完整word版,volte丢包率TOP小区处理

完整word版,volte丢包率TOP小区处理
完整word版,volte丢包率TOP小区处理

volte丢包率TOP小区处理

2016年7月

目录

一、概述 (3)

二、volte丢包率高TOP小区处理流程 (8)

三、丢包率高TOP小区处理案例 (8)

1.选择丢包率高TOP小区 (8)

2.提取相关联指标项 (9)

3. 实施处理 (9)

3.1 下行丢包率高TOP小区处理 (9)

3.2 上行丢包率高TOP小区处理 (11)

四、TOP小区处理总结 (12)

一、概述

上下行语音丢包率是是表征VoLTE业务的一个重要指标,与时延,抖动是影响VOLTE 语音质量的三大因素之一。监控,优化,提升上下行语音丢包率可以辅助VOLTE用户语音感知质量的提升。

PDCP层丢包对语音感知影响

VOLTE业务与GU业务不同,LTE走PS域,通过不同QCI承载来进行QoS保障,影响其VOLTE 语音质量的关键指标为丢包,时延,抖动,其中丢包对MOS值基本是线性分布,一般丢包率在1%以内,MOS分都比较好;一旦丢包率大于1%后,MOS分明显下降,语音质量将会受到影响。

丢包率定义和影响因素

指标定义:

VOLTE语音包关联指标分析

举例如下:若出现PUSCH MCS0阶占比和PDSCH MCS0阶占比同时恶化,弱覆盖导致的可能性较大。

根据关键指标关联,分析用户数问题

根据如下话统信息,判断终端所处小区的负载情况,判断是否小区语音负载大,导致不能及时调度用户,带来PDCP层丢包;

空口丢包原理

上行空口丢包统计原理:

主要影响因素:上行调度不及时,如图中的1,会导致UE PDCP层的丢弃定时器超时,但现网值是集团规范值,不存在该问题。空口传输质量差,如图中2,MAC层多次传输错误导致丢包。

上行空口丢包统计原理:

主要影响因素:下行丢包基本上是用户处于小区弱覆盖区域。

常见PDCP层丢包原因总结

常见PDCP层丢包处理总体思路

VOLTE语音包分析常规动作

1.KPI定义以及公式核查

2.问题范围,KPI趋势和话统原因分析:通过话统排查丢包区域,确认是全网问题还是TOP

小区问题,如果是TOP小区问题就需要进一步排查该小区的配置,操作记录和参数差异等。还可以分析丢包的变化趋势,看一下是不是网络突变问题,找到时间节点,查看最近网络的大型操作记录入网络改造,参数修改等等原因。

3.现网参数和告警排查:查看影响业务类的告警,然后根据参数基线核查现网参数是否配

置正确,比如某些特性开关的开启与关闭核查

4.TOP用户和TOP终端排查

二、volte丢包率高TOP小区处理流程

先查看基站告警,再从后台提取相关指标,通过关联指标查找丢包原因,核查相关指标参数,优化相关指标项,再观察重建指标变化。若恢复则归档,若未恢复则进一步排查问题原因。后台无法排查到原因,再结合前台核心网联合排查。

三、丢包率高TOP小区处理案例

1.选择丢包率高TOP小区

提取上周指标,选取上下行丢包率高个小区作为试点处理:

由于在一周内没有出现持续丢包高的小区,所以选取在一周内出现过丢包率高的小区做

问题小区处理。

2.提取相关联指标项

查看相关联指标发现下行丢包高的两个小区RRC重建比例、掉线率,无线接通等也相对劣化,但上行丢包率高的小区在相关联指标项并未发现异常。

3. 实施处理

3.1 下行丢包率高TOP小区处理

站点:

查看基站告警:基站当前无告警,在丢包率高发生的日期也未出现告警。

查看相关指标:通过查看当天的指标未发现异常指标。

核查相关指标&参数:核查该站点的常规参数,也未发现异常参数。

查看MR数据:该站点未出现MR弱覆盖及MR高干扰。

现场测试:

测试方式:为了看是否切换或小区边缘是否影响丢包率的抬升,选择室外DT测试,通话时长:180s,通话次数10次以上。

制定方案:更改基站参数:PDCP SDU的丢弃时间(QCI1)改为300ms

修改后再进行测试:

参数修改后与之前的丢包率对比变化并无太大变化,MOS和时延等都无影响。当日网管指标:

后台网管观察小区丢包率值在正常范围值内。

修改时间为:14:30,修改前后各时段丢包率指标无明显变化。

3.2 上行丢包率高TOP小区处理

查看基站告警:基站当前无告警,在丢包率高发生的日期也未出现告警。

查看相关指标:通过查看当天的指标未发现异常指标。

核查相关指标&参数:核查该站点的常规参数,也未发现异常参数。

查看MR数据:该站点未出现MR弱覆盖及MR高干扰。

现场测试:

测试方式:为了看是否切换或小区边缘是否影响丢包率的抬升,选择室外DT测试,通话时长:180s,通话次数10次以上。

制定方案:更改基站参数:PDCP SDU的丢弃时间(QCI1)改为300ms

修改后再进行测试:

参数修改后与之前的丢包率对比变化并无太大变化,MOS和时延等都无影响。

当日网管指标:

后台网管观察,丢包率在正常范围值内

修改时间为16:30,修改前后各时段丢包率在正常范围内。

四、TOP小区处理总结

丢包率高对VOLTE指标影响较大,对用户感知也有较大影响。丢包率高的处理可以整

华为TOP小区处理阶段流程经验总结

TOP小区处理流程总结 1TOP小区处理流程及整体处理情况 1.1 TOP小区分解 TD-SCDMA网络系统重要的话统KPI包括CS/PS无线接通率、CS/PS无线掉线率、接力切换成功率、RNC间硬切换成功率、3G/2G互操作成功率等,针对这些KPI指标,可以通过分析、处理和解决影响这些指标的问题小区,提升和改善KPI指标。 1. 2 问题处理流程 TOP小区问题处理流程中,原因分析是流程中的关键点和重点。

2无线接通率TOP小区分析处理 无线接通率=RRC建立成功率*RAB建立成功率,接通率需要从RRC建立成功率和RAB建立成功率两块进行分析。RRC建立成功率与业务类型没有关系,RAB建立成功率则与业务类相关,需要分PS业务/CS业务进行分析。每次RRC和RAB建立失败,话统都会输出一个失败原因统计。 2.1RRC建立失败处理

2.1.1RRC建立失败原因 RRC建立失败的原因可以通过RRC原因统计的细化Counter进行确定。表3是RRC建立失败的对应原因打点。表4为RRC失败对应的原因分析。 表3:RRC失败原因打点 表4:RRC失败对应的原因分析

2.1.2RRC建立失败处理 1)拥塞 在RRC建立出现拥塞时,可以进行下面的操作: ?将主要业务的RRC建立在公共信道上,修改命令行为: ?主叫流媒类体RRC建立在FACH上 SET RRCESTCAUSE: RRCCAUSE=ORIGSTREAMCALLEST, SIGCHTYPE=FACH; ?主叫交互类RRC建立在FACH上 SET RRCESTCAUSE: RRCCAUSE=ORIGINTERCALLEST, SIGCHTYPE=FACH; ?主叫背景类RRC建立在FACH上 SET RRCESTCAUSE: RRCCAUSE=ORIGBKGCALLEST, SIGCHTYPE=FACH; ?终止流媒体类RRC建立在FACH上 SET RRCESTCAUSE: RRCCAUSE=TERMSTREAMCALLEST, SIGCHTYPE=FACH; ?终止交互类RRC建立在FACH上 SET RRCESTCAUSE: RRCCAUSE=TERMINTERCALLEST, SIGCHTYPE=FACH; ?终止流媒体类RRC建立在FACH上 RCESTCAUSE: RRCCAUSE=TERMBKGCALLEST, SIGCHTYPE=FACH; ?去附着信令承载建立在FACH上 SET RRCESTCAUSE: RRCCAUSE=DETACHEST, SIGCHTYPE=FACH; ?注册登记承载在FACH上 SET RRCESTCAUSE: RRCCAUSE=REGISTEST, SIGCHTYPE=FACH; ?提高拥塞小区的最小接入电平,限制部分低电平用户的接入: 修改命令:MOD CELLSELRESEL: QRXLEVMIN=-96; ?打开LDC开关; ?对于业务量持续较大的小区,可以考虑建议扩容。 2)RL建立失败

volte丢包率优化思路

VOLTE丢包专题 1高丢包定义 VoLTE上行高丢包小区(语音):>5%且小区QCI为1的DRB业务PDCP SDU上行期望收到的总包数>1000; VoLTE下行高丢包小区(语音):>5%且小区QCI为1的DRB业务PDCP SDU下行发送的包数>1000; 2丢包影响 丢包对VoLTE语音质量的影响较大,当丢包率大于10%时,已不能接受,而在丢包率为5%时,基本可以接受。因此,要求IP承载网的丢包率小于5%。VoLTE丢包率是MOS值的一个重要影响因素,严重的丢包影响通话质量,甚至导致掉话,导致用户感知降低。 3影响丢包的因素 影响Volte丢包的因素有故障告警、无线环境、大话务、传输、核心网、参数等多因素,详细如下:

针对VoLTE 丢包可进行关联分析的指标有: 无线环境包括TA 占比、MR 弱覆盖、干扰、RRC 重建、切换、邻区漏配等; 容量包括:PRB 利用率、单板利用率、CCE 利用率、小区用户数等; 4 高丢包分析流程 针对高丢包问题小区优化分析思路流程如下: 丢包 无线环境覆盖越区覆盖弱覆盖干扰上行干扰 下行干扰 重建频繁切换邻区漏配故障告警容量PRB 利用率单板利用 率小区用户 数CCE 利用率 传输核心网

5优化界定方案 5.1故障告警 核查问题小区及周边一圈层邻近小区是否存在影响业务的故障告警,若存在影响业务的故障

告警,优先处理故障告警; 影响业务的告警如下: 影响业务的告警.xl sx 处理建议:针对相应的故障进行故障处理。 5.2上行干扰 小区级系统上行每个PRB上检测到的干扰噪声的平均值大于-110,即可判定该小区为上行干扰小区; 干扰特征和干扰原因如下: 处理建议:结合现场进行干扰排查和处理。

volte丢包率TOP小区处理.doc

volte丢包率TOP小区处理 2016年7月

目录 一、概述 (3) 二、volte丢包率高TOP小区处理流程 (8) 三、丢包率高TOP小区处理案例 (8) 1.选择丢包率高TOP小区 (8) 2.提取相关联指标项 (9) 3. 实施处理 (9) 3.1 下行丢包率高TOP小区处理 (9) 3.2 上行丢包率高TOP小区处理 (11) 四、TOP小区处理总结 (12)

一、概述 上下行语音丢包率是是表征VoLTE业务的一个重要指标,与时延,抖动是影响VOLTE 语音质量的三大因素之一。监控,优化,提升上下行语音丢包率可以辅助VOLTE用户语音感知质量的提升。 PDCP层丢包对语音感知影响 VOLTE业务与GU业务不同,LTE走PS域,通过不同QCI承载来进行QoS保障,影响其VOLTE 语音质量的关键指标为丢包,时延,抖动,其中丢包对MOS值基本是线性分布,一般丢包率在1%以内,MOS分都比较好;一旦丢包率大于1%后,MOS分明显下降,语音质量将会受到影响。 丢包率定义和影响因素 指标定义:

VOLTE语音包关联指标分析 举例如下:若出现PUSCH MCS0阶占比和PDSCH MCS0阶占比同时恶化,弱覆盖导致的可能性较大。

根据关键指标关联,分析用户数问题 根据如下话统信息,判断终端所处小区的负载情况,判断是否小区语音负载大,导致不能及时调度用户,带来PDCP层丢包; 空口丢包原理 上行空口丢包统计原理:

主要影响因素:上行调度不及时,如图中的1,会导致UE PDCP层的丢弃定时器超时,但现网值是集团规范值,不存在该问题。空口传输质量差,如图中2,MAC层多次传输错误导致丢包。 上行空口丢包统计原理: 主要影响因素:下行丢包基本上是用户处于小区弱覆盖区域。 常见PDCP层丢包原因总结

VOLTE丢包分析思路

VOLTE RTP丢包率问题分析 一、网管统计丢包率情况 1、丢包率变化情况: 通过对指标的观察,发现上行丢包率大于下行丢包率,且指标都位于0.1%-0.3%之间。 二、丢包率的影响因素(无线侧) 1、上行丢包率 影响上行丢包率的主要有三大因素:弱覆盖、大话务、上行干扰。 ①弱覆盖:上行弱覆盖导致上下行链路不平衡,导致丢包; 案例:邻区漏配导致的弱覆盖,丢包严重,MOS低 ②大话务:控制信道配置不足,同一小区内上行用户量多时概率性出现上行数据包未 正常发送,导致丢包; 案例:XXXXXXX-HLW业务量较大,上行丢包率较高 XXXXXXXX-HLW站点长期业务量较大,上行丢包率大于1%,主要原因是上行资源不足,需要修改上下行初始CCE分配比例,加大上行CCE的资源预留。 ③外部干扰:4G网络受到网内、网外干扰的情况依然存在,如电信FDD干扰、干扰器、

站点GPS故障等,导致丢包。 案例:上行干扰导致上行丢包严重,造成掉话 问题描述 UE在XX路由北往南移动,主叫占用A-HLH-2(RSRP:-77.56dBm SINR:26.9dB)在16:55:29.181完成呼叫,发起BYE REQUEST请求;被叫占用相同小区(RSRP:-80.75dBm SINR:23.5dB)在此时未收到网络侧下发的BYE REQUEST,在16:55:32.105主动发起BYE REQUEST,系统记为一次掉话。 问题分析 主叫在通话完成以后上发BYE REQUEST,基站侧未收到,被叫主动发起BYE REQUEST,系统记为掉话。查看主被叫信令,发现在挂机时刻UE重复发送BYE REQUEST消息和BYE OK 消息,基站侧也重复下发BYE REQUEST给主叫,此时上行BLER非常高,达到70%-80%,上行链路质量非常差;通过查询当时的干扰信息,发现该路段附近存在较大的上行干扰:(参考此时段共站共覆盖TDS小区“SMSNR1:XXXXX_2”干扰信号) 问题结论 该路段存在较强的外部干扰,需对干扰源进行定位,排除干扰。 2、下行丢包率 影响下行丢包率的主要有三大因素:弱覆盖、下行质差、外部干扰。 弱覆盖:上行弱覆盖导致上下行链路不平衡,导致丢包; 下行质差:4G网络组网结构复杂,目前存在F/D/E共计7 个频点,等同于7张网络,切换、重选参数设置难度很大,在部分复杂场景下容易发生重叠覆盖、频繁切换问题,导致丢包;部分区域存在模3干扰导致丢包; 案例1:模3干扰导致丢包,影响MOS值 案例2:重叠覆盖导致丢包,影响MOS值 外部干扰:4G网络受到网内、网外干扰的情况依然存在,如电信FDD干扰、干扰器、站点GPS故障等,导致丢包。 三、针对影响因素目前可以使用的优化手段 1、针对上行丢包率可用的优化手段 弱覆盖处理手段:

4G KPI优化流程

LTE TOP小区处理思路 1 日常关注KPI 话统KPI主要包括以下几大类:接入性指标、保持性指标、移动性指标、干扰指标、信道质量指标等。 通过对这些指标的监控、处理,可以达到:识别发现问题、风险提前预警、话统KPI的稳定与用户使用感知的提升。 实际处理过程中,应优先处理对用户影响较大指标,接通、掉线、切换三大指标,同时参考流量、信道质量、寻呼响应等指标分析处理; 1.1指标项 1.2指标公式

2 KPI处理需求 全网整体指标监控:重点监控切换成功率、掉线率、无线接通率、流量走势;建议提取前一天全网小时级指标与近一周数据走势对比,是否有较大波动,并分析具体原因,整网还是TOP小区影响;现阶段要求切换、接通率大于99%,掉线率小于0.5%;流量应无明显下滑(重大活动等影响除外); TOP小区处理:建议选取昨日8点-23点15忙时相关指标,优先处理VIP区域、高业务区、高投诉区域小区;

3 TOP小区查找和分析处理 3.1 接入性TOP分析处理 3.1.1筛选条件 提取15忙时数据,筛选出TOP小区,对未恢复的小区进行分析处理: VIP小区、高业务量小区、重点活动保障区、高投诉区,请求次数较多的小区需及时处理; 连接请求次数小于50次的TOP小区,由于触发次数较少,等级次之;如果多个时段连续无成功次数,需提升处理等级; 业务量较小,无线环境较差,等级次之; 指标定义 3.1.2接入相关指标项

3.1.3R RC建立失败原因 小区RRC建立失败次数: 资源分配失败而导致RRC连接建立失败的次数,指标ID:1526727083;重点关注top 资源是否足够,包括top用户数,传输、PRB等; UE无应答而导致RRC连接建立失败的次数,指标ID:1526727084;关注质差、干扰、无线环境等; 小区发送RRC Connection Reject消息次数,指标ID:1526728269;关注传输问题、是否拥塞、干扰; 因为SRS资源分配失败而导致RRC连接建立失败的次数,指标ID:1526728485; 重点关注SRS带宽、配置指示、配置方式、SRS ACK/NACK设置是否合理等; 因为PUCCH资源分配失败而导致RRC连接建立失败的次数,指标ID:1526728486; 关注PUCCH信道相关参数设置是否合理,CQI RB数配置是否合理等; 流控导致的RRC Connection Request 消息丢弃次数,指标ID:1526728489;关注拥塞,业务流控相关参数是否设置正确等; 流控导致的发送RRC Connection Reject消息次数,指标ID:1526728490;关注拥塞,业务流控相关参数是否设置正确等;

Volte丢包率优化案例

V o l t e丢包率优化案例 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

Volte丢包率优化方案 一、概述 随着市场推广,移动VOLTE用户逐步增多,Volte丢包率对用户语音质量影响较大,为提升用户感知,现针对VOLTE上下行丢包进行优化,提升用户满意度。 二、Volte丢包率优化思路 1、影响Volte丢包率的因素 用户对语音质量的感知直接受语音编码、丢包、时延以及抖动影响。 语音编码:高速率编码消耗带宽大,低速率编码影响语音质量 丢包:数据包丢失,会显着地影响语音质量 时延:时延会带来语音变形和会话中断 抖动:效果类似丢包,某些字词听不清楚 2、Volte语音通话协议栈和接口映射 从协议上看,一个Volte语音通话的参与网元主要有:UE、eNB、SGW、IMS,既有RAN 侧网元,又有传统EPC侧网元,还有IMS侧网元。其中在无线测我们需要重点关注的网元是UE和eNB以及UE和eNB之间的Uu接口。即主要涉及的协议是PHY、MAC、RLC、PDCP。需要注意的是,IMS侧的控制面协议,在EPC是以用户面数据形式进行传输的,在IMS侧才会被拆分成控制面和用户面。 Volte语音通话涉及的协议图: 当前网络结构图: 三、Volte丢包率优化目标 梳理Volte语音通话中各设备的问题表现及对应的影响因素,即可明确无线优化手段:参数优化,覆盖优化,干扰优化,移动性能优化,邻区优化,容量优化,功能优化。

1、 PDCP层参数优化 PDCP是对分组数据汇聚协议的一个简称。它是UMTS中的一个无线传输协议栈,它负责将IP头压缩和解压、传输用户数据并维护为无损的无线网络服务子系统(SRNS)设置的无线承载的序列号。 涉及参数:pdb、pdboffset、aqmmode、 UlPdcpSduTimerDiscardEnabled 涉及的功能:TcpOptimization 参数优化原理:通过修改相关参数,延长或缩短PDCP层的丢包定时器,从而控制丢包具体步骤如下 参数优化建议:

ltetopn处理

3)调整PRACH前缀最大发送次数增大随机接入成功率,PRACH前缀最大发送次数这项参数不能设置过高,过高会增加对邻区的干扰,取值建议:8次或10次. 4)调整最小接入电平门限。 2 如果主要为“eNB接纳失败”。 eNB接纳失败可理解为基站拥塞导致,结合后台统计该小区实时在线用户数目是否已经达到系统上限。 对于此类问题最好的解决方法就是调整拥塞小区的接纳用户数门限值. 3 如果主要为“其他原因”。 对于初始的RRC建立失败次数,其他原因(个)这项则需要对信令进行跟踪分析,以及查看相关的参数是不是配置错误(如:PCI的PRACH映射关系设置不规范,NCS/PRACH CONFIG INDEX配置等随机接入参数。 E-RAB建立失败TOP及原因分析 A 指标名如下: E-RAB建立成功率E-RAB Setup Success Rate 筛选出RAB连接建立成功率的TOP小区明细 B 具体KPI分析: 通过excel画曲线图分析如下counter值与rate本身的关联性,通过excel曲线图分析成功率底下的主要原因是如下哪个主要因素引起? 初始的E-RAB建立失败次数,eNB接纳失败、 初始的E-RAB建立失败次数,空口失败、 初始的E-RAB建立失败次数,安全激活失败、 初始的E-RAB建立失败次数,消息参数错误、 初始的E-RAB建立失败次数,RRC重建立原因、 初始的E-RAB建立失败次数,其他原因、 增加的E-RAB建立失败次数,eNB接纳失败、 增加的E-RAB建立失败次数,空口失败、 增加的E-RAB建立失败次数,切换引起+增加的E-RAB建立失败次数,消息参数错误、 增加的E-RAB建立失败次数,RRC重建立原因、 增加的E-RAB建立失败次数,其他原因 曲线分析结果: 1 如果主要为“eNB接纳失败”, 信令跟踪进行分析。查看小区配置的相关接纳参数是否正常,比如小区Active E-RAB数门限是否设置过小。 2 如果主要为“空口失败”。

案例-关于VoLTE丢包率高优化处理最佳实践总结

VOLTE关于丢包率高优化处理总结 一、问题描述 上下行语音丢包率是是表征VoLTE业务的一个重要指标,与时延,抖动是影响VOLTE 语音质量的三大因素之一。监控,优化,提升上下行语音丢包率可以辅助VOLTE用户语音感知质量的提升。 PDCP层丢包对语音感知影响 VOLTE业务与GU业务不同,LTE走PS域,通过不同QCI承载来进行QoS保障,影响其VOLTE语音质量的关键指标为丢包,时延,抖动,其中丢包对MOS值基本是线性分布,一般丢包率在1%以内,MOS分都比较好;一旦丢包率大于1%后,MOS分明显下降,语音质量将会受到影响。 提取指标发现LF_H_YY余舜宇集团voLTE语音下行丢包率高达5.27%,voLTE语音上行丢包率6.24%,严重影响网络指标。

二、问题分析 丢包率定义和影响因素指标定义: VOLTE语音包关联指标分析

举例如下:若出现PUSCH MCS0阶占比和PDSCH MCS0阶占比同时恶化,弱覆盖导致的可能性较大。 ?根据关键指标关联,分析用户数问题 根据如下话统信息,判断终端所处小区的负载情况,判断是否小区语音负载大,导致不能及时调度用户,带来PDCP层丢包;

?空口丢包原理 上行空口丢包统计原理: 主要影响因素:上行调度不及时,如图中的1,会导致UE PDCP层的丢弃定时器超时,但现网值是集团规范值,不存在该问题。空口传输质量差,如图中2,MAC层多次传输错误导致丢包。

?上行空口丢包统计原理: 主要影响因素:下行丢包基本上是用户处于小区弱覆盖区域。?常见PDCP层丢包原因总结 ?常见PDCP层丢包处理总体思路

经典案例_VoLTE上行丢包率优化思路研究

VOLTE上行丢包率优化思路研究

目录 1问题分析 (1) 1.1V oLTE网管丢包率指标定义 (1) 1.2上行丢包原理 (2) 1.3丢包优化流程与思路 (3) 2分场景优化 (5) 2.1弱覆盖场景 (5) 2.1.1VOLTE上行覆盖增强 (5) 2.1.2天馈调整及功率优化 (7) 2.2大话务场景 (7) 2.2.1PDCCH CCE初始比例优化 (7) 2.2.2ROHC功能开启 (9) 2.3上行干扰场景 (11) 2.3.1基于干扰的动态功控 (11) 2.4频繁切换场景 (13) 2.5其他功能及参数优化 (15) 2.5.1PDCP层参数优化 (15) 2.5.2RLC重排序定时器 (16) 2.5.3包聚合关闭 (16) 3总结 (19)

【摘要】随着VOLTE业务的快速普及,VOLTE用户数和业务量都进入了快速上涨期,用户对语音质量要求越来越高,单通、吞字、双不通等严重影响用户感知,制约着4G业务的发展。其中“空口丢包”和“基站丢包”指标可有效表征VOLTE 语音感知,减少“空口丢包”和“基站丢包”是VOLTE语音质量优化提升的重要方向。本文将对V olte上行QCI1丢包率优化展开全面论述。 【关键词】VOLTE全面商用、QCI1上行丢包率、语音质量 1问题分析 1.1VoLTE网管丢包率指标定义

1.2上行丢包原理 VOLTE高清语音编码速率为23.85kbps,终端每20ms生成一个VOLTE语音包(使用RTP实时流媒体协议传输),再加上UDP包头、IP包头、最终打包成IP 包进行传输。在无线空口,按照协议IP包进一步被转换成PDCP包,PDCP包就是空口传输的有效数据,PDCP包在终端和基站间传输异常会导致应用层RTP包的丢失,从而引起语音感知差。 eNodeB的PDCP层接收语音包时如果检测到语音包的SN号不连续,则认为出现丢包。 上行丢包主要原因: 1)大TA/PHR受限、SR漏检、DCI漏检、RLC分段过多、上行调度不及时(上 图① )会导致UE PDCP层丢弃定时器超时丢包; 2)空口传输质量(上图② )差,MAC层多次传输错误后,失败导致丢包;

Volte丢包率优化案例

V o l t e丢包率优化案例 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

V o l t e丢包率优化方案一、概述 随着市场推广,移动VOLTE用户逐步增多,Volte丢包率对用户语音质量影响较大,为提升用户感知,现针对VOLTE上下行丢包进行优化,提升用户满意度。 二、Volte丢包率优化思路 1、影响Volte丢包率的因素 用户对语音质量的感知直接受语音编码、丢包、时延以及抖动影响。 语音编码:高速率编码消耗带宽大,低速率编码影响语音质量 丢包:数据包丢失,会显着地影响语音质量 时延:时延会带来语音变形和会话中断 抖动:效果类似丢包,某些字词听不清楚 2、Volte语音通话协议栈和接口映射 从协议上看,一个Volte语音通话的参与网元主要有:UE、eNB、SGW、IMS,既有RAN侧网元,又有传统EPC侧网元,还有IMS侧网元。其中在无线测我们需要重点关注的网元是UE和eNB以及UE和eNB之间的Uu接口。即主要涉及的协议是PHY、MAC、RLC、PDCP。需要注意的是,IMS侧的控制面协议,在EPC是以用户面数据形式进行传输的,在IMS侧才会被拆分成控制面和用户面。 Volte语音通话涉及的协议图: 当前网络结构图: 三、Volte丢包率优化目标 梳理Volte语音通话中各设备的问题表现及对应的影响因素,即可明确无线优化手段:参数优化,覆盖优化,干扰优化,移动性能优化,邻区优化,容量优化,功能优化。

1、PDCP 层参数优化 PDCP 是对分组数据汇聚协议的一个简称。它是UMTS 中的一个无线传输协议栈,它负责将IP 头压缩和解压、传输用户数据并维护为无损的无线网络服务子系统(SRNS )设置的无线承载的序列号。 涉及参数:pdb 、pdboffset 、aqmmode 、 UlPdcpSduTimerDiscardEnabled 涉及的功能:TcpOptimization? 参数优化原理:通过修改相关参数,延长或缩短?PDCP 层的丢包定时器,从而控制丢包 具体步骤如下 参数优化建议: RLC RLC UM 接收实体设置了一个RLC PDC 重新排列的定时器,当检测到有收到PDU 时启动定时器,如果定时器超时,UM 接收实体将不再等待未接受的PDU,而是直接将接收缓冲区的PDU 重组为SDU 交给上层。增大treorderingul/dl 参数,能增加UM 等待未接收PDU 的时间,以减少RLC 层丢包。 参数优化建议:

TOP小区处理思路

1、掉线率 无线掉线率=(eNodeB发起的S1 RESET导致的UE Context释放次数+UE Context异常释放次数)/UE Context建立成功总次数*100% TOP小区分析可通过OMC 920提取异常释放原因: □eNodeB发起的原因为UE LOST的UE Context释放次数 □eNodeB发起的原因为切换失败的UE Context释放次数 □eNodeB发起的原因为无线层问题的UE Context释放次数 □eNodeB发起的S1 RESET导致的UE Context释放次数 ?是否存在异常告警或传输闪断 1)通过LST ALMAF查询站点实时告警,参考历史告警; 2)通过DSP BRD 查询单板运行情况; ?通过提取两两小区切换,确定目标小区 1)确定目标小区运行情况,是否基站故障或异常告警; 2)检查邻区间参数设置是否正确; 3)通过Mapinfo检查小区邻区配置是否合理,进行邻区合理性优化; 4)检查基站是否周边站点缺少,如为孤站,可视为正常; ?检查S1链路是否配置正确 现统计中eNodeB发起的S1 RESET导致的UE Context释放次数均为0,如统计出现释放次数,需进行针对排查; ?参数是否设置合理 1)查询掉线类定时器设置是否正确;(T310、N311、N310、T311、T301) 2)如掉线率突增,查询操作日志,确认是否有修改,导致小区异常; ?是否存在高干扰 1)通过Mapinfo查看小区PCI复用是否合理,是否存在模三冲突; 2)检查小区时隙配比是否设置准确(DE:SA2\SSP7;F:SA2\SSP5); 3)如每PRB上干扰噪声平均值>-110dBm,确认小区存在上行干扰,同时可通过后台跟踪,确认干扰类型; 小提示:判断干扰类型时,可跟踪后台干扰检测,如果RB0-RB99呈下坡图,则为杂散干扰,如果为陡升陡降则为互调干扰,如果为上坡图,则为阻塞干扰,如果干扰仅在RB40-RB80,则为广电干扰,请大家知悉。 ?是否存在高质差 1)通过观察小区上下行丢包率是否正常,如丢包率偏高,基本断定小区存在质差; 2)通过后台误码率跟踪,如BLER>10%,确定小区存在高误码; ?是否存在弱覆盖 1)检查传输模式,是否为TM3,如长时间为TM2,确认设置正确的情况下,基本确定小区存在弱覆盖; 2)对比64QAM和QPSK占比,如后者比例远大于前者,可确定小区覆盖异常; ?现场测试及后台跟踪 1)安排前场人员现场测试,同时后台通过信令跟踪,配合查找问题原因; 2)如果确认问题后,需第三方配合解决,转发相关人员处理,做好跟踪工作,直至问题闭环; 2、接通成功率

LTE指标优化及TOP小区分析

LTE指标优化及TOP小区分析

LTE指标优化及TOP小区分析 1 掉线率 1.1 指标定义 无线掉线率=(eNodeB发起的S1 RESET导致的UE Context释放次数+UE Context异常释放次数)/UE Context建立成功总次数*100% 1.2 指标分析及统计点介绍 UE Context异常释放次数

测量点:如图1中A点所示,当eNodeB向MME发送UE CONTEXT RELEASE REQUEST消息,会释放UE的所有E-RAB。当释放原因不为“Normal Release”,“Detach”,“User Inactivity”,“CS Fallback triggered”,“UE Not Available for PS Service”,“Inter-RAT Redirection”,“Time Critical Handover”,“Handover Cancelled”时,测量指标 L.UECNTX.AbnormRel加1。 eNodeB发起的S1 RESET导致的UE Context释放次数

测量点:如图2中A点所示,当eNodeB向MME发送S1 RESET消息时,根据包含的上下文个数,指标L.UECNTX.Rel.S1Reset.eNodeB进行累加。UE Context建立成功总次数

测量点:如图3中B点所示,当eNodeB向MME发送INITIAL CONTEXT SETUP RESPONSE消息时统计该指标。消息中如果包括多个E-RAB,该指标也只统计一次。 1.3 TOP小区分析流程 TOP小区分析可通过OMC 920提取异常释放原因: □eNodeB发起的原因为UE LOST的UE Context释放次数 □eNodeB发起的原因为切换失败的UE Context释放次数 □eNodeB发起的原因为无线层问题的UE Context释放次数 □eNodeB发起的S1 RESET导致的UE Context释放次数

VOLTE-RTP丢包率全参数实验专项报告材料

RTP丢包率参数实验专项报告

目录 1、实验背景 (3) 2、参数介绍及实验思路 (3) 2.1参数介绍 (3) 2.2实验思路 (4) 3、参数实验准备工作及调整情况 (4) 3.1实验路线及方法 (4) 3.2测试规范及要求 (5) 3.3涉及相关参数调整实验方案 (5) 4、实验效果统计对比 (6) 4.1DT语音业务测试效果验证对比 (7) 4.2KPI统计指标对比 (10) 5、参数实验总结及建议 (10) 5.1实验总结 (10) 5.2调整建议 (11)

1、实验背景 根据VoLTE网络质量提升百日会战的要求,为提升VoLTE语音DT测试指标,提升用户感知,对可能与测试指标相关联的参数进行分析研究,通过对相应参数的调整实验寻找合适于网络需求的参数优化值,提升DT测试中各项指标; 此次参数实验主要是针对VoLTE语音DT测试指标中的RTP丢包率相关的参数PDCPPROF101TDISCARD,期望通过对该参数的调整试验,同时观察对其他指标的影响,找到有益于指标和感知的实验值。 2、参数介绍及实验思路 2.1参数介绍 参数ID:PDCPPROF101TDISCARD 含义:该参数表示PDCP丢弃定时器的大小 界面取值范围:100ms(0),150ms(1),300ms(2),500ms(3),750ms(4),1500ms(5),infinity(6) 缺省值:QCI 1取值100 现网值:QCI 1现网取值为100 影响范围:基站级,该参数修改不需要闭站,操作不影响业务。 附RTP丢包率公式: RTP丢包率=(发送RTP数-接收到RTP数)/发送RTP数×100%;

TOP小区处理流程-经典

TOP小区处理流程 1TOP小区处理流程及整体处理情况 1.1 TOP小区分解 TD-SCDMA网络系统重要的话统KPI包括CS/PS无线接通率、CS/PS无线掉线率、接力切换成功率、RNC间硬切换成功率、3G/2G互操作成功率等,针对这些KPI指标,可以通过分析、处理和解决影响这些指标的问题小区,提升和改善KPI指标。 随着项目优化的深入开展,实行优化大区制,话统TOP小区也相应的落入大区进行分析和处理。TOP小区按问题类型进行分类处理,目前按23G互操作问题、产品性能问题、掉话类、接通率类、切换类等5大类进行分类,其中23G互操作问题由2G/3G团队处理,产品性能问题由产品性能研发处理,其余掉话类、接通类、切换类等落入大区进行处理。 1. 2 问题处理流程 TOP小区问题处理流程中,原因分析是流程中的关键点和重点,下面的章节中按问题类型进行分析和说明。

流程说明: 1)TOP小区输出,现阶段由机房在每天的KPI监控日报中一起输出,TOP小区处理团 队进行跟踪和处理; 2)每天跟踪TOP小区的KPI变化,刷新TOP小区问题跟踪表,更新处理情况和处理 内容; 3)完成调整的持续观察3-4天,如果话统恢复正常,关闭问题;仍未恢复的,转回 原因分析阶段,继续分析和处理;

4)每个问题建立案例,按照问题描述、原因分析和处理、指标变化、案例总结; 5)每天输出问题处理计划,外场测试必须输出测试报告; 6)每周输出TOP小区处理周报。 2无线接通率TOP小区分析处理 无线接通率=RRC建立成功率*RAB建立成功率,接通率需要从RRC建立成功率和RAB 建立成功率两块进行分析。RRC建立成功率与业务类型没有关系,RAB建立成功率则与业务类相关,需要分PS业务/CS业务进行分析。每次RRC和RAB建立失败,话统都会输出一个失败原因统计。 2.1RRC建立失败处理 2.1.1RRC建立失败原因 RRC建立失败的原因可以通过RRC原因统计的细化Counter进行确定。表3是RRC建立失败的对应原因打点。表4为RRC失败对应的原因分析。 表3:RRC失败原因打点 表4:RRC失败对应的原因分析

精品案例-西安电信CQI优良比TOP小区处理方法及案例

西安电信CQI优良率TOP小区优化案例

1.概述 CQI做为SINR的映射指示,可在一定程度上反映小区的下行覆盖质量,通过分析小区CQI采样分布可以识别出覆盖差小区并进行优化,提高业务质量和用户感知,有重要优化价值。 本案对西安电信LTE网络CQI优良率TOP小区进行分析,从覆盖、负荷、参数配置等多个维度优化提升CQI优良率TOP小区,总结优化方案案例。 2.CQI基本概念及原理 LTE 的下行物理共享信道(PDSCH)支持三种调制方式: QPSK、 16QAM 和 64QAM, 其中CQI:1-6 采用 QPSK,CQI:7-9 采用 16QAM,CQI:10-15 采用 64QAM。eNodeB 根据上报的CQI来决定下行PDSCH信道的MCS。不同的MCS对应不同的编码方式,因此UE用户上报的CQI值的大小决定了UE用户的下行编码效率,在同等情况下,下行编码效率越高,下载速率越高。由此可见,UE用户上报的CQI指标即反映了LTE网络全网性无线信号覆盖质量,又反映了下行信道编码的效率。相对于RSRP、SINR和上下行速率等指标,CQI更能全面的反映LTE网络的覆盖质量。 CQI是无线信道通信质量的测量标准,它是反映当前信道质量的一项重要指标。通常,一个高值的CQI标志着有一个较好的信道质量。CQI≥10是采用64QAM调制的必要条件,CQI ≥7是采用16QAM调制的必要条件,采用高阶调制方式,在同等条件下,能获得更高的下载速率。目前集团采用CQI≥7的比例来衡量网络覆盖水平。 CQI本质上反应了当前的信道质量,提升CQI从根本上需要提升SINR。UE 的CQI上报值跟信道效率的对应关系如下图1所示。

VoLTE-MOS优化思路及方法

一、VoL TE语音MOS采样点机制 VoLTE语音MOS采样机制如下: (1)主叫起呼,进行录音(8s左右); (2)被叫放音,主叫收音,被叫记录第1个MOS采样点(8s); (3)主叫放音,被叫收音,主叫记录第1个MOS采样点(8s); (4)被叫放音,主叫收音,被叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);(5)主叫放音,被叫收音,主叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);(6)被叫放音,主叫收音,被叫记录第3个MOS采样点(8s),如此类推…… 二、VoL TE语音MOS优化分析方法 1、MOS差的问题点定位 测试log单次通话连续两个采样点MOS值小于3的问题点定义为MOS差的问题点。 注意事项:需剔除通话结束的最后一个采样点与下次通话第一个采样点的MOS值都小于3的问题点。

2、MOS优化分析方法 由MOS采样点机制可以看出,MOS采样点收集的是采样时间点前8秒的语音质量,所以在分析的时候,需着重分析MOS采样时间前8秒UE本端的下行(包括:无线环境、语音编码、抖动、丢包、频繁切换、RRC重建、异频测量频次等),以及对端的上行(包括:频繁切换、RRC重建、异频测量频次等)。 三、VoL TE语音MOS值的影响因素及优化思路 1、MOS值的影响因素 MOS值的直接影响因素为:端到端时延、抖动、丢包; VoLTE端到端时延可以分解为:UE语音编/解码时延、空口传输时延、核心网的处理时延、传输网的传输时延。丢包和抖动的影响因素包括:空口信号质量、eNB负载、传输网的丢包和抖动。 故将以上因素分解后,MOS的影响因素包括:语音编码、覆盖、干扰、切换、邻区、基站负荷、基站故障、传输、核心网、测试终端、人为操作失误等。 2、MOS值的优化思路 结合以上影响因素和前期VoLTE拉网测试时遇到的MOS问题,共总结出四类问题点类型:无线问题、基站异常、测试规范和设备、核心网/传输。 在分析MOS问题时,我们首先要考虑基站是否正常工作,其次考虑测试是否规范、测试设备是否正常,再次判断是否为无线问题造成的,最后才考虑是否核心网及传输网引起的。 因此我们在分析MOS问题时,应该按以下步骤进行MOS优化: (1)基站问题: 是指问题路段中心经纬度150米以内的基站及主瓣65度范围的小区,若存在基站负荷过大、影响业务的告警、断站等问题,必将影响MOS值。处理方法:在测试前确保基站正常工作。 案例1:基站故障导致MOS值低 问题描述:车辆由南向北行驶至清风路与两河大道交叉路口,UE占用金牛清淳一街-SCDHLS3HM3JN-D2的信号,无线环境RSRP为-116.81dbm,SINR为-2.5,MOS值1.14,经测试数据分析,发现UE未能收到距离清风路与两河大道交叉路口50米的华力汽车公司车队-SCDHLD3HM2GX站点信号,经查询 告警得知,发现该站点网元断链,因而导致该路段出现弱覆盖现象,最终导致MOS值差。 处理建议:建议处理华力汽车公司车队-SCDHLD3HM2GX站点故障。 案例2:基站负荷过大,导致MOS值低 问题描述:无线环境较好(RSRP为-95dBm左右,SINR为10左右),无频繁切换;但MOS打点前8s主被叫占用电子科大-SCDHLS0HM1CH-D5,抖动和丢包均比较异常(RTP Jitter为992ms,RTP Loss Rate

Volte丢包率优化案例

Volte丢包率优化方案 一、概述 随着市场推广,移动VOLTE用户逐步增多,Volte丢包率对用户语音质量影响较大,为提升用户感知,现针对VOLTE上下行丢包进行优化,提升用户满意度。 二、Volte丢包率优化思路 1、影响Volte丢包率的因素 用户对语音质量的感知直接受语音编码、丢包、时延以及抖动影响。 语音编码:高速率编码消耗带宽大,低速率编码影响语音质量 丢包:数据包丢失,会显著地影响语音质量 时延:时延会带来语音变形和会话中断 抖动:效果类似丢包,某些字词听不清楚 2、Volte语音通话协议栈和接口映射 从协议上看,一个Volte语音通话的参与网元主要有:UE、eNB、SGW、IMS,既有RAN侧网元,又有传统EPC侧网元,还有IMS侧网元。其中在无线测我们需要重点关注的网元是UE和eNB以及UE 和eNB之间的Uu接口。即主要涉及的协议是PHY、MAC、RLC、PDCP。需要注意的是,IMS侧的控制面协议,在EPC是以用户面数据形式进行传输的,在IMS侧才会被拆分成控制面和用户面。 Volte语音通话涉及的协议图:

当前网络结构图: 三、Volte丢包率优化目标 梳理Volte语音通话中各设备的问题表现及对应的影响因素,即可明确无线优化手段:参数优化,覆盖优化,干扰优化,移动性能优化,邻区优化,容量优化,功能优化。 终端 终端能力,软件配置,语 音编码 硬件性能,参数设置,软件限制 基站基站能力、特性限制 参数配置,特性开关,基站异常, 版本问题 核 心网 核心网参数配置等参数配置,特性开关 无线空口 空口编码,空口资源,空 口时延,QoS配置,空口其他 原因丢包 参数配置,话务容量受限,覆盖 差,外部干扰,切换异常,版本问题 传输承 大时延、抖动,丢包、乱 序 参数配置,容量或能力限制,传输 质量问题

VOLTE高丢包率小区优化-上行频选参数验证

VOLTE高丢包率小区优化-上行频选参数验证 1.修改参数功能介绍 LTE系统对于带宽的高要求,注定了同频组网方式不可避免,为此引发的系统内干扰(Ni),特别是上行干扰(Ni)问题十分突出。建网初期,网络负荷较小,可以通过指定分配的方式来错开相邻小区的上行PRB分配位置。随着网络负荷的提升,上行PRB利用率逐步增加,加之密集城区/高业务区域站点密集,重叠覆盖严重,现有的分配模式很容易造成部分站点在特定PRB位置上干扰(Ni)显著抬升,影响系统容量。 移动网络的上下行业务一般具备不对称的特点,上行业务的突发性比较强,但对带宽(速率)要求比较小。上行全业务的Ni频功能开启后,能对每次上行调度(包括QCI1业务),基站选择最优的频率资源(对应PRB位置上Ni最低),此时终端的发射功率和上行MCS也能处于最优组合,这不仅仅能够提升单用户的速率,也能有效降低系统内干扰、提升系统上行容量。 对于VoLTE业务来说,单次调度的数据量都比较小,大部分情况下对上行PRB的需求也相对较低,调度上容易选择低NI的PRB,因此,上行QCI1业务的Ni频选调度更能在VoLTE业务上显示出优势。 2.参数验证配置方法 2.1 全业务上行NI频选参数配置方法: 选择[修改区->无线参数->TD-LTE -> E-UTRAN TDD小区->上下行物理信道配置->上行频选],点击(修改)按钮,配置开关为[RB位置子带分配(频选)],然后点击(保存)按钮。

2.2 QCI1业务上行NI频选参数配置方法: 1)A类参数配置 选择[修改区->无线参数->TD-LTE -> E-UTRAN TDD小区->VoLTE管理->QCI1 NI 频选开关],点击(修改)按钮,配置开关为[新传与重选均打开],然后点击(保存)按钮。 3.参数修改区域选择 本次验证选取扎鲁特旗与科尔沁左翼后旗两个旗县进行修改,共修改小区1713个。

VoLTE高掉话小区处理流程

VOLTE高掉话处理流程 1. 基站告警-主要指小区存在明显的站点告警,主要影响业务告警,包含硬件、停电、断站,射频单元驻波,IPPATH,S1故障等告警; 2. 隐形故障-主要指对问题点进行后台排查后,未发现明显故障,需上站检查相关硬件,计为隐性故障; 3. 传输故障-主要指小区存在传输链路断链,误码率过高,传输数据配置异常等问题; 4. 参数问题-主要指小区存在参数设置不合理、设置错误,参数漏配等; 5. 覆盖问题-主要指小区存在弱覆盖、覆盖过远或覆盖不合理等因素; 6. 内部干扰-主要指小区存在时隙配比不一致(要求同频点站点时隙配比一致)、GPS失锁、模三干扰、超远干扰; 7. 外部干扰-主要指小区存在阻塞干扰、杂散干扰、互调干扰、及其他外部干扰; 8. 邻区问题-新开站点邻区关系不全,不合理或未加任何邻区,影响UE小区选择或重选至不合理小区,从而影响掉线率。 9. 拥塞问题-主要指小区存在明显的资源不足,用户过多导致。 10. 核心网问题-主要指核心网数据定义不全、定义错误或网元合理化调整、功能验证等,导致指标恶化,计为核心网问题; 11. 终端问题-主要指对问题点通过后台排查和现场测试,排除为所有可能无线侧因素,结合相关信令,确认为个别用户终端问题;

12. 突发异常-主要指某项指标在1-2个时段突然出现恶化,然后自行恢复正常,再排查完各种可能性原因后,未发现任何异常,计为突发异常。 2、E-RAB 掉线率(QCI=1/2)-高掉话TOP 小区分析流程 2、E-RAB掉线率(QCI=1/2)-高掉话TOP小区分析流程 1.查询掉线类定时器设置是否正确;(T310、N311、N310、T311、T301) 2.如掉线率突增,查询操作日志,确认是否有修改,导致小区异常; 1. 检查小区时隙配比是否设置准确(DE:SA2\SSP7;F:SA2\SSP5); 2.如每PRB 上干扰噪声平均值>-110dBm,确认小区存在上行干扰,同时可通过后台跟踪,确认干扰类型 1.通过观察小区上下行丢包率是否正常,如丢包率偏高,基本断定小区存在质差; 2. 通过后台QCI=1/2误码率跟踪,如BLER>1%,确定小区存在高误码; 1.检查传输模式,是否为TM3,如长时间为TM2,确认设置正确的情况下,基本确定小区存在弱覆盖; 2.对比64QAM 和QPSK 占比,如后者比例远大于前者,可确定小区覆盖异常; 1.安排前场人员现场测试,同时后台通过信令跟踪,配合查找问题原因; 2.如果确认问题后,转发相关人员处理,做好跟踪工作,直至问题闭环; 1.确定目标小区运行情况,是否基站故障或异常告警; 2. 检查邻区间参数设置是否正确; 3.通过Mapinfo 检查小区邻区配置是否合理,进行邻区合理性优化; 4.检查基站是否周边站点缺少,如为孤站,可视为正常; 1.通过LST ALMAF 查询站点实时告警,参考历史告警; 2.通过DSP BRD 查询单板运行情况; 是否存在弱覆盖 E-RAB 掉线率(QCI=1/2)高 掉话TOP 小区 服务小区是否存在异常告警或传输闪断,周边300米站点是否存在断站及告 警SRB 达到最大重传次数导致的激活的语音业务E-RAB 异常释放次数 切换流程失败导致的激活的语音业务E-RAB 异常释放 eNodeB 发起的原因为无线层问题的UE Context 释放次数 上行弱覆盖导致的激活的语音业务E-RAB 异常释放通过提取两两小区切换,确定目标小区 参数是否设置合理 是否存在高干扰 是否存在高质差 现场测试及后台跟踪 UE Reply 超时导致的激活的语音业务E-RAB 异常释放

相关文档
最新文档