高分子材料常见几种表征方法

高分子材料的力学性能及表征方法

高分子材料的力学性能及表征方法 聚合物的力学性能是高分子聚合物在作为高分子材料使用时所要考虑的最主要性能。它牵涉到高分子新材料的材料设计,产品设计以及高分子新材料的使用条件。因此了解聚合物的力学性能数据,是我们掌握高分子材料的必要前提。聚合物力学性能数据主要是模量(E),强度(σ),极限形变(ε)及疲劳性能(包括疲劳极限和疲劳寿命)。由于高分子材料在应用中的受力方式不同,聚合物的力学性能表征又按不同受力方式定出了拉伸(张力)、压缩、弯曲、剪切、冲击、硬度、摩擦损耗等不同受力方式下的表征方法及相应的各种模量、强度、形变等可以代表聚合物受力不同的各种数据。由于高分子材料类型的不同,实际应用及受力情况有很大的差变,因此对不同类型的高分子材料,又有各自的特殊表征方法、例纤维、橡胶的力学性能表征。 表征方法及原理 (1)拉伸性能的表征 用万能材料试验机,换上拉伸实验的样品夹具,在恒定的温度、湿度和拉伸速度下,对按一定标准制备的聚合物试样进行拉伸,直至试样被拉断。仪器可自动记录被测样品在不同拉伸时间样品的形变值和对应此形变值样品所受到的拉力(张力)值,同时自动画出应力-应变曲线。根据应力-应变曲线,我们可找出样品的屈服点及相应的屈服应力值,断裂点及相应的断裂应力值,样品的断裂伸长值。将屈服应力,断裂应力分别除以样品断裂处在初制样时样品截面积,即可分别求出该聚合物的屈服强度σ屈和拉伸强度(抗张强度)σ拉值。样品断裂伸长值除以样品原长度,即是聚合物的断裂伸长率ε。应力-应变曲线中,对应小形变的曲线中(即曲线中直线部分)的斜率,即是聚合物的拉伸模量(也称抗张模量)E值。聚合物试样拉伸断裂时,试样断面单维尺寸(厚或宽的尺寸)的变化值除以试样的断裂伸长率ε值,即为聚合物样品的“泊松比”(μ)的数值。 (2)压缩性能、弯曲性能、剪切性的表征。 用万能材料试验机,分别用压缩试验,弯曲试验,剪切试验的样品夹具,在恒定的温度、湿度及应变速度下进行不同方式的力学试验。并根据不同的计算公式,求出聚合物的压缩模量、压缩强度、弯曲模量、弯曲强度、剪切模量、剪切强度等数据。 (3)冲击性能的表征。 采用摆锤式冲击试验机,按一定标准制备样品,在恒定温度、湿度下,用摆锤迅速冲击被测试样,根据摆锤的质量和刚好使试样产生裂痕或破坏时的临界下落高度及被测样品的截面积,按一定公式计算聚合物试样的冲击强度(或冲击韧性单位为J/cm2)。 (4)聚合物单分子链的力学性能。 用原子力显微镜(AFM)。将聚合物样品配成稀溶液,铺展在干净玻璃片上,除去溶剂后得到一吸附在玻璃片上的聚合物薄膜(厚度约90mm)。用原子力显微镜针尖接触、扫描样品膜,由于针间与样品中高分子的相互作用,高分子链将被拉起,记录单个高分子链被拉伸时拉力的变化,直至拉力突然降至为零。可得到若干高分子链被拉伸时的拉伸力和拉伸长度曲线,由此曲线可估算单个高分子链的长度和单个高分子从凝聚态中被拉出时的“抗张强度”。所用仪器 万能材料试验机 摆锤式冲击试验机

聚合物材料表征测试题库

高分子研究方法题库 1 在对聚合物进行各种光谱分析时,红外光谱主要来源于分子振动-转动能级间的跃迁;紫外-可见光谱主要来源于分子的电子能级间的跃迁;核磁共振谱主要来源于置于磁场中的原子核能级间的跃迁,它们实际上都是吸收光谱。 2、SEM 和TEM的三要素是分辨率、放大倍数、衬度。 2、在有机化合物中,解析谱图的三要素为谱峰的位置、形状和强度。 2 苯、乙烯、乙炔、甲醛,其1H化学位移值最大的是甲醛,最小的是乙炔,13C的化学位移值最大的是甲醛最小的是乙炔。 4、紫外光谱主要决定于分子中发色和助色基团的特性,而不是整个分子的特性。 3 差示扫描量热仪分功率补偿型和热流型两种。第107页 4 产生核磁共振的首要条件是核自旋时要有磁距产生。 5 当原子核处于外磁场中时,核外电子运动要产生感应磁场,核外电子对原子核的这种作用就是屏蔽作用. 6 分子振动可分为伸缩振动,弯曲振动 7 傅里叶红外光声光谱英文简称为FTIR-PAS.P28 8 干涉仪由光源,定镜,分束器,检测器等几个主要部分组成。P19 9 高聚物的力学性能主要是测定材料的强度和模量以及变形. 10 共混物的制样方法有流延薄膜法热压薄膜法溴化钾压片法P11 11 光声探测器和红外光谱技术结合即为红外声光谱技术. P27 12 核磁共振普与红外、紫外一样,实际上都是吸收光谱。红外光谱来源于分子振动-转动能级间的跃迁,紫外-可见吸收光谱来源于分子的电子能级间的跃迁。[P46] 13 核磁共振谱图上谱峰发生分裂,分裂峰数是由相邻碳原子上的氢数决定的,若分裂峰数为n,则邻碳原子氢数为n-1。 P50 15 红外光谱在聚合物研究中占有十分重要的位置,能对聚合物的化学性质、立体结构、构象、序态、取向等提供定性和定量的信息。P6 16 红外光谱中,波动的几个参数为波长、频率、波数和光速。 17 红外光谱中,在1300~1400cm,基团和频率的对应关系比较明确,这对确定化合物中的官能团很有帮助,称为官能团区. 18 红外活性振动能引起分子偶极矩变化P8 19 红外区是电磁总谱中的一部分,波长在0.7~1000之间。 20 红外吸收光谱是直接地反映分子中振动能级的变化;而拉曼光谱是间接地反映分子中振动能级的变化。 21 记录X射线的方法有照相法和计数器法。P68 22 解析谱图三要素为谱峰位置形状和强度P/13 2 在紫外光谱中不同浓度的同一种物质,在某一定波长下的λmax处吸光度A的差异最大.所以测定最灵敏 23 聚合物的一般制样方法主要有流延薄膜法,热压薄膜法,溴化钾压片法 24 拉曼光谱研究高分子样品的最大缺点是:荧光散射。 25 拉曼位移的大小与入射光的频率无关,只与分子的能级结构有关。P30 26 凝胶渗透色谱对分子链分级的原理是体积排除理论。P96 27 凝胶渗透色谱仪的组成:系统自动进样系统加热恒温系统分离系统检测系统 28 强迫非共振法是研究聚合物粘弹动力学性能有效、普遍、重要的方法。P146 29 斯托克斯线或反斯托克斯线与入射光频率之差称为拉曼位移。P30 30 温度由低到高时,高聚物历经三种状态,即玻璃态,高弹态和粘流态。P2 31 现代热分析是指在程序控温之下,测量物质的物理性质随温度变化的一类技术P105

高分子聚合物的表征方法及常用设备

高分子聚合物的表征方法及常用设备 高分子聚合物的结构形貌分为微观结构形貌和宏观结构形貌。微观结构形貌指的是高分子聚合物在微观尺度上的聚集状态,如晶态,液晶态或无序态(液态),以及晶体尺寸、纳米尺度相分散的均匀程度等。高分子聚合物的的微观结构状态决定了其宏观上的力学、物理性质,并进而限定了其应用场合和范围。宏观结构形貌是指在宏观或亚微观尺度上高分子聚合物表面、断面的形态,以及所含微孔(缺陷)的分布状况。观察固体聚合物表面、断面及内部的微相分离结构,微孔及缺欠的分布,晶体尺寸、性状及分布,以及纳米尺度相分散的均匀程度等形貌特点,将为我们改进聚合物的加工制备条件,共混组份的选择,材料性能的优化提供数据。 高分子聚合物结构形貌的表征方法及设备包括: 1.偏光显微镜(PLM) 利用高分子液晶材料的光学性质特点,可以用偏光显微镜观测不同高分子液晶,由液晶的织构图象定性判断高分子液晶的类型。 2.金相显微镜 金相显微镜可以观测高分子聚合物表面的亚微观结构,确定高分子聚合物内和微小缺陷。体视光学显微镜通常被用于观测高分子聚合物体表面、断面的结构特征,为优化生产过程,进行损伤失效分析提供重要的信息。 3、体视显微镜 使用体视显微镜时需要注意在取样时不得将进一步的损伤引入受观测的样品。使用金相显微镜时,受测样品需要首先在模具中固定,然后用树脂浇铸成圆柱形试样。圆柱的地面为受测面。受测面在打磨、抛光成镜面后放置于金相显微镜上。高分子聚合物亚微观结构形貌的清晰度取决于受测面抛光的质量。 4.X射线衍射 利用X射线的广角或小角度衍射可以获取高分子聚合物的晶态和液晶态组织结构信息。有关内容参见高分子聚合物的晶态和高分子聚合物液晶态栏目。 5.扫描电镜(SEM) 扫描电镜用电子束扫描聚合物表面或断面,在阴极射线管上(CRT)产生被测物表面的影像。对导电性样品,可用导电胶将其粘在铜或铝的样品座上,直接观察测量的表面;对绝缘性样品需要事先对其表面喷镀导电层(金、银或炭)。 用SEM可以观察聚合物表面形态;聚合物多相体系填充体系表面的相分离尺寸及相分离图案形状;聚合物断面的断裂特征;纳米材料断面中纳米尺度分散相的尺寸及均匀程度等有关信息。 6.透射电镜(TEM) 透射电镜可以用来表征聚合物内部结构的形貌。将待测聚合物样品分别用悬浮液法,喷物法,超声波分散法等均匀分散到样品支撑膜表面制膜;或用超薄切片机将高分子聚合物的固态样样品切成50nm薄的试样。把制备好的试样置于透射电子显微镜的样品托架上,用TEM可观察样品的结构。利用TEM可以观测高分子聚合物的晶体结构,形状,

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征 摘要:高分子材料在光学领域得到了广泛的应用,作为大型光学元器件的背投屏幕更是利用先进的高分子材料技术获得了各种优异的性能。简单介绍了背投屏幕的分类、材料和制造工艺,以及光学高分子材料的历史、分类和新的发展,以及主要性能表征。 前言:背投屏幕是背投显示的终端,在很大程度上影响整个光学显示系统的性能。背投屏幕分为背投软质屏幕、背投散射屏幕和背投光学屏幕。背投软质屏幕具备廉价、运输安装方便等优点,但是亮度均匀性比较差、严重的“亮斑效应”、光能利用率低、可视角度小等。分辨率低和对比度低。散射屏幕视角大、增益低、“亮斑效应” 明显。采用不同的工艺制造。有些采用在压克力板材表面进行雾化处理,增加散射。有些应用消眩光玻璃模具复制表面结构,基材内添加光扩散剂及调色剂制造。有些为降低成本直接在透明塑料板材表面粘贴背投软质屏幕制造。现在应用最广泛的就是微结构光学型背投影屏幕。光学型背投影屏幕指的是利用微细光学结构来完成光能 分布、实现屏幕功能的这一类屏幕。主要有FL

型(Fresnel lens-lenticular lenses)、FD型(Frensnel lens-Diffusion cover)、FLD型(Fresnel lens-Lenticular lenses-Diffusion cover)、BS型(Fresnel lens-Lenticular lenses-Black strips)。 微光学结构复制主要采用模压或铸造等复制技术。铸塑又称浇铸,它是参照金属浇铸方法发展而来的。该成型方法是将已准备好的浇铸原料(通常是单体,或经初步聚合或缩聚的浆状聚合物与单体的溶液等)注入一定的模具中,使其发生聚合反应而固化,从而得到与模具型腔相似的制件。这种方法也称为静态铸塑法。静态铸塑技术可用来将电铸镍模具板上的微光学图形转移到塑料表面。铸塑法得到的制件无针眼,无内力应变,无分子取向。重要的是,对于非晶态塑料来说,静态铸塑得到的制件相对于其它工艺一般具有更高的透光率,表现出优越的光学性质。背投光学屏幕属于大尺寸微光学元件,由于体积较大用模压工艺生产存在加工设备复杂、成本高、合格率低的缺点,主要用浇铸工艺来生产。 正文:高分子材料应用于光学领域最早由Arthur Kingston开始,他于1934年取得了注

高分子材料研究方法

三、聚合物结构与性能测定方法概述 (1)链结构:广角X-衍射(WAXD )、电子衍射(ED )、 中心散射法、裂解色谱——质谱、紫外吸收光谱、红外吸收光谱、拉曼光谱、微波分光法、核磁共振法、顺磁共振法、荧光光谱、偶极距法、旋光分光法、电子能谱等。 (2)凝聚态结构:小角X-散射(SAXS )、电子衍射法 (ED )、电子显微镜(SEM 、TEM )、光学显微镜 (POM )、原子力显微镜(AFM )、固体小角激光光散射(SSALS )1、聚合物结构的测定方法 ??结晶度 :X 射线衍射法(WAXD )、电子衍射法(ED )、核磁共振吸收(NMR )、红外吸收光谱 (IR )、密度法、热分解法?聚合物取向度:双折射法(double refraction )、X 射 线衍射、圆二向色性法、红外二向色性法(infrared dichroism)?聚合物分子链整体的结构形态: ?分子量:溶液光散射、凝胶渗透色谱、沸点升高、黏度 法、扩散法、超速离心法、溶液激光小角光散射、渗透压法、气相渗透压法、端基滴定法 ?支化度:化学反应法、红外光谱法、凝胶渗透色谱法、 粘度法?交联度:溶胀法、力学测量法 ?分子量分布:凝胶渗透色谱、熔体流变行为、分级沉淀 法、超速离心法●体积的变化:膨胀计法、折射系数测定法 ●热力学性质的变化:差热分析法(DTA )、 差示扫描量热法(DSC ) ●力学性质的变化:热机械法、应力松弛 法,动态测量法如动态模量和内耗等 ●电磁效应:介电松弛、核磁共振(NMR) ?3、聚合物性能的测定(略)2、聚合物分子运动(转变与松弛)的测定

其它常用的高分子测试仪器 ?XPS ( X-射线光电子能谱) ?Ellipsometry( 椭圆偏振仪) ?X-薄膜衍射仪 1.质谱的概巵:有机列合物的分子在高真空中受到电子流轰击或强电场作用(分子会丢??个外层电子,生成带正电荷的倆子离子l同时化学键乛会发生某丛规律性的断裂,生成各种特征质量的碎片离子。这些碻孀在电场和磁场的作甪下,按照质荷比(m/z)大小的顺序分离开来,收集和记录这些离子就得到质谱图。 2. 紫外-可见吸收光谱是利用某些物质的分子吸收200 ~ 800 nm光谱区的辐射来进行分析表征的方法。这种分子吸收光谱产生于价电子在电子能级间的跃迁,广泛用于无机和有机化合物的结构表征和定量分析。 3. 紫外光谱是带状光谱的原因:在电子能级跃迁的同时,总是伴随着多个振动和转动能级跃迁。 4. 吸收带的划分

生活中的高分子材料

生活中的高分子材料 【摘要】 高分子应用在生活中各个地方,塑料便是应用较为广泛。塑料在生活起重大作用,但是也给环境带来了危害。如何解决由塑料制品所造成的白色污染时全人类共同面临的问题。目前,在诸多的解决方案中,开发可降解塑料成为全球瞩目的热点。 【正文】 高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。 高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。 高分子材料的结构特征 高分子材料的高分子链通常是由成千上万个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。 高分子材料按其来源可分为:天然高分子材料、半合成高分子材料(改性天

生活中的材料课题5几种高分子材料的应用练习1鲁科版选修10921142

1 解析:真毛皮含有蛋白质,焚烧时有烧焦羽毛的味道,而人造皮毛不含蛋白质,焚烧时 则没有烧焦羽毛的味道,所以 B 选项错误。 答案:B 解析:尿不湿之所以具有强的吸水性,是因为其中添加了高吸水性树脂。 答案:D 4.高吸水性树脂中含有羧基和羟基等基团,这些基团属于 B .强憎水基团 D.不属于任何基团 解析:羧基和羟基等基团属于强亲水基团。 答案:A 5.牛筋底鞋底耐磨性好而且坚固耐用富有弹性。而牛筋底一般用两种材料制成,这两 种材料是( ) 主题4认识生活中的材料 课题5几种高分子材料的应用 课堂演练当堂达标 1.下列物质不属于高分子化合物的是 ( ) A. G0H22 A .纤维素 B.蛋白质 C.聚乙烯 答案:A 2. 人造毛皮越来越以假乱真,下列关于真假毛皮的说法不正确的是 A. 真毛皮的主要成分是蛋白质 B . 焚烧人造毛皮和真毛皮都有烧焦羽毛的味道 C . 人造毛皮和真毛皮的成分不同 D . 聚氨酯树脂可用于生产人造毛皮 3. 尿不湿之所以具有强的吸水性是因为 ( ) A. 其成分是滤纸 B. 其中有烧碱等易潮解物质 C. 其中有氯化钙等吸水剂 D. 其中添加了高吸水性树脂 A 强亲水基团 C.酸根 A. 聚四氟乙烯和玻璃钢 B. 热塑性丁苯橡胶和聚氨酯塑料 C. 乙丙橡胶和聚四氟乙烯 D. 聚甲基丙烯酸甲酯和顺丁橡胶

2 解析:电脑中的光盘盘片原料采用聚甲基丙烯酸甲酯或透明的聚酯; 高分子材料等制成;尿素不属于高分子材料;橡胶属于高分子材料,故选择 答案:C 3.为配合“限塑令”的有效推行,许多地区采取了免费发放无纺布袋的措施,已知生 产无纺布的主要原料为:聚丙烯、聚酯和粘胶等。下列有关说法不正确的是 解析:生产无纺布的原料中聚丙烯、聚酯属于合成材料。A. 大部分塑料在自然环境中很难降解 B . 使用无纺布袋有利于减少“白色污染” C . 生产无纺布与棉布的原料都是天然纤维 D . 聚丙烯、聚酯都属于合成材料 答案:B 6. 丁苯橡胶是以丁二烯和另一种材料为单体发生聚合反应而制得的, 这种材料是( ) A.苯乙烯 B .丙烯 C.乙烯 D.甲醛 解析:丁苯橡胶的结构为: —CH>—C H=CH —C H 少一(H —「H i 可知其单体为1, 3 丁二烯CH 2===C — CH===C 和苯乙烯。 答案:A 课后作业知能强化 1.与聚乙烯的制作工艺类似,可以将四氟乙烯进行加聚反应而得到一种特别好的高分 子材料,这种材料的性质特别稳定,所以被称为 ( ) A.国防金属 B .尿不湿 C.橡胶王 D.塑料王 解析:由于聚四氟乙烯具有特殊的化学稳定性, 能够耐强酸、强碱甚至“王水”的腐蚀, 既耐高温又耐低温,绝缘性好而且在水中也不会浸湿或膨胀,所以被称作是塑料王。 答案:D 2. 下列用途中与高分子材料无关的是 ( ) A. 电脑中的光盘 B. 录音机中的磁带 C. 庄稼施加尿素以补充氮肥 D. 氟橡胶制造火箭衬里 录音机中的磁带用 C 项。

高分子聚合物的主要表征方法

摘要 本文主要综述了高分子聚合物及其表征方法和检测手段。首先,从不同角度对高分子聚合物进行分类,并对高分子聚合物的结构,生产,性能做了一个简单的介绍。其次,阐述了表征和检测高分子聚合物的常用方法,例如:凝胶渗透色谱、核磁共振(NMR)、红外吸收光谱(IR)、激光拉曼光谱(LR)等。最后,介绍了检测高分子聚合物的常用设备,例如:偏光显微镜、金相显微镜、体视显微镜、X射线衍射、扫描电镜、透射电镜、原子力显微镜等。 关键词:聚合物;表征方法;检测手段;常用设备

ABSTRACT This paper mainly summarizes the polymer and its detection means.First of all, this paper made a simple introduction of the polymer structure, production performance. Secondly, it describes the detection methods of polymers, such as: gel permeation chromatography, nuclear magnetic resonance (NMR), infrared absorption spectroscopy (IR), laser Raman spectroscopy (LR).Finally, it describes the common equipment used to characterize and detection of polymers, such as: polarizing microscope, metallographic microscope, microscope, X ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy. Key words:Polymer; Characterization; Testing means; common equipment

高分子材料分析与测试

期末复习作业 一、 名词解释 1. 透湿量 透湿量即指水蒸气透过量。 薄膜两侧的水蒸气压差和薄膜厚度一 定, 温度一定的条件下1山2聚合物材料在24小时内所透过的蒸 汽量(用 v 表示) 2. 吸水性 吸水性是指材料吸收水分的能力。 通常以试样原质量与试样失水 后的 质量之差和原质量之比的百分比表示; 也可以用单位面积的 试样吸收 水分的量表示;还可以用吸收的水分量来表示。 3. 表观密度 对于粉状、 片状颗粒状、 纤维状等模塑料的表观密度是指单位体 对于泡沫塑料的表观密度是指单位体积的泡沫塑料在规定温度 4、拉伸强度 在拉伸试验中, 保持这种受力状态至最终, 就是测量拉伸力直至 应 力,用 t 表示) 5、弯曲强度 试样在弯曲过程中在达到规定挠度值时或之前承受的最大弯曲 应力 (用 f 表示) 积中的质量(用 a 表示) 和相对湿度时的重量,故又称体积密度或视密度(用 a 表示) 材料断裂为止, 所承受的最大拉伸应力称为拉伸强度 极限拉伸

6、压缩强度 指在压缩试验中试样所承受的最大压缩应力。 它可能是也可能不 7、屈服点 应力—应变曲线上应力不随应变增加的初始点。 8、细长比 14、压缩应变 是试样破裂的瞬间所承受的压缩应力(用 e 表示) 指试样的高度与试样横截面积的最小回转半径之比(用 表示) 9、断裂伸长率 断裂时伸长的长度与原始长度之比的百分数(用 t 表示) 10、弯曲弹性模量 比例极限内应力与应变比值(用 E f 表示) 11、压缩模量 指在应力—应变曲线的线性范围内压缩应力与压缩应变的比值。 由于直线与横坐标的交点一般不通过原点, 因此可用直线上两点 的应力差与对应的应变差之比表示(用 E e 表示) 12、弹性模量 在负荷—伸长曲线的初始直线部分, 材料所承受的应力与产生相 应的应变之比(用 E 表示) 13、压缩变形 指试样在压缩负荷左右下高度的改变量(用 h 表示) 指试样的压缩变形除以试样的原始高度(用 表示)

高分子材料分析测试与研究方法复习材料.doc

一. 傅里叶红外光谱仪 1. 什么是红外光谱图 当一束连续变化的各种波长的红外光照射样品时,其中一部分被吸收,吸收的这部分光能就转变为分子的振动能量和转动能量;另一部分光透过,若将其透过的光用单色器进行色散,就可以得到一谱带。若以波长或波数为横坐标,以百分吸收率或透光度为纵坐标,把这谱带记录下来,就得到了该样品的红外吸收光谱图,也有称红外振-转光谱图 2. 红外光谱仪基本工作原理 用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收一定频率的红外线,把分子吸收的红外线的情况用仪器记录下来,便能得到全面反映试样成份特征的光谱,从而推测化合物的类型和结构。 3. 红外光谱产生的条件 (1) 辐射应具有能满足物质产生振动跃迁所需的能量; (2) 辐射与物质间有相互偶合作用。 4. 红外光谱图的三要素 峰位、峰强和峰形 5. 红外光谱样品的制备方法 1) 固体样品的制备 a. 压片法 b. 糊状法: c. 溶液法 2) 液体样品的制备 a. 液膜法 b. 液体吸收池法 3) 气态样品的制备: 气态样品一般都灌注于气体池内进行测试 4) 特殊样品的制备—薄膜法 a. 熔融法 b. 热压成膜法

c. 溶液制膜法 6. 红外对供试样品的要求 ①试样纯度应大于98%,或者符合商业规格,这样才便于与纯化合物的标准光谱或商业光谱进行对照,多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相重叠,难予解析。 ②试样不应含水(结晶水或游离水) 水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的盐窗。所用试样应当经过干燥处理。 ③试样浓度和厚度要适当 使最强吸收透光度在5~20%之间 7. 红外光谱特点 1)红外吸收只有振-转跃迁,能量低; 2)应用范围广:除单原子分子及单核分子外,几乎所有有机物均有红外吸收;3)分子结构更为精细的表征:通过红外光谱的波数位置、波峰数目及强度确定分子基团、分子结构; 4)分析速度快; 5)固、液、气态样均可用,且用量少、不破坏样品; 6)与色谱等联用(GC-FTIR)具有强大的定性功能; 7)可以进行定量分析; 二. 紫外光谱 1. 什么是紫外-可见分光光度法?产生的原因及其特点? 紫外-可见分光光度法也称为紫外-可见吸收光谱法,属于分子吸收光谱,是利用某些物质对200-800 nm光谱区辐射的吸收进行分析测定的一种方法。紫外-可见吸收光谱主要产生于分子价电子(最外层电子)在电子能级间的跃迁。该方法具有灵敏度高,准确度好,使用的仪器设备简便,价格廉价,且易于操作等优点,故广泛应用于无机和有机物质的定性和定量测定。 2. 什么是吸收曲线?及其吸收曲线的特点? 测量某种物质对不同波长单色光的吸收程度,以波长为横坐标,吸光度为纵坐标作图,可得到一条曲线,称为吸收光谱曲线或光吸收曲线,它反映了物质

高分子材料按应用分类

高分子材料按应用分类 高分子材料按特性分为橡胶、纤维、塑料、、高分子涂料和高分子基复合材料等。①橡胶是一类线型柔性。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和两种。②高分子纤维分为天然和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。③塑料是以合成树脂或的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为和热塑性塑料;按用途又分为通用塑料和。④高分子胶粘剂是以合成为主体制成的。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。⑤高分子涂料是以聚合物为主要成膜物质,添加和各种添加剂制得。根据成膜物质不同,分为涂料、天然树脂涂料和。⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。⑦。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子和医用、等。高聚物根据其机械性能和使用状态可分为上述几类。但是各类高聚物之间并无严格的界限,同一高聚物,采用不同的合成方法和成型工艺,可以制成塑料,也可制成纤维,比如尼龙就是如此。而一类的高聚物,在室温下既有玻璃态性质,又有很好的弹性,所以很难说它是橡胶还是塑料。 按高分子主链结构分类 ①碳链高分子:分子主链由C原子组成,如:PP、PE、PVC②杂链高聚物:分子主链由C、O、N等原子构成。如:聚、聚酯③元素有机高聚物:分子主链不含C原子,仅由一些杂原子组成的高分子。如:硅橡胶 新型高分子材料 高分子材料包括塑料、橡胶、纤维、薄膜、和涂料等。其中,被称为现代高分子的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。尽管高分子材料因普遍具有许多金属和所无法取代的优点而获得迅速的发展,但目前业已大规模生产的还是只能寻常条件下使用的高分子物质,即所谓的通用高分子,它们存在着机械强度和刚性差、耐热性低等缺点。而现代的发展,则向高分子材料提出了更高的要求,因而推动了高分子材料向高性能化、功能化和化方向发展,这样就出现了许多产量低、价格高、性能优异的新型高分子材料。 高分子分离膜 是用高分子材料制成的具有选择性透过功能的半透性薄膜。采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或差为动力,使混合物、液体混合物或、无机物的等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。膜分离过程主要有、超滤、微滤、电渗析、压渗析、气体分离、渗透汽化和液膜分离等。用来制备分离、渗透汽化和液膜分离等。用来制备分离膜的高分子材料有许多种类。现在用的较多的是聚枫、聚、纤维素脂类和有机硅等。膜的形式也有多种,一般用的是平膜和空中纤维。推广应用高分子分离膜能获得巨大的经济效益和社会效益。例如,利用交换膜电解可减少污染、节约能源:利用反渗透进行海水淡化和脱盐、要比其它方法消耗的能量都小;利用从中富集氧可大大提高回收率等。

高分子材料试题及答案.pdf

《高分子材料》试卷答案及评分标准 一、填空题(20分,每空1分): 1、材料按所起作用分类,可分为功能材料和结构材料两种类型。 2、按照聚合物和单体元素组成和结构变化,可将聚合反应分成 加成聚合反应和缩合聚合反应两大类。 3、大分子链形态有伸直链、折叠链、螺旋链、无规线团四种基本类型。 4、合成胶粘剂按固化类型可分为化学反应型胶粘剂、热塑性树脂溶液胶粘剂、热熔胶粘剂 三种。 5、原子之间或分子之间的系结力称为结合键或价键。 6、高分子聚合物溶剂选择的原则有极性相近、溶解度参数相近、 溶剂化原则。 7、液晶高分子材料从应用的角度分为热致型和溶致型两种。 8、制备高聚物/粘土纳米复合材料方法有插层聚合和插层复合两种。 二、解释下列概念(20分,每小题4分): 1、 材料化过程:由化学物质或原料转变成适于一定用场的材料,其转变 过程称为材料化过程或称为材料工艺过程。 2、 复合材料:由两种或两种以上物理和化学性质不同的物质,用适当的 工艺方法组合起来,而得到的具有复合效应的多相固体材料称之为复合材料。 3、 聚合物混合物界面:聚合物的共混物中存在三种区域结构:两种聚合物 各自独立的相和两相之间的界面层,界面层也称为过渡区,在此区域发生两相的粘合和两种 聚合物链段之间的相互扩散。 4、 共混法则:共混物的性能与构成共混物的组成均质材料的性能有关, 一般为其体积分数或摩尔分数与均质材料的性能乘积之和。或是倒数关系。 5、 纳米复合材料:是指复合材料结构中至少有一个相在一维方向上是纳米 尺寸。所谓纳米尺寸是指1nm~100nm的尺寸范围。纳米复合材料包括均质材料在加工过程中所析出纳米级尺寸增强相和基体相所构成的原位复合材料、纳米级尺寸增强剂的复合材料以及刚性分子增强的分子复合材料等。 三、比较下列各组聚合物的柔顺性大小,并说明理由(5分,每小题2.5分): 1、 聚丙烯与聚苯烯 聚丙烯>聚苯烯,原因:随着长链上侧基体积的增大,限制了分子链的运动,分子的柔性降低。 2、 聚乙烯、氯化聚乙烯和聚氯乙烯 聚乙烯>氯化聚乙烯>聚氯乙烯,原因:随着长链上氯原子的增加,分子间作用力增强,分子的柔性降低。 四、比较下列各组聚合物的Tg大小,并说明理由(5分,每小题2.5分): 1、 聚丙烯、聚氯乙烯、聚乙烯醇和聚丙烯腈 聚丙烯<聚氯乙烯<聚乙烯醇<聚丙烯腈,原因:随着分子链上侧基的极性增强,分子链产生的内旋转受到限制越大,是其Tg增高。 2、 聚( 3、3-二甲基—1-丁烯)、聚苯乙烯和聚乙烯基咔唑 聚(3、3-二甲基—1-丁烯)<聚苯乙烯<聚乙烯基咔唑,原因:随着分子链上侧基体积的增大,分子运动越困难,所以Tg增高。 五、按照给出条件鉴别高分子材料(6分,每小题3分): 1、 序号 密度(g/cm3) 洛氏硬度 软化温度℃ 冲击强度J/m

高分子材料分析测试与表征实验大纲

《高分子材料分析测试与表征》实验教学大纲 课程名称:高分子材料分析测试与表征课程编号:050332024 课程类别:专业基础课课程性质:选修 适用专业:高分子材料与工程 课程总学时:32 实验(上机)计划学时:8 开课单位:材料科学与工程学院 一、大纲编写依据 1.高分子材料与工程专业2017版教学计划; 2. 高分子材料与工程专业《近代材料研究方法》理论教学大纲对实验环节的要求; 3. 近年来《近代材料研究方法》实验教学经验。 二、实验课程地位及相关课程的联系 1.《近代材料研究方法》是高分子材料与工程专业基础课程; 2.本实验项目是《近代材料研究方法》课程知识的运用; 3.本实验项目是理解和运用材料分析检测手段以及对检测结果进行分析标定的基础; 4.本实验以《材料科学基础》、《物理化学》、《大学物理》、《高分子物理》和《高分子 化学》为先修课。 5.本实验对毕业论文等工作具有指导意义。 三、实验目的、性质和任务 1.熟悉X射线衍射仪、紫外可见光分光光度计和热重分析仪 2.能够对X射线衍射图谱进行标定,能够利用粉末衍射卡片对单相物质进行物相鉴 定 3.了解扫描电镜、能谱仪和红外光谱仪的结构 4.通过实际分析,明确扫描电镜、红外光谱仪、紫外可见光分光光度计和热重分析 仪的用途 5.理解X射线衍射、光谱分析和热分析的基本理论,训练运用上述分析手段的基本 技能,掌握科学的实验方法; 6.培养学生观察问题、分析问题和独立解决问题的能力 7.通过设计性实验训练,使学生初步掌握如何根据需要选择合适的检测手段; 8.培养正确记录实验数据和现象,正确处理实验数据和分析实验结果的能力以及正 确书写实验报告的能力。 四、实验基本要求 1.实验项目的选定依据教学计划对学生工程实践能力培养的要求; 2.巩固和加深学生对X射线衍射、扫描电镜、紫外可见光分光光度计和热重分析仪等 基础知识的理解,提高学生综合运用所学知识的能力; 3.实验项目要求学生综合掌握本课程基本知识,并运用相关知识自行设计实验方案;

高分子材料研究方法

高分子材料研究方法 三、聚合物结构与性能测定方法概述1、聚合物结构的测定方法 (1)链结构:广角X-衍射(WAXD)、电子衍射(ED)、 中心散射法、裂解色谱——质谱、紫外吸收光谱、红 外吸收光谱、拉曼光谱、微波分光法、核磁共振法、 顺磁共振法、荧光光谱、偶极距法、旋光分光法、电 子能谱等。 (2)凝聚态结构:小角X-散射(SAXS)、电子衍射法 (ED)、电子显微镜(SEM、TEM)、光学显微镜 (POM)、原子力显微镜(AFM)、固体小角激光光 散射(SSALS) ? ?结晶度:X射线衍射法(WAXD)、电子衍射法 (ED)、核磁共振吸收(NMR)、红外吸收光谱 (IR)、密度法、热分解法 ?聚合物取向度:双折射法(double refraction)、X射 线衍射、圆二向色性法、红外二向色性法(infrared dichroism) ?聚合物分子链整体的结构形态: ?分子量:溶液光散射、凝胶渗透色谱、沸点升高、黏度 法、扩散法、超速离心法、溶液激光小角光散射、渗透 压法、气相渗透压法、端基滴定法

?支化度:化学反应法、红外光谱法、凝胶渗透色谱法、 粘度法 ?交联度:溶胀法、力学测量法 ?分子量分布:凝胶渗透色谱、熔体流变行为、分级沉淀 法、超速离心法 2、聚合物分子运动(转变与松弛)的测定,体积的变化:膨胀计法、折射系数测定法,热力学性质的变化:差热分析法(DTA)、差示扫描量热法(DSC) ,力学性质的变化:热机械法、应力松弛法,动态测量法如动态模量和内耗等,电磁效应:介电松弛、核磁共振(NMR) ? 3、聚合物性能的测定(略) ,其它常用的高分子测试仪器 ?XPS ( X-射线光电子能谱) ?Ellipsometry( 椭圆偏振仪) ?X-薄膜衍射仪 1(质谱的概巵:有机列合物的分子在高真空中受到电子流轰击或强电场作用(分子会丢??个外层电子,生成带正电荷的倆子离子,同时化学键乛会发生某丛规律性的断裂,生成各种特征质量的碎片离子。这些碻孀在电场和磁场的作甪下,按照质荷比(m,z)大小的顺序分离开来,收集和记录这些离子就得到质谱图。 2. 紫外-可见吸收光谱是利用某些物质的分子吸收200 ~ 800 nm光谱区的辐射来进行分析表征的方法。这种分子吸收光谱产生于价电子在电子能级间的跃迁,广泛用于无机和有机化合物的结构表征和定量分析。 3. 紫外光谱是带状光谱的原因:在电子能级跃迁的同时,总是伴随着多个振动和转动能级跃迁。 4. 吸收带的划分 跃迁类吸收带特征 , max

高分子材料常用的几种抗老化方法及对比分析

高分子材料常用的几种抗老化方法及对比分析 高分子材料事实上已经成为现代生活每个方面中的必需品,其在生产及加工中取得的最新进展进一步拓宽了塑料的应用范围,在某些应用中,高分子材料甚至取代了其他的材料,如玻璃,金属,纸张及木材。 但高分子材料本身具有的结构特点和物理状态及其在使用过程中受到的热、光、热氧、臭氧、水、酸、碱、菌和酶等外在因素使得其在应用过程中,会出现性能下降或损失,例如泛黄、相对分子质量下降、制品表面龟裂、光泽丧失,更为严重的是导致冲击强度、拉伸强度和伸长率等力学性能大幅度下降,从而影响高分子材料的正常使用。这种现象简称为老化,老化在高分子材料的合成、贮存及加工和最终应用的各个阶段均可能发生,可导致材料使用寿命终结而大量废弃,造成资源的极大浪费和严重的环境污染。高分子材料在使用过程中发生的老化更有可能造成巨大的灾难和不可挽回的损失。 因此,高分子材料的防老化成为高分子行业不得不解决的问题。实际上,高分子材料的防老化是高分子化学中的一个重要课题。目前,改善和提高高分子材料防老化性能的主要方法有以下四种: 1、物理防护(如加厚、涂装、外层复合等) 高分子材料的老化,特别是光氧老化,首先是从材料或制品的表面开始,表现为变色、粉化、龟裂、光泽度下降等,然后逐渐往内部深入。薄制品比厚制品更容易提早失效,因此通过加厚制品的方法可以延长制品的使用寿命。对于易老化的制品,可以在其表面涂覆或涂布一层耐候性好的涂层,或在制品外层复合一层耐候性好的材料,从而使制品表面附上一层防护层,从而延缓老化进程。如在PP无纺布表面针刺一层抗光氧老化性能较好的聚酯布层,以吸收大量的紫外辐射,从而达到防老化的目的。但这些方法存在增加工序或影响产品的外观等等一些缺陷,只限于少数产品的应用。 2、改进加工工艺 很多材料在合成或制备过程中,也存在老化的问题。如,聚合过程中热的影响、加工过程中的热氧老化等等。那么相应地,可以通过在聚合或加工过程中增加除氧装置或抽真空装置等减缓氧气的影响。但这种方法只能保证材料在出厂时的性能,而且这种方法只能从材料的制备源头实施,无法解决其在再加工和使用过程中的老化问题。 3、高分子材料的结构设计或改性 很多高分子材料分子结构中存在极易老化的基团,那么通过材料的分子结构设计,以不易老化的基团替代易老化的基团,往往可以起到良好的效果,如在聚氨酯行业中,

最新医用高分子材料表征方法及原理

医用高分子材料表征方法及原理 医用高分子材料是一类特殊用途的材料。它们在使用过程中,常需与生物肌体、血液、体液等接触,有些还须长期植入体内。由于医用高分子与人们的健康密切相关,因此对进入临床使用阶段的医用高分子材料具有严格的要求,要求有十分优良的特性。归纳起来,一个具备了以下七个方面性能的材料,可以考虑用作医用材料。 (1)化学隋性,不会因与体液接触而发生反应人体环境对高分子材料主要有以下一些影响: 1)体液引起聚合物的降解、交联和相变化; 2)体内的自由基引起材料的氧化降解反应; 3)生物酶引起的聚合物分解反应; 4)在体液作用下材料中添加剂的溶出; 5)血液、体液中的类脂质、类固醇及脂肪等物质渗入高分子材料,使材料增塑,强度下降。 但对医用高分子来说,在某些情况下,“老化”并不一定都是贬意的,有时甚至还有积极的意义。如作为医用粘合剂用于组织粘合,或作为医用手术缝合线时,在发挥了相应的效用后,反倒不希望它们有太好的化学稳定性,而是希望它们尽快地被组织所分解、吸收或迅速排出体外。在这种情况下,对材料的附加要求是:在分解过程中,不应产生对人体有害的副产物。 (2)对人体组织不会引起炎症或异物反应 有些高分子材料本身对人体有害,不能用作医用材料。而有些高分子材料本身对人体组织并无不良影响,但在合成、加工过程中不可避免地会残留一些单体,或使用一些添加剂。当材料植入人体以后,这些单体和添加剂会慢慢从内部迁移到表面,从而对周围组织发生作用,引起炎症或组织畸变,严重的可引起全身性反应。 (3)不会致癌 根据现代医学理论认为,人体致癌的原因是由于正常细胞发生了变异。当这些变异细胞以极其迅速的速度增长并扩散时,就形成了癌。而引起细胞变异的因素是多方面的,有化学因素、物理因素,也有病毒引起的原因。 当医用高分子材料植入人体后,高分子材料本身的性质,如化学组成、交联度、相对分子质量及其分布、分子链构象、聚集态结构、高分子材料中所含的杂质、残留单体、添加剂都可能与致癌因素有关。但研究表明,在排除了小分子渗出物的影响之外,与其他材料相比,高分子材料本身并没有比其他材料更多的致癌可能性。 (4)具有良好的血液相容性 当高分子材料用于人工脏器植入人体后,必然要长时间与体内的血液接触。因此,医用高分子对血液的相容性是所有性能中最重要的。高分子材料的血液相容性问题是一个十分活跃的研究课题,但至今尚未制得一种能完全抗血栓的高分子材料。这一问题的彻底解决,还有待于各国科学家的共同努力。 (5)长期植入体内不会减小机械强度 许多人工脏器一旦植入体内,将长期存留,有些甚至伴随人们的一生。因此,要求植入体内的高分子材料在极其复杂的人体环境中,不会很快失去原有的机械强度。事实上,在长期的使用过程中,高分子材料受到各种因素的影响,其性能不可能永远保持不变。我们仅希望变化尽可能少一些,或者说寿命尽可能长一些。 一般来说,化学稳定性好的,不含易降解基团的高分子材料,机械稳定也比较好。

高分子材料基本知识

链段:从高分子链中划分出来的最小运动单元 柔顺性:高分子链能改变其构象的性质 近程结构:即第一层次结构,指单个高分子的一个或几个结构单元的化学结构和立体化学结构 远程结构:即第二层次结构,指单个高分子的大小和在空间所在的各种形态 结构:组成高分子不同尺度的结构单元在空间的排列 构型:分子中由化学键所固定的原子在空间的几何排列 构象:由于单键的内旋转而产生的分子在空间的不同形态 高弹性:小应力作用下,由于高分子链段的运动而产生的很大的可逆变形 强迫高弹性:玻璃态聚合物在外力作用下,出现的高弹形变 力学松弛:高聚物的力学性质随时间的变化表现的性质 蠕变:在恒温恒负载下,高聚物材料的形变随时间的延长而逐渐增大的现象5 应力松弛:在恒温和保持形变不变的情况下,高聚物内部应力随时间延长逐渐衰减的现象 滞后现象:在交变应力作用下,高聚物应变落后于应力变化的现象 内耗:橡胶及其他高分子材料在形变过程中,一部分弹性形变转变热能的损耗的现象 冷拉:高聚物材料的低温下受外力作用而产生大变形的现象 银纹屈服:在拉伸应力作用下,高聚物某些脆弱部分由于应力集中而产生空化条纹形变区 剪切屈服:高聚物在拉伸或压缩应力作用下,与负载方向呈45度截面上产生最大剪切力,从而引发高分子链沿最大剪切面方向上产生滑移形变,从而导致材料形状扭的现象 高聚物材料发生脆性断列时,其断裂面比较光滑;韧性断裂时,由于分子间滑移,断裂面较为粗糙,有凹凸不平的丝状物 流变性:物质流动与变形的性能及其行为表现 牛顿流体:流动规律符合牛顿粘性定律的流体 剪切流动:产生横向速度梯度的场的流动 拉伸流动:产生纵向速度梯度的场的流动 剪切变稀流体:随剪切应力或剪切速率的升高表观黏度降低的流体 挤出胀大:橡胶等高聚物熔体基础口型后,挤出物的尺寸及断面形状与口型不同的膨胀 可塑度:施加一定负载在一定温度的时间下,测定形变负载移去后变形保持的能力 切力增稠流体:随剪切速率增加,切应力增加的速率增大,即切黏度随切应力。剪切速率的增大而上升的流体 熔融指数:由标准熔体流动速率测定仪测定,用来表征热塑性塑料的流动性 门尼黏度:一定温度(100)一定转子速度(2r/min)条件下测定未硫化胶对转子的转动阻力。橡胶工业中作为胶料流动的指标 焦烧:所谓焦烧,是胶料在硫化前的操作或停放过程中,发生了不应有的提前硫化现象。其表现为在胶料中有较硬的硫化小粒子存在,胶料塑性明显减少。 1.高分子特征: 1分子量很高或分子链很长2数目很大的结构单元通过共价键重复连接而成3结构具有不均一性4大多数高分子分子链有一定柔顺性 2.线性:细长的线/能溶解熔融,易加工成型 支链性:空间中二维增长形成/更以溶解,强度低,易老化 交联型:三维网状大分子/不溶解,能溶胀,不熔融,强度高,弹性好 3.柔顺性比较:1)PE>PP>PS取代基体积,单键内旋转位阻大,柔顺性差2)PP>PVC>PAN 取代基极性大,分子间的相互作用大,分子链内旋转受阻,柔顺性差3)氯丁橡胶〉PP>PVC取代基数目多,非键合原子数目多,阻力大4)BR>NR>SBR取代基体积大(同1) 4.结晶度:指结晶部分用质量或体积表示的百分数 结晶度对高聚物性能的影响:1)力学强度模量增大,韧性抗冲击强度降低2)光学性质透明度降低3)耐热性抗渗透性增强 5.取向方式:1)单轴,取向方向上强度增加,垂直与取向方向上强度降低2)双轴,平面方向上强度增加 6.高分子热运动的特点:1运动单元多重性(键长键角原子链节链段大分子链)2高分子运动的时间依赖性(松弛特性大分子运动需要较长时间)3高分子运动温度依赖性(运动单元松弛特性的温度依赖性) 7、试画出高聚物材料典型的应力-应变曲线,并从分子运动的角度对曲线加以解释,并简单介绍一下其影响因素。 2)原因:a分子链长度不够一个链段长度时运动单位为大分子,所以Tg、Tf重合,M↑分子链解冻需Q↑Tg↑ b M>链段M,运动单元为整个大分子和链段,体现链段运动的高弹态出现。链段大小主要取决于分子链段柔顺性和邻近分子间的相互影响,所以,Tg不变,M↑大分子间相对位移阻力↑,所以Tf↑ 10.影响玻璃化转变温度Tg的因素 1)分子结构的影响:柔性增加,Tg下降

相关文档
最新文档