为定标值 S_HIGH=S*ones(200,200); S_HIGH=uint8(S_HIGH); %S_LOW为定标矩阵 D_HIGH=HIGH-S_HIGH; %校正系数D_HIGH figure; HIGH_H=S_HIGH; subplot(321);imshow(HIGH_H); title('经高温矫正后的高温图像');

图像增强

实验二图像增强 一、实验目的 1、了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。 2、学会对图像直方图的分析。 3、掌握直接灰度变换的图像增强方法。 4、掌握直方图均衡化。 5、采用均值滤波、中值滤波实现图像平滑。 6、采用梯度方法、拉普拉斯算子、Sobel 算子和 Prewitt 算子实现图像锐化。 二、实验原理及知识点 图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。图像增强技术主要有直接灰度尺度变换、直方图修改处理、图像平滑化处理、图像尖锐化处理等。 1、灰度变换 灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。

在实际应用中,为了突出图像中感兴趣的研究对象,常常要求局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理。若假定原图像f(x, y)的灰度范围为[a, b],希望变换后图像 g(x, y)的灰度范围扩展至[c, d],则线性变换可表示为: g(x,y)=[ f (x, y)? a]+ c 2、直方图变换 直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。 依据定义,在离散形式下,用r k代表离散灰度级,用p r(r k)代表p r(r),并且有下式成立: 式 中 :n k为图像中出现r k级灰度的像素数,n是图像像素总数,而n k/n即为频数。 n j s k= T (r k)=∑ =∑ p r(r j) 0≤ r j≤1 k = 0,1,...,l ?1 n P r(r k) =n k 0 ≤ r k≤ 1 k = 0,1,2,...,l?1 n a b c d - -

红外图像非均匀性校正及增强算法研究

红外图像非均匀性校正及增强算法研究 受限于制造工艺的约束,红外焦平面中各探测像元的光电响应率不一致,即存在非均匀性问题,导致图像中出现固定样式噪声,且具有缓慢的时间漂移性。并且,红外探测器的光电响应动态范围较大,而单幅图像场景的温度范围通常在红外探测器总体动态范围中占比小,导致原始红外图像对比度低、物体边界模糊。 因此,非均匀性校正和图像增强是必不可少的红外图像预处理步骤。本文将围绕基于场景的非均匀性校正和红外图像增强技术展开研究,论文的主要研究内容如下:1.凝视型红外探测器中,传统的基于神经网络的非均匀性校正方法通常假设固定样式噪声满足独立同分布,但在低成本非制冷探测器中,非均匀性的条纹噪声强,噪声分布特性不满足假设,导致现有方法难以兼顾边缘保护与条纹噪声抑制。 针对该问题,本文提出了基于自适应稀疏表示以及局部全局联合约束学习率的非均匀性校正方法,引入稀疏表示理论,利用干净的红外图像集训练出的过完备字典中的原子可稀疏地表示图像场景信息的特性,在自适应的误差容限内重建图像,从而保护图像边缘、将噪声成分当作冗余去除。实验结果表明,在均方根误差指标上,本方法相比传统方法降低了1.1652至1.9107不等、降低了约17.92%至26.37%,能够在保护图像边缘的同时有效去除包括条纹噪声在内的固定样式噪声。 2.扫描型红外探测器中,若直接采用凝视型探测器的非均匀性校正方法,则仍需数百帧图像计算校正系数,算法收敛慢。传统的扫描型探测器校正方法利用扫描成像的特性逐列(假设沿行扫描)更新校正系数,在单帧图像内完成校正。 然而,单帧图像内场景辐射多样性通常有限,导致传统方法易陷入局部最优

频域图像增强方法研究

摘要:图像增强处理技术是图像处理领域中一项基本的,也是很重要的技术,一直是图像处理领域中不可回避的研究课题。因为一幅图像总是可能受到各种因素的干扰影响,造成图像质量的下降。图像增强包含两个方面内容:一是消除噪声,二是增强(或保护)图像特征。对图像恰当增强,能使图像去噪的同时特征得到较好保护,使图像更加清晰明显,从而提供给我们准确的信息。常用的图像增强技术各有其特点和效果。 论文在介绍图像频域增强原理的基础上,在频域内通过对Butterworth低通滤波器增强方法进了研究,介绍了相关的理论和数学模型,并给利用MATLAB工具进行实现。通过各种滤波后图像比较,实验证明在质量较差的图像中,选择不同的滤波算法对图像的增强在准确性上均有不同。 关键词:图像增强;Butterworth低通滤波器;MATLAB

Abstract:I mage enhancement in image processing technology is a basic and very important technology, the field of image processing has been a research topic can not be avoided. Because an image is always possible interference by various factors, resulting in a decline in image quality. Image enhancement includes two aspects: First, eliminate the noise, the second is enhanced (or protected) image features. Appropriate image enhancement, image denoising can be well protected at the same time features, to make the image more clearly evident, thus providing us with accurate information. Commonly used image enhancement techniques have their own characteristics and effects. Paper, introducing the principle of image enhancement based on frequency domain, in the frequency domain through the Butterworth low-pass filter enhancement into the study, describes the relevant theoretical and mathematical models and tools to use MATLAB implementation. After filtering through a variety of image comparison, real proof of poor image quality, choose a different algorithm for image enhancement filter of accuracy are different. Key words:Image enhancement; Butterworth low-pass filter; MA TLAB.

基于matlab的图像增强方法研究 开题报告

毕业设计(论文)开题报告 学生姓名:学号: 专业: 设计(论文)题目:基于matlab的图像增强方法研究 指导教师: 年月日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在系审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于10篇(不包括辞典、手册); 4.有关年月日等日期的填写,应当按照国标GB/T7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2002年4月26日”或“2002-04-26”。

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 文献综述 1.1课题研究的目的和意义 图像作为自然界景物的客观反映,是人类感知世界的视觉基础,也是人类获取信息、表达信息和传递信息的重要手段。据统计,人类获得的信息大约75%是以图像的形式,通过视觉系统获得的。图像时人类重要的信息源,“百闻不如一见”、“眼见为实”即时图像对于人类重要性的简明概括。[1] 图像是物体透射或反射的光信息,通过人的视觉系统接受后,在大脑中形成的印象或认识,是自然景物的客观反映。一般来说,凡是能为人类视觉系统所感知的有形信息,或人们心目中的有形想象都统称为图像。图像作为一种有效的信息载体,是人类获取和交换信息的主要来源。实践表明,人类感知的外界信息,80%以上是通过视觉得到的。 然而,在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。所谓图像处理,就是通过某些数学运算对图像信息进行加工和处理,以满足人的视觉心理和实际应用需求[2]。图像增强是图像处理的一个重要环节,在整个图像处理过程中起着承前启后的重要作用。 随着图像处理设备性能的不断提高以及图像数字化和图像显示设备的普及化和低价化,人们对图像质量的要求越来越高。而图像质量的含义[3]包括两个方面的内容,即图像的保真度(Fidelity)和理解度(Intelligibility)。保真度是指被评价图像与标准图像的偏离程度,两者属于同一个映像,只是由于传输和处理等原因造成了偏差,因此保真度往往指的是图像细节方面的差异。理解度表示图像能向人或机器提供信息的能力,其中主要包括清晰度和美感等,因此,理解度通常指的是图像整体和细节的总体概念。

红外焦平面阵列非均匀性校正算法的研究

红外焦平面阵列非均匀性校正算法的研究 摘要:红外焦平面阵列普遍存在非均匀性,会严重影响红外成像质量。对非均匀性的主要来源和表现形式进行了探讨,介绍了在工程应用中常用的校正方法,两点温度校正法、时域高通滤波法和人工神经网络法,给出详细的推导,并对几种校正算法进行了分析和研究,对这几种校正算法的优点和缺点进行讨论和综合对比,为进一步开展红外焦平面非均匀性校正提供参考意见。 关键词:红外焦平面阵列非均匀性校正算法对比 Study of Non-uniformity Correction Algorithms for IRFPA Abstract:There usually exist a non-uniformity problem for infrared focal plane arrays.This problem may has a severe influence on the imaging quality of them.The non-uniformity of the major sources and manifestations are discussed.Two temperature correction method,constant statistical average,temporal high-pass filtering and artificial neural network which usually applied in engineering are introduced. Three correction algorithms are analysed and researched, giving a detailed derivation,and advantages and disadvantages of the four correction algorithms are discussed and comprehensively compared. providing a reference suggestions for the further development of non-uniformity correction algorithms for IRFPA.

相关文档
最新文档