金球推力国际标准Wire Bond Shear Test

金球推力国际标准Wire Bond Shear Test
金球推力国际标准Wire Bond Shear Test

EIA/JEDEC STANDARD

Wire Bond Shear Test Method EIA/JESD22-B116

JULY 1998

ELECTRONIC INDUSTRIES ALLIANCE

NOTICE

JEDEC standards and publications contain material that has been prepared, reviewed, and approved through the JEDEC Council level and subsequently reviewed and approved by the EIA General Counsel.

JEDEC standards and publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for use by those other than JEDEC members, whether the standard is to be used either domestically or internationally.

JEDEC standards and publications are adopted without regard to whether or not their adoption may involve patents or articles, materials, or processes. By such action JEDEC does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the JEDEC standards or publications.

The information included in JEDEC standards and publications represents a sound approach to product specification and application, principally from the solid state device manufacturer viewpoint. Within the JEDEC organization there are procedures whereby a JEDEC standard or publication may be further processed and ultimately become an EIA standard.

No claims to be in conformance with this standard may be made unless all requirements stated in the standard are met.

Inquiries, comments, and suggestions relative to the content of this JEDEC standard or publication should be addressed to JEDEC Solid State Technology Division, 2500 Wilson Boulevard, Arlington, VA 22201-3834, (703)907-7560/7559 or https://www.360docs.net/doc/8613434717.html,\jedec.

Published by

?ELECTRONIC INDUSTRIES ALLIANCE

Engineering Department

2500 Wilson Boulevard

Arlington, VA 22201-3834

"Copyright" does not apply to JEDEC member companies as they are

free to duplicate this document in accordance with the latest revision of

JEDEC Publication 21 "Manual of Organization and Procedure".

PRICE: Please refer to the current

Catalog of JEDEC Engineering Standards and Publications or call Global Engineering Documents, USA and Canada (1-800-854-7179), International (303-397-7956)

Printed in the U.S.A.

All rights reserved

JEDEC Standard 22-B116

Page 1

WIRE BOND SHEAR TEST

(From JEDEC Council Ballot JCB-97-64, formulated under the cognizance of the JC-14.1 Subcommittee on Reliability Test Methods for Packaged Devices.)

1 Scope

This test provides a means for determining the strength of the bond between a gold ball bond on a die bonding surface or an aluminum wedge or stitch bond on a package bonding surface, and may be performed on pre-encapsulation or post-encapsulation parts. This measure of bond strength is extremely important in determining two features:

1) the integrity of the metallurgical bond which has been formed.

2) the quality of gold and aluminum wire bonds to die or package bonding surfaces.

These test methods cover ball bonds made with small diameter (from 18 to 76 μm, or from 0.7 to 3 mil) wire and wedge bonds made with larger diameter (minimum of 3 mil) wire, of the type used in integrated circuits and hybrid microelectronic assemblies.

These test methods can be used only when the ball height (at least 10.16 μm or 0.4 mil) and diameter for ball bonds, or the wire height (at least 1.25 mils in height at the compressed bonded area) of the wedge bond, are large enough and adjacent interfering structures are far enough away to allow suitable placement and clearance (above the bonding pad or leadframe post and between adjacent bonds) of the shear test chisel. This test method may also apply to gold wedge or stitch bonds if the wire is thick enough to allow shearing of the wire from the bonding surface without smearing similar to a shearing skip.

The wire bond shear test is destructive. It is appropriate for use in process development, process control and/or quality assurance.

2 Terms and Definitions

The terms and definitions shall be in accordance with the following paragraphs.

2.1 Ball Bond

The adhesion or welding of a thin wire, usually gold, to a die pad metallization, usually an aluminum alloy, using a thermosonic wire bond process. The ball bond includes the enlarged spherical, or nail head, portion of the wire (provided by the flame-off and first bonding operation in the thermal compression and thermosonic process, or both), the underlying bonding pad and the ball bond-bonding pad intermetallic weld interface.

2.2 Bonding Surface

Either 1) the die pad metallization or 2) the package surface metallization to which the wire is ball, wedge or stitch bonded.

Test Method B116

JEDEC Standard 22-B116

Page 2

2 Terms and Definitions (cont’d)

2.3 Bond Shear

A process in which an instrument uses a chisel shaped tool to shear or push a ball or wedge bond off the bond pad (see Figure 1). The force required to cause this separation is recorded and is referred to as the bond shear force. The bond shear force of a gold ball bond, when correlated to the diameter of the ball bond, is an indicator of the quality of the metallurgical bond between the gold ball bond and the bond pad metallization. The bond shear force of an aluminum wedge bond, when compared to the manufacturer's tensile strength of the wire, is an indicator of the integrity of the weld between the aluminum wire and the bond pad or package surface metallization.

Figure 1 — Bond Shear set-up

2.4 Definition of Bond Shear Codes for Ball and Wedge Bonds (see Figure 2)

2.4.1 Type 1 - Bond Lift

A separation of the entire wire bond from the bonding surface with only an imprint being left on the bonding surface. There is very little evidence of intermetallic formation or welding, or disturbance of the bonding surface metallization.

2.4.2 Type 2 - Bond Shear

A separation of the wire bond where 1) A thin layer of the bonding surface metallization remains with the wire bond and an impression is left in the bonding surface, or 2) Intermetallics remain on the bonding surface and with the wire bond, or 3) A major portion of the wire bond remains on the bonding surface. Test Method B116

JEDEC Standard 22-B116

Page 3 2 Terms and Definitions (cont’d)

2.4 Definition of Bond Shear Codes for Ball and Wedge Bonds (see Figure 2) (cont’d)

2.4.3 Type 3 - Cratering

A condition under the die pad metallization in which the insulating layer (oxide or interlayer dielectric) and the bulk material (silicon) separate or chip out. Separation interfaces which show pits or depressions in the insulating layer (not extending into the bulk) are not considered craters. It should be noted that cratering can be caused by several factors including the wire bonding operation, the post-bonding processing, and even the act of shear testing itself. Cratering present prior to the shear test operation is unacceptable.

2.4.4 Type 4 - Arm Contacts Specimen (Bonding Surface Contact)

The shear tool contacts the bonding surface to produce an invalid shear value. This condition may be due to improper placement of the specimen, a low shear height or instrument malfunction. This bond shear type is not acceptable and shall be eliminated from the shear data.

2.4.5 Type 5 - Shearing Skip

The shear tool removes only the topmost portion of the ball or wedge bond. This condition may be due to improper placement of the specimen, a high shear height or instrument malfunction. This bond shear type is not acceptable and shall be eliminated from the shear data.

2.4.6 Type 6 - Bond Pad (or Bonding Surface) Lift

A separation between the bonding surface metallization and the underlying substrate or base material. There is evidence of bonding surface metallization remaining attached to the ball or wedge bond.

Test Method B116

JEDEC Standard 22-B116

Page 4

Test Method B116

2 Terms and Definitions (cont’d)

2.4 Definition of Bond Shear Codes for Ball and Wedge Bonds (see Figure 2) (cont’d)

TYPE 1: Bond Lift TYPE 2: Bond Shear - Gold/Aluminum

TYPE 4: Bonding Surface Contact

TYPE 3: Cratering TYPE 5: Shearing Skip TYPE 6: Bonding Surface Lift

Figure 2 — Bond Shear Codes

Examples shown here are for ball bonds. These same modes also apply to wedge and stitch bonds.

JEDEC Standard 22-B116

Page 5 2 Terms and Definitions (cont’d)

2.5 Shear Tool or Arm

A tungsten carbide, or equivalent, chisel with specific angles on the bottom and back of the tool to ensure a shearing action.

underlying bonding pad, and the ball bond-bonding pad intermetallic weld interface.

2.6 Wedge Bond

The adhesion or weld of a thin wire, usually aluminum, to a package bonding surface, usually a plated leadframe post or finger, using an ultrasonic wire bonding process. A wedge bond is sometimes also called a stitch bond. The wedge bond includes the compressed (ultrasonically bonded) area of the wire and the underlying bonding surface. For bonding to an aluminum alloy die bond pad, there is no wedge bond-bond pad intermetallic because the two materials are of the same composition, but the two materials are recrystallized together by the ultrasonic energy of the welding process.

3 Apparatus and material

The apparatus and materials required for bond shear shall be as follows:

3.1 Inspection Equipment

An optical microscope system or scanning electron microscope providing a minimum of 70X magnification.

3.2 Measurement Equipment

An optical microscope/measurement system capable of measuring the bond diameter to within ± 0.0001 inch (0.1 mil).

3.3 Workholder

Fixture used to hold the part being tested parallel to the shearing plane and perpendicular to the shear tool. The fixture shall also eliminate part movement during bond shear testing. If using a caliper controlled workholder, place the holder so that the shear motion is against the positive stop of the caliper. This is to ensure that the recoil movement of the caliper controlled workholder does not influence the bond shear test.

3.4 Bond Shear Equipment

The bond shear equipment must be capable of precision placement of the shearing tool (±2.54μm or ±0.10 mil) above the substrate. The specified distance (h) above the topmost part of the bonding surface shall ensure the shear tool does not contact the surface of the die and shall be less than the distance from the topmost part of the bonding surface to the center line (C L) of the ball or wedge bond.

Test Method B116

JEDEC Standard 22-B116

Page 6

3 Apparatus and material (cont’d)

3.5 Bond Shear Tool

Required shear tool parameters include but are not limited to: flat shear face, sharp shearing edge, shearing width of a minimum of 1.2X the bond diameter or bond length. The shearing tool should be designed so as to prevent ploughing and drag during testing. The tool should be clean and free of chips or other defects that will interfere with the shearing test.

4 Procedure

4.1 Calibration

Before performing the bond shear test, it must be determined that the equipment has been calibrated in accordance with manufacturer's specifications and is presently in calibration. Recalibration is required if the equipment is moved to another location.

4.2 Visual Examination of Bonds to be Tested After Decapsulation

If performing bond shear testing on a part which has been opened using wet chemical and/or dry etch techniques, the bond pads shall be examined to ensure there is no absence of metallization on the bonding surface area due to chemical etching, and wire bonds are attached to the bonding surface. Those ball or wedge bonds on bond pads with significant chemical attack or absence of metallization shall not be used for ball shear testing. It is possible that wire bonds on bonding surfaces without degradation from chemical attack may not be attached to the bonding surface due to other causes (e.g., package stress). These wire bonds are considered valid and shall be included in the shear data as a zero (0) gram value. Bonds must also be examined to determine if adjacent interfering structures are far enough away to allow suitable placement and clearance (above the bonding surface and between adjacent bonds) for the shear test tool. 4.3 Sample Sizes

Sample sizes shall be a minimum specified by SPC controls in effect for specific processes, or as specified in the applicable procurement document

4.4 Measurement of the Ball Bond Diameter to Determine the Ball Bond Shear Failure Criteria Once the bonding surfaces have been examined and before performing bond shear testing, the diameter of all ball bonds to be tested shall be measured and recorded. For asymmetrical bonds, determine the average using both the largest (d large) and the smallest (d small) diameter values (see Figure 3). These ball bond diameter measurements shall be used to determine the mean, or average, diameter value. The resulting mean, or average, ball bond diameter shall then be used to establish the failure criteria as defined in Figure 4 and Table 1. If process monitor data has established the nominal ball bond diameter, then that value may be used to determine the failure criteria as defined in Figure 4 and Table 1.

Test Method B116

JEDEC Standard 22-B116

Page 7

Test Method B116

4 Procedure (cont’d)

4.4 Measurement of the Ball Bond Diameter to Determine the Ball Bond Shear Failure Criteria

(cont’d)SYMMETRICAL ASYMMETRICAL

Figure 3 — Ball bond measurement (symmetrical vs. asymmetrical)

MINIMUM SHEAR VALUES

BALL BOND DIAMETER (mils)

S H E A R S T R E N G T H (g r a m s )0

10

20

30405060708090100

110

Figure 4 — Minimum recommended individual and average ball bond shear values

(see Table 1 for exact bond shear values)

JEDEC Standard 22-B116

Page 8

Test Method B116

4 Procedure (cont’d)Table 1 — Minimum recommended individual and sample average ball bond shear values

Diameter

(mils)

Minimum Shear Average (grams)Minimum Individual Shear Reading (grams)2.0

12.6 5.72.1

14.0 6.82.2

15.58.12.3

17.19.52.4

18.810.92.5

20.612.42.6

22.414.02.7

24.415.62.8

26.517.42.9

28.619.23.0

30.821.13.1

33.223.13.2

35.625.13.3

38.127.23.4

40.729.43.5

43.431.73.6

46.234.13.7

49.136.53.8

52.139.13.9

55.241.74.0

58.344.34.1

61.647.14.2

65.050.04.3

68.452.94.4

71.955.84.5

75.659.04.6

79.362.14.7

83.165.34.8

87.068.64.9

91.072.05.095.175.5

Note: These shear values are applicable to gold wire ball bonds on aluminum alloy bonding surfaces

JEDEC Standard 22-B116

Page 9 4.5 Performing the Bond Shear Test

The bond shear equipment shall pass all self diagnostic tests before beginning the test. The bond shear equipment and test area shall be free of excessive vibration or movement. Examine the shear tool to verify it is in good condition and is not bent or damaged. Check the shear tool to verify it is in the up position.

Adjust the workholder to match the part being tested. Secure the part to the workholder. Make sure the surface of the die is parallel to the shearing plane of the shear tool. It is important that the shear tool does not contact the surface of the die or adjacent structures during the shearing operation as this will give incorrect high readings.

Position the part so that the bond to be tested is located adjacent to the shear tool. Lower the shear tool, or raise the part depending upon shear equipment used, to approximately the surface from which the bond is to be sheared but not contacting the surface (approximately the thickness of the bond above the surface). Position the ball bond to be tested so that the shear motion will travel perpendicular to the surface edge. Position the wedge bond to be tested so that the shear motion will travel toward the long side of the wedge bond and is free of any interference (i.e. shear the outside bond first and then shear toward the sheared wedge bond). Position the shear tool within approximately one ball (for ball bonds) or wire diameter (for wedge/stitch bonds) of the bond to be shear tested and shear the bond.

4.6 Examination of Sheared Bonds

All bonds shall be sheared in a planned/defined sequence so that later visual examination can determine which shear values should be eliminated because of an improper shear. The bonds shall be examined using at least 70X magnification to determine if the shear tool skipped over the bond (type 5) or the tool scraped or plowed into the surface of the die (type 4). Readings in which either a type 4 or 5 defective shear condition occurred shall be eliminated from the shear data (see Figure 2).

Sheared bonds in which a type 3 cratering condition has occurred shall be investigated further to determine whether the cracking and/or cratering is due to the bonding process or the act of shear testing. Cratering caused prior to the shear test operation is unacceptable. Cratering resulting from the act of shear testing shall be considered acceptable and included in the shear data.

4.7 Footprint Inspection of Aluminum Wedge Bonds

All wire bonding processes to both the die bond pad and the leadframe post shall have a bond footprint inspection performed. For wires too small for bond shear testing (less than 1.25 mils in height at the compressed bonded area), the wire shall be removed at the bond location using a small sharp blade. The removal of the wire shall be sufficient such that the bond interface can be visually inspected and the metallurgical bond area determined. For larger wires after bond shear testing, all devices shall be inspected to examine the failure mode and to determine the bond footprint coverage.

Test Method B116

JEDEC Standard 22-B116

Page 10

4 Procedure (cont’d)

4.8 Bond Shear Data

Data shall be maintained for each bond sheared. The data shall identify the bond (location, bond diameter, wire material, method of bonding, and material bonded to), the shear strength, and the shear code number.

4.9 Shear Codes

For each bond sheared, a code as defined in Figure 2 shall be recorded.

5 Failure criteria

The following failure criteria are not valid for devices that have undergone environmental stress testing or have been desoldered from circuit boards.

5.1 Failure Criteria for Ball Bonds

The recommended minimum individual and sample average bond shear values are shown in Figure 4 and Table 1. This criteria is applicable to gold wire ball bonds on aluminum alloy bond pads. Other material combinations may require a new set of failure criteria.

Alternate minimum bond shear values may be proposed by the supplier if supporting data justifies the proposed minimum values.

5.2 Failure Criteria for Aluminum Wedge Bonds

The wedge bonds on a part shall be considered acceptable if the minimum shear values are equal to or greater than the manufacturer's tensile strength of the bond wire.

In addition, the percent of the bond footprint in which bonding should occur shall be no less than 50%. If it is necessary to control the wire bonding process using SPC for percent coverage, a Cpk value can be calculated to this limit.

6 Summary

The quality level and test conditions are contained within this document unless otherwise specified in the applicable Part Specification and/or Part Drawing.

Test Method B116

保温层厚度计算

保温层厚度的计算与校核 1 已知条件 保温棉内侧对流换热系数h1=70w/(m2·k),温度分别为0℃、-60℃、-138℃。铝片的厚度∝1为5mm,传热系数λ1=236w/(m2·k)。保温棉的传热系数λ2=0.022 w/(m2·k)。保温棉外侧的空气温度为35℃,其表面温度查空气焓湿图,取35℃、65%相对湿度情况下的露点温度。保温棉外侧的对流换热系数h2=8 w/(m2·k)。 2 保温棉厚度计算 2.1 露点温度 空气温度T a=35℃,相对湿度为65%时,查空气焓湿图得到露点温度T d=27.57℃。2.2最大允许冷损失量的计算 根据《工业设备及管道绝热工程设计规范(GB50264-97)》,最大允许冷损失量应按以下公式进行计算: 当T a-T d≤4.5时: [Q]=-(T a-T d)αs; 当T a-T d >4.5时: [Q]=-4.5αs 其中αs绝热层外表面向周围环境的放热系数。 T a-T d=(35-27.57)℃=7.43℃,故最大允许冷损失量 [Q]=-4.5αs=-4.5×8=-36w。 2.3 保温棉厚度的计算 由传热公式知: [Q]= (T i-T a)/ (1 ?1+∝1 λ1 +∝2 λ2 +1 ?2 ) 其中∝2为保温层的厚度。 由此得到∝2=λ2×(T i?T a Q ?1 ?1 ?1 ?2 ?∝1 λ1 ) 1 保温层内侧温度为0℃时 保温层厚度∝2= λ2×T i?T a Q ?1 ?1 ?1 ?2 ?∝1 λ1 =0.022×0?35 ?36 ?1 70 ?1 8 ?0.005 236 =0.018m 2 保温层内侧温度为-60℃时 保温层厚度∝2= λ2×T i?T a Q ?1 ?1 ?1 ?2 ?∝1 λ1 =0.022×?60?35 ?36 ?1 70 ?1 8 ?0.005 236 =0.054m 3 保温层内侧温度为-138℃时 保温层厚度∝2= λ2×T i?T a Q ?1 ?1 ?1 ?2 ?∝1 λ1 =0.022×?138?35 ?36 ?1 70 ?1 8 ?0.005 236 =0.103m 3 保温层厚度的校核 设保温层外侧表面的温度为T f 1 保温层内侧温度为0℃时 取保温层厚度∝2=0.025m 传热量[Q] = (T i-T a)/ (1 ?1+∝1 λ1 +∝2 λ2 +1 ?2 )= (0-35)/ (1 70 +0.005 236 +0.025 0.022 +1 8 )=-27.44w T f=T a+Q ?2=35?27.44 8 =31.57℃>T d=27.57℃故符合要求。

保温层厚度计算(2021新版)

保温层厚度计算(2021新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0646

保温层厚度计算(2021新版) 保温层厚度计算有A种方法,选择介绍四种方法:经济厚度法;直埋管道保温热力法;多层绝热层法;允许降温法。将计算结果经对比分析后选定厚度。 1.保温层经济厚度法 (1)厚度公式 式中δ——保温层厚度,m; Do ——保温层外径,m; Di ——保温层内径,取0.125m; A1

——单位换算系数,A1 =1.9×10-3 ; λ——保温材料制品导热系数,取0.028W/(m·℃); τ——年运行时间,取5840h; fn ——热价,现取7元/106kJ; t——设备及管道外壁温度,不计玻璃钢管酌保温性能,取介质温度55℃; ta ——保温结构周围环境的空气温度,取极端土壤地温5℃; Pi ——保温结构单位造价, Pl ——保温层单位造价,硬质聚氨酯泡沫塑料造价1700元/m3 ;

P2 ——保护层单位造价,玻璃钢保护层取135元/m2 ; S——保温工程投资贷款年分摊率,按复利率计息, n——计算年限,取15年; i——年利率(复利率),取7%; a——保温层外表向外散热系数,取11.63W/(cm2 ·℃)。 用试差法,经计算δ=22.5mm。 (2)管道保温层表面散热损失 式中q——单位表面散热损失,W/m。经计算q=42.2W/m,满足国标GB4272—84《设备及管道保温技术通则》要求。 (3)温降计算 式中△t ——卑位长度温降,℃/km; Q——流量,kg/h;

风管保温层要工程量计算方法

风管保温层要工程量计算方 法 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

风管保温层要工程量计算方法 1、矩形按矩形单边长度加一个保暖厚度作为边长计算; 2、圆形按园半径加一个保温厚度作为半径; 3、其中:保温厚度=设计要求的保温厚度+规范规定的允许超厚系数%(即保温厚度*)。 4、通风空调风管橡塑板保温体积计算公式: (1)矩形风管=(长+宽+保温厚度*)*2*长度*保温厚度* (2)圆形风管=(直径+保温厚度**2)**长度*保温厚度* 5、通风空调风管橡塑板保温面积计算公式: (1)矩形风管=(长+宽+保温厚度*)*2*长度=保温面积 (2)圆形风管=(直径+保温厚度**2)**长度=保温面积 6、风管保温层厚度计算方法 1、可以用风管面积乘以一个系数来确定,系数一般取15%左右,视风管大小、施工方法确定。 2、公式:(a+b+4d)*2*L(a、b分别为风管长宽、L为风管长度) 3、公式这样算出来还是要乘以一个损耗及包法兰边的系数 4、直接用风管面积乘以15%左右最方便,也比较准确。(参考方法) 如果你自己弄不明白,或没时间计算,建议找代算,根据情况不同,费用不等。 套定额 套用保温定额中有关于风管保温的定额 一、其他方法

1、你可以搜索下小蚂蚁算量,能做工程量计算、预算,高质、高效 2、你可以在网上搜下预算造价单位,有一些单位做的比较好 3、你可以去第三方平台委托别人做,平台上注意防骗,你可以找单位、也可以找个人来做。 二、注意点 1、计算工程量应按照工程所在地的定额或规定标准计算; 2、工程量计算熟悉定额、规定是基础; 3、计算工程量前看清楚图纸是前提,应注意小的注释,以免看漏看错是计算结果出现错误; 4、工程量计算原则上是不允许错误的,希望不要抱侥幸态度去计算工程量。

保温层厚度计算公式

保温层“经济厚度法”计算公式中有关参数的取用 幺莉,黄素逸 (华中科技大学,湖北武汉430074) 摘要着重介绍了采用保温层“经济厚度法”的计算公式中有关参数的取用和分析,为热力设备和管道保温结构的工程设计,提供一定的参考。 关键词热力设备保温层经济厚度 1前言 保温层“经济厚度”的计算方法,不但考虑了传热基本原理,而且考虑了保温材料的投资费用、能源价格、贷款利率、导热系数等经济因素对保温层厚度的影响。因此,在火力发电厂的设计过程中,通常采用“经济厚度法”对热力设备 和管道的保温层厚度进行计算。 对于火力发电厂的热力设备和管道,可分为平壁和管道两种物理模型。当管道和设备的外径大于1020mm时,可按平壁的公式,来计算保温层厚度。 平壁和管道的保温层经济厚度计算公式如下所示: 式中,δ:保温层的经济厚度,m;P h:热价,元/GJ;λ:保温材料的导热系数,W/(m·K);h:年运行小时数,h;t:设备和管道的外表面温度,℃;ta:环境温度,℃;P i:保温材料单位造价,元/m3;S:保温工程投资贷款年分摊率;α:保温层外表面向大气的放热系数,W/(m2·K);d o:保温层外径,m; d i: 保温层内径,m。 由以上列出的保温层“经济厚度法”计算公式可以看出,公式中涉及的参数较多。在保温计算时,这些参数的取值直接会影响到保温层厚度的计算结果。所以,针对不同工程的实际情况,选取适当的参数,对计算结果的精度至关重要。 以下着重对计算公式中的各参数的取值进行讨论和分析。 2参数的取用和分析 2.1设备和管道的外表面温度t 对于无内衬的金属设备和管道,其外表面温度应取介质的设计温度或最高温度;对于有内衬的金属设备和管道,应按有保温层存在进行传热计算确定其外表 面温度。 2.2环境温度t a 保温工程的环境温度,实际上是一个变数,但通常情况下,如果载热介质的温度高而且稳定,环境温度的变化对计算温差的影响有限。因此,一般把工业保温的传热过程视为稳定传热,环境温度通常取用其年平均值来代表,并分为室内、

保温层厚度计算圆筒

一、 聚丙烯PP 外壁热损计算: 采用设备上一个筒形作为研究对象。 根据保温层厚度计算公式: 5 .175.135.12.114.3q d w τλδ= (1-1) 式中: δ————保温层厚度,4.6mm; w d ————管道或圆柱设备的外径,此处为水柱外径,40.8mm; λ————保温层的热导率,0.33kJ/(h.m. ℃); τ———未保温的管道或圆柱设备外表面温度,60℃; q —————保温后的允许热损失,kJ/(h.m.); 所以δτλ75.135.12.15.114.3w d q Q == (1-2) ==67.0Q q (δ τ λ75.135.12.114.3w d )0.67 (1-3) 得出:聚丙烯外壁的热损值为:681.152 kJ/(h.m.) 二、聚丙烯外层的表面温度的确定按下式计算 πλ2ln 12 11d d q t t w - = (1-4) 式中:q ———聚丙烯层保温热损失,kJ/(h m.);. λ———聚丙烯的热导率,kJ/(h.m. ℃); 1w t ———聚丙烯层外表面温度,℃; 1t ———聚丙烯层内表面温度,℃;

2d ———聚丙烯保温层外径,mm; 1d ———聚丙烯保温层内径,mm; 聚苯乙烯内表面温度即为聚丙烯保温层外表面温度。得出聚丙烯层外温度为:52.72℃ 三、聚苯乙烯保温层计算过程如下: 通过式(1-3)计算外层聚苯乙烯保温层的厚度为: 5 .175.135.12.114.3q d w τλδ= 式中: δ————聚苯乙烯保温层厚度, mm; w d ————管道或圆柱设备的外径,40.8mm; λ————保温层的热导率,0.1476kJ/(h.m. ℃); τ———未保温的管道或圆柱设备外表面温度,52.72℃; q —————保温后的允许热损失,104.7kJ/(h.m.); 计算得: 聚苯乙烯保温层厚度为:24.97mm 。 同理: 聚乙烯保温层计算同上。厚度为:30.03 mm 。

保温保冷厚度计算举例

一、蒸汽管道保温厚度计算 计算的已知条件 管道直径:219mm,管道长度:100m 管道内介质温度:t0=400℃和150 ℃ 环境温度:平均温度t a=25℃保温表面温度:t s=45℃(温差20℃) CAS铝镁质保温隔热材料的导热方程:0.038+0.00015tcp,导热系数修正系数1.2 复合硅酸盐保温材料的导热方程:0.038+0.00018tcp,导热系数修正系数1.8 120kg/m3管壳的导热方程:0.048+0.00021 tcp,导热系数修正系数1.8 注:复合硅酸盐、岩棉管壳的导热方程摘自《保温绝热材料及其制品的生产工艺与质量检验标准规范实用手册》。 1、介质温度为400℃,表面温度为45℃,温差为20℃,材料保温厚度计算 CAS铝镁质保温隔热材料(热面400℃,冷面45℃)的平均导热系数 λ={0.038+0.00015×(400+45)÷2}×1.2=0.0857 复合硅酸盐保温隔热材料(热面400℃,冷面45℃)的平均导热系数 λ={0.038+0.00018×(400+45)÷2}×1.8=0.1405 岩棉管壳(热面400℃,冷面45℃)的平均导热系数 λ={0.048+0.00021×(400+45)÷2}×1.8=0.1705 温差为20℃,室内管道表面换热系数 as=5.0+3.4+1.27=9.67w/㎡.k a、用CAS铝镁质保温隔热材料保温 D1ln(D1/D)=2λ(t0-t s)/ ={2×0.0852×(400-45)}÷{9.67×(45-25)}=0.3128 (D1/D)ln(D1/D)=0.3128/0.219=1.4282 查表X-XlnX函数得到:X=(D1/D)=2.02 (采用内查法:XlnX X 1.419 2.02 1.439 2.03 ①1.439—1.419=0.02 0.02÷10=0.002 ②1.4282—1.419=0.0092 ③0.0092÷0.002=4.6 ④1.4282对应的X为:2.02+(2.03—2.02)×4.6=2.0246) 保温层厚度:δ=D(X-1)/2=219(2.02—1)/2=111.7mm。 保温厚度定为110mm。 b、用复合硅酸盐保温 D1ln(D1/D)=2λ(t0-t s)/ ={2×0.1405×(400-45)}÷{9.67×(45-25)}=0.5158

最佳保温层厚度的计算

最佳保温层厚度的计算(再取个名字) 一、 摘要 通过对热传导和保温隔热材料性能的研究,根据题意,建立了解决保温层材料和厚度的计算模型。 针对第一个问题(即珍珠岩的厚度应为多少),我们建立模型一。利用傅立叶定律列出方程,通过室温与屋顶内表面有温差和对散热过程、感热过程的分析,给出两个不等式,通过对不等式的求解,得出珍珠岩保温层的厚度范围5δ≥0.533893cm 且5δ≥10.3713cm ,由于保温层材料已给定是珍珠岩,单价为定值,所以用料最省就最经济,又由于保温层要同时考虑保温和隔热两种效果,还要用料最省,故珍珠岩保温层的厚度选择为10.3713cm ,约为10.4cm ,通过资料查证,保温层珍珠岩的厚度在7cm 到20cm 之间,所以在忽略误差的情况下,通过模型一对珍珠岩保温层的计算得出的结果是正确的。 针对第二个问题(即如果更换保温层成其他保温材料,哪种好?并求其厚度。),我们建立模型二。在保温层用一种材料替代的情况下,利用0,1规划,列出关系式,目标函数设为保温层费用的求解函数,由于热阻大的材料保温隔热的效果好,所以在限制条件中,替代材料的热阻要大于等于珍珠岩的热阻,在目标函数中未知变量为所选保温隔热材料的厚度和单价,厚度又由导热系数导出,通过编译程序代入所有已知材料的种类数,并依次输入它们对应的导热系数和对应的单价,即算出最优材料及其对应的厚度和价钱,输出的结果为 。 本文的特色在于两个模型用了两种不同的计算方法,模型一思路清晰,运行简单,但只能计算已知保温隔热材料的厚度,并不是判断最优材料和计算厚度的通式,模型二利用0,1规划,建立了判断最经济材料和计算其厚度的通式,运行简便,无论是思路还是使用范围都优于模型一,模型二可为模型一求解,模型一可为模型二检验。 (最后一个问题不知道是否可行,你检验一下程序二。) 关键词:保温隔热材料,热阻,导热系数,温度差,外围结构

中央空调保温材料厚度计算

1.保温的类型: 保热:热水系统,蒸汽管道等; 保冷:新风系统风管,冷冻水供回水管等; 2.需保温的场合: 1、不保温,冷、热损耗大,且不经济时; 2、由于冷、热损失,使介质温度达不到要求温度,因而不能保证室内参数时; 3、当管道穿过室内参数要求严格的空调房间,而管道散出的冷热量对室内参数影响不利时; 4、管道的冷表面可能结露时。 3.景瑞空调系统常用保温材料: 岩棉 离心玻璃棉 橡塑海绵 阻燃聚乙烯泡沫塑料 硬质聚氨酯泡沫塑料

4.标准中对空调保温厚度的规定: 设备及管道保温技术通则 上海市公共建筑节能设计标准 ASHARE 90.1-1999 5.保温厚度的算法: 保冷厚度一般大于保热厚度,具保冷效果对空调系统影响较大,因而一般在设计中,按照保冷的厚度计算; 按防结露厚度计算 防结露是指要求保温后管道、设备表面湿度应大于保温层外的空气露点温度,保证绝大多数时间不结露,这也是空调系统保温的基本要求。 矩形设备、管道: 圆形管道:

按经济厚度计算 经济厚度是指保温后,全年的冷或热损失价值与保温投资的年折算价值之和为最小的保温材料厚度。 矩形设备、管道: 圆形管道: 其中: ——保温层厚度,m; ——保温材料导热系数,w/m-k; ——保温材料外表面换热系数,w/m2-k,一般取8.14; ——保温层外空气露点温度,℃;

——管内流体温度,℃; ——保温层外空气温度,℃; ——保温前管道外径,m; ——计算年限,取12年; ——单位换算系数, ; ——全年输送冷媒的小时数,h; ——冷价,元/106kJ; ——保温层单位造价,元/m3;

保温层厚度的计算

保温层厚度的计算 (1)保温层厚度的计算公式 δ=3.14dwl.2λ1.35tl.75/ql.5 (式1) δ——保温层厚度(mm); dw——管道的外径(mm): λ一一保温层的导热系数(KJ/h·m·℃); t一一未保温的管道的外表面的温度(℃): q一一保温后的允许热损失(KJ/m·h)。 (2)允许热损 根据建设部2003年颁布的《全国民用建筑工程设计技术措施·给水排水》中的规定选取(若要用到这本书里的数据可向我要,我已经下载下来了) 3)参数确定 公称管径为:2 0、40、5 0的管道(钢)其外径分别为33.5mm、48mm、60mm 保温层的导热系数λ:1.1中已经确定,未保温的管道的外表面的温度t:由于钢的导热系数很大,管道壁又薄,所以可以认为管道的外表面的温度和流体的温度相等(误差不超过0.2℃) (4)根据式——1计算的保温层厚度如表4: 3.结果验证和实际热损 (1)模型的建立 如图所示是包裹着保温材料的管道的横截面。设管道中的热水温度为t1,管道内壁的温度是t 2,管道和保温材料接触处的温度为t3,保温材料外表面的温度为t4,管道所处空间的温度为t5:设管道的内径是r1外径是r2,保温材料的外径是r3。 设管道材料的数为λ2,管内热水和管导热系数为λ1,保温材料导热系外空气与管壁间的对流换热系数分别a1、a2。 由传热学公式可知,热水通过管道壁和保温层传热给空气的过程总热阻为 R=1/(2a1πr1)+(1nr2/r1)/2πλ1+(1nr3/r2)/2πλ2+l/2a2πr3 =R1十R2+R3+R4 (式2) 式中: R1——管内对流换热热阻,R1=1/(2a1πr1); R2——管壁导热热阻,R2=(1nr2/r1)/2πλ1; R3——保温层导热热阻,R3=(1nr3/r2)/2πλ2; R4——保温层外对流换热热阻,R4=1/2a3πr3. q=(t1-t5)/(Rl+R2+R3+R4) (式3) 由于所计算的管道材料为铸铁、钢或者铜,其导热系数都很大,而且管道壁的厚度很小,所以其热阻可以忽略,认为其外壁温度和其中热水的温度相等;同时,为了计算的简便可以将R4忽略,这样得出的结果将比实际的值偏大,但若在偏大的情况下能满足表——3的要求,则精确的结果肯定也能满足。 所以 q≈(tl-t5)/R3=(tl-t5)/(1nr3/r2)/2πλ2 (式4) (2)分区 在采用同一种保温材料并且厚度也相同的条件下,如果环境的温度不相同,管道的热损是不一样的。为了验证所选用的保温层是否符合使用要求,现根据一月份(全年温度最低的月份)的平均气温的高低把全国划分为五个区。 1月份平均气温不低于1 0℃的(A区):

空调系统保温材料及保温厚度计算

空调系统保温材料及保温厚度计算

空调系统保温材料及保温厚度计算 1. 保温的类型: 保热:热水系统,蒸汽管道等; 保冷:新风系统风管,冷冻水供回水管等; 2. 需保温的场合: 不保温,冷、热损耗大,且不经济时; 由于冷、热损失,使介质温度达不到要求温度,因而不能保证室内参数时; 当管道穿过室内参数要求严格的空调房间,而管道散出的冷热量对室内参数影响不利时; 管道的冷表面可能结露时。 3. 空调系统常用保温材料: 岩棉 离心玻璃棉 橡塑海绵

阻燃聚乙烯泡沫塑料硬质聚氨酯泡沫塑料 种类 密度 kg/m3 导热系数 w/m-K 吸水率 g/100cm2 透湿系数 g/m2-s-Pa 防火性能 参考价格 元/m2 备注 岩棉100 0.038 83.3 1.3x10-5不燃烧板材600 管壳900 防水防腐性 差 离心玻璃棉48 0.031-0.038 25(%随重 量增加) 4x10-5不燃烧 棉毡750 管壳1250 橡塑海绵87 0.038 0.4 - 阻燃性 FV-0级 11000 燃聚乙烯泡 沫塑料 22 0.031 0.05 4x10-11离火自息900 损害环境 质聚氨酯泡沫塑料33 0.018 0.8 2.2x10-7 可燃,加阻燃 剂后离火2s 内自息 2500 损害环境 抗老化性能 4. 标准中对空调保温厚度的规定: 设备及管道保温技术通则 上海市公共建筑节能设计标准 ASHARE 90.1-1999 5. 保温厚度的算法: 保冷厚度一般大于保热厚度,具保冷效果对空调系统影响较大,因而一般在设计中,按照保冷的厚度计算;

按防结露厚度计算 防结露是指要求保温后管道、设备表面湿度应大于保温层外的空气露点温度,保证绝大多数时间不结露,这也是空调系统保温的基本要求。 矩形设备、管道: 圆形管道: 按经济厚度计算 经济厚度是指保温后,全年的冷或热损失价值与保温投资的年折算价值之和为最小的保温材料厚度。 矩形设备、管道: 圆形管道: 其中:

保温层厚度计算(正式版)

文件编号:TP-AR-L8384 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 保温层厚度计算(正式版)

保温层厚度计算(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 保温层厚度计算有A种方法,选择介绍四种方 法:经济厚度法;直埋管道保温热力法;多层绝热层 法;允许降温法。将计算结果经对比分析后选定厚 度。 1.保温层经济厚度法 (1)厚度公式

式中δ——保温层厚度,m; Do——保温层外径,m; Di——保温层内径,取0.125m; A1——单位换算系数,A1=1.9×10-3 ; λ——保温材料制品导热系数,取0.028 W /(m·℃); τ——年运行时间,取5840h; fn——热价,现取7元/106kJ; t——设备及管道外壁温度,不计玻璃钢管酌保温性能,取介质温度55℃; ta——保温结构周围环境的空气温度,取极端土壤地温5℃; Pi——保温结构单位造价,

保温层的厚度计算

保温层的厚度怎么计算 我有个内蒙古的项目,冰冻线为2米,排水管是浅埋的,需要保温。保温材料采用PU硬泡, 但是保温材层需要多厚阿。保温层的厚度由什么决定,有计算的公式吗,怎么计算?内蒙的 最低温度大概是零下三四十度。有哪位有这方面的经验的,请帮帮忙阿 保温计算 1蒸汽直埋保温管的蒸汽温度,℃,蒸汽压力,MPa; 2土壤导热系数,W/m.K; 3管中心平均埋深,m; 4最热月地表面平均温度,℃; 5保温结构采用: “钢套钢—外滑动(滚动型)—空气层”; 6钢外套管的外壁温度≤50℃; 7管道沿程平均热损失≤200W/m; 8保温管寿命≥20年(正常使用)。 一个完整的热工管道和热工设备的绝热结构,通常包括:(1)防腐层;(2)滑动层(可与腐层并用);(3)绝热层;(4)防水防潮层;(5)外保护层(也可以兼作防水防潮层)。由于热水系统所用的管道都已经经过防腐处理,所以绝热设计的任务主要是绝热层、防水防 潮层和外保护层的设计。 9 绝热层的设计 9.1 材料导热系数 导热系数λ,单位W/(m·℃),是表证物质导热能力的热物理参数,在数值上等于单位导热面积、单位温度梯度,在单位时间内的导热量。数值越大,导热能力越强,数值越小,绝热性能越好。该参数的大小,主要取决于传热介质的成分和结构,同时还与温度、湿度、压力、密度、以及热流的方向有关。成分相同的材料,导热系数不一定相同,即便是已经成型的同一种保温材料制品,其导热系数也会因为使用的具体系统、具体环境不同而有所差异。 为了计算的方便,本文根据相关的部门标准和国标的相关规定来选择材料的导热系数作 为设计的标准。 9.1.1 硬质聚氨脂泡沫塑料 硬质聚氨脂泡沫塑料是用聚醚与多异氰酸脂为主要原料,再加入阻燃剂、稳泡剂和发泡剂等,经混合搅拌、化学反应而成的一种微孔发泡体,其导热系数一般在0.016~ 0.055W/(m·℃)。使用温度-100~100℃。 按照原石油部部颁标准(SYJ18-1986),对于设备及管道用的硬质聚氨脂塑料泡沫的基 本要求如表1: 9.1.2 聚苯乙烯泡沫塑料 聚苯乙烯泡沫塑料简称EPS,是以苯乙烯为主要原料,经发泡剂发泡而成的一种内部有无数密封微孔的材料。聚苯乙烯泡沫塑料的导热系数在0.033~0.044 W/(m·℃),安全使用温度-150~70℃;硬质聚苯乙烯塑料泡沫的导热系数在0.035~0.052 W/(m·℃)。 根据GB10801-1989的规定,对绝热用聚苯乙烯塑料泡沫的技术性能要求如表2:

保温层厚度计算

保温层厚度计算 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 编订:___________________ 审核:___________________ 单位:___________________ 文件编号:KG-A0-3696-80 保温层厚度计算 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行

具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 保温层厚度计算有A种方法,选择介绍四种方法: 经济厚度法;直埋管道保温热力法;多层绝热层法;允许降温法。将计算结果经对比分析后选定厚度。 1?保温层经济厚度法 (1)厚度公式 式中5——保温层厚度,m; Do ---- 保温层外径,m; D i 保温层内径,取0. 125m; A1——单位换算系数,A1=? 9X10-3

■ , 入保温材料制品导热系数9取0. 028 W / (m ?°C); T---- 年运行时间,取5840h ; fn ------ 热价,现取7元/ 106kJ ; t——设备及管道外壁温度,不计玻璃钢管酌保温性能,取介质温度55°C; ta——保温结构周围环境的空气温度,取极端土壤地温5°C; Pi——保温结构单位造价, PI——保温层单位造价,硬质聚氨酯泡沫塑料 造价1700元/ m3 ■ J

大管径热水直埋供热管道保温层厚度的计算

大管径热水直埋供热管道保温层厚度的计算 2007-10-10 摘要:根据热水直埋供热管道的传热原理,对大管径热水直埋供热管道的保温层厚度计算方法进行了探讨。提出保温层厚度的计算应采用控制热水直埋供热管道外表面温度和满足热网输送效率的综合计算方法。 关键词:大管径;直埋供热管道;保温层;热网输送效率 Calculation of Insulating Layer Thickness of Directly Bu ried Hot-water Heat-supply Pipeline with Large Diameter YANG Liang-zhong1,ZHANG Lian-gang1,CAO Bao-jun2,XU Shan -zhong3 (1.North China Municipal Engineering Design&Research I nstitute,Tianjin 300074,China;2.Tianjin Construction En gineering College,Tianjin 300022,China;3.Ningxia Hui Au tonomous Region’s Reform Office of Wall Materials,Yinchua n 750001,China) Abstract:According to the heat transfer principle of dir ectly buried hot-water heat-supply pipeline,the calculatio n method of insulating layer thickness of directly buried h ot-water heat-supply pipeline is discussed.It is put forwa rd that a comprehensive calculation method should control t he external sufface temperature of directly buried hot-wate r heat-supply pipeline and meet the transmission efficiency of heat-supply network. Key words:large pipe diameter;directly buried heat-supp ly pipeline;insulating layer;transmission efficiency of h eat-supply network 目前,我国正处于高速发展时期,而能源紧张制约着经济发展,因此节能降耗是我国的长期基本国策。对于改善居住环境和提高人民生活水平的集中供热事业,实现热电联产集中供热是节能降耗的有效手段之一。随着城市化进程的进一步实施,采用大型供热机组实现热电联产的城市越来越普遍,供热普及率越来越高,供热面积、供

保温层厚度计算通用版

安全管理编号:YTO-FS-PD183 保温层厚度计算通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

保温层厚度计算通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 保温层厚度计算有A种方法,选择介绍四种方法:经济厚度法;直埋管道保温热力法;多层绝热层法;允许降温法。将计算结果经对比分析后选定厚度。 1.保温层经济厚度法 (1)厚度公式 式中δ——保温层厚度,m; Do——保温层外径,m; Di——保温层内径,取0.125m; A1——单位换算系数,A1=1.9×10-3 ; λ——保温材料制品导热系数,取0.028 W/

(m·℃); τ——年运行时间,取5840h; fn——热价,现取7元/106kJ; t——设备及管道外壁温度,不计玻璃钢管酌保温性能,取介质温度55℃; ta——保温结构周围环境的空气温度,取极端土壤地温5℃; Pi——保温结构单位造价, Pl——保温层单位造价,硬质聚氨酯泡沫塑料造价1700元/m3 ; P2——保护层单位造价,玻璃钢保护层取135元/m2 ; S——保温工程投资贷款年分摊率,按复利率计息, n——计算年限,取15年; i——年利率(复利率),取7%;

相关文档
最新文档