核物理与粒子物理专题实验课程

核物理与粒子物理专题实验课程
核物理与粒子物理专题实验课程

核物理与粒子物理专题实验课程详细信息

《核物理实验方法》作业汇总(期末复习)

《核物理实验方法》作业汇总(期末复习) 2016.5.6汇总谢伟 第一次作业: 1、简述高压倍增器的优缺点及主要用途。 2、画出静电加速器的示意图并简述其工作原理。 第二次作业: 1、画出直线加速器的示意图并说明其工作原理(需查阅相关课外资料) 2、画出回旋加速器的示意图并证明旋转频率与速度无关。 第三次作业 1、带电粒子主要通过哪两种方式在物质中损失能量? 2、什么是切伦科夫辐射和穿越辐射? 3、光子通过哪三种方式在物质中损失能量? 第四次作业 1.什么是气体探测器?气体探测器有哪几个工作模式?请说明每个工作模式的特点。 2.请画出电离室的电荷感应过程示意图。并结合示意图简要说明电离室的工作原理。

3.电离室的优缺点是什么,有哪些应用? 第五次作业 1.正比计数器的工作原理是什么?正比计数器有哪些性能参数? 2.正比计数器有哪些应用?请举例说明。 3.以有机管为例,说明G-M计数器的工作原理和猝灭机制。 第六次作业 1、请简述多丝正比室的测量原理 2、漂移室在高能物理上有什么应用? 第七次作业 1、流光-放电模式是怎么形成的,请简单定性说明。 2、请简述电阻板室的结构和性能。 第八次作业 1、利用能带论解释绝缘体、导体、半导体的区别。 2、什么是P型半导体?什么是N型半导体?什么是PN结? 3、简述半导体探测器的工作原理。 4、常见的径迹测量半导体有哪几种?

第九次作业 1、画出闪烁探测器的组成示意图并说明其工作原理。从粒子进入闪烁体内损失能量到转变为电信号,可以分成哪几个阶段? 2、结合教材P235的表6.2.1回答,哪种无机晶体具有最大的光输出?哪种无机晶体具有最短的发光衰减时间?BGO 晶体的发射光谱主峰是多少? 3、有机闪烁体可以分为哪三大类?每类各有什么优缺点? 4、光电倍增管由哪几部分构成?并简单说明光电倍增管的工作原理。 第十次作业 1、解释什么是伽马射线的全能峰、康普顿连续谱、逃逸峰? 2、结合教材P285图6.5.13回答: (1)图中的两个三角形表示什么电路? (2)图中“符合1”和“符合2”的作用分别是什么?对应什么样的逻辑电路? (3)简述该图是如何测量多丝正比室的探测效率的? 3、请写出切伦科夫辐射角公式,并解释如何利用切伦科夫探测器分辨速度不同的粒子?

原子核物理实验方法课后习题(答案)

第一章习题 1. 设测量样品的平均计数率是5计数/s,使用泊松分布公式确定在任1s 内得到计数小于或等于2个的概率。 解: 05 1525 (,)!5(0;5)0.0067 0!5 (0;5)0.0337 1!5(0;5)0.0842 2! N N r r r r N P N N e N P e P e P e ----=?=?==?==?= 在1秒内小于或等于2的概率为: (0;5)(1;5)(2;5)0.00670.03370.08420.1246r r r P P P ++=++= 2. 若某时间内的真计数值为100个计数,求得到计数为104个的概率,并求出计数值落在90-104范围内的概率。 解:高斯分布公式2 222)(2 2)(2121 )(σπσ πm n m m n e e m n P -- -- = = 1002==σm == =-- --2 2 22)104(2 2)(2121 )104(σπσ πm m m n e e m P 将数据化为标准正态分布变量 110 100 90)90(-=-= x 4.010100 104)104(=-=x 查表x=1,3413.0)(=Φx ,x=,1554.0)(=Φx 计数值落在90-104范围内的概率为

3. 本底计数率是500±20min -1,样品计数率是750±20min -1,求净计数率及误差。 解:t n = σ 本底测量的时间为:min 2520500 2 === b b b n t σ 样品测量时间为:min 35207002 === s s s n t σ 样品净计数率为:1min 200500700-=-=-= b b s s t n t n n 净计数率误差为:1min 640-== +=+= b s b b s s t n t n σσσ 此测量的净计数率为:1min 6200-± 4. 测样品8min 得平均计数率25min -1,测本底4min 得平均计数率18min -1,求样品净计数率及误差。 解:1min 71825-=-=-= b b s s t n t n n

核物理实验讲义

实验1 核衰变的统计规律 实验目的 1. 了解并验证原子核衰变及放射性计数的统计性。 2. 了解统计误差的意义,掌握计算统计误差的方法。 3. 学习检验测量数据的分布类型的方法。 内容 1. 在相同条件下,对某放射源进行重复测量,画出放射性计数的频率直方图,并与理论分布曲线作比较。 2. 在相同条件下,对本底进行重复测量,画出本底计数的频率分布图,并与理论分布图作比较。 3. 用2χ检验法检验放射性计数的统计分布类型。 原理 在重复的放射性测量中,即使保持完全相同的实验条件(例如放射源的半衰期足够长,在实验时间内可以认为其活度基本上没有变化,源与计数管的相对位置始终保持不变;每次测量时间不变,测量仪器足够精确,不会产生其它的附加误差等等),每次的测量结果并不完全相同,而是围绕着其平均值上下涨落,有时甚至有很大的差别。这种现象就叫做放射性计数的统计性。放射性计数的这种统计性反映了放射性原子核衰变本身固有的特性,与使用的测量仪器及技术无关。 1. 核衰变的统计规律 放射性原子核衰变的统计分布可以根据数理统计分布的理论来推导。放射性原子核衰变的过程是一个相互独立彼此无关的过程,即每一个原子核的衰变是完全独立的,和别的原子核是否衰变没有关系,而且哪一个原子核先衰变,哪一个原子核后衰变也纯属偶然的,并无一定的次序,因此放射性原子核的衰变可以看成是一种伯努里试验问题。设在t=0时,放射性原子核的总数是0N ,在t 时间内将有一部分核发生了衰变。已知任何一个核在t 时间内衰变的概率为)1(t e p λ--=,不衰变的概率为q=1-p=e t λ-, λ是该放射性原子核的衰变常数。 利用二项式分布可以得到在t 时间内有n 个核发生衰变的概率P(n)为 n N t n t e e n n N N n p -----= 0)()1(! )!(!)(00λλ (1) 在t 时间内,衰变掉的粒子平均数为 )1(00t e N p N m λ--== (2) 其相应的均方根差为 2 10)()1(t me p m pq N λσ-=-== (3)

粒子物理和核物理实验方法课程教学大纲

粒子物理与核物理实验方法课程教学大纲 课程基本信息(Course Information) 课程代码 (Course Code) PH067 *学时 (Credit Hours) 3 *学分 (Credits) 48 *课程名称 (Course Name) 粒子物理与核物理实验方法 Methods of Experimental Nuclear and Particle Physics 课程性质 (Course Type) 专业选修课 授课对象 (Audience) 物理学专业、物理学专业(国际班)大学三年级本科生 授课语言 (Language of Instruction) 英文 *开课院系 (School) 物理与天文学院 先修课程 (Prerequisite) 物理学引论,电动力学,量子力学1 授课教师 (Instructor) 课程网址 (Course Webpage) *课程简介(Description) 这是一个粒子与核物理实验的入门级课程,对原子核和粒子物理学中的各种实验方法做了概述。课程的目标是使物理方向的高年级本科生或低年级研究生,从没有专业基础开始进阶到可以开始从事粒子实验方向的研究工作。课程涵盖了原子核与粒子中的基本相互作用过程、粒子束和加速器原理、基本粒子和物质的相互作用、各类常用粒子探测器原理、粒子物理常用的统计方法和数据分析技术。课程的最后将有一系列诺奖级的粒子物理实验的实例,每一个都是标准模型建立过程中的关键实验。本课程将重点培养学生设计实验和估算实验观测量的能力,鼓励学生组成团队,选定一个前沿的研究课题,完成一项实验的概念设计,每一个小组在学期结束时进行答辩。 *课程简介(Description) This is an introductory course which gives an overview of various experimental methods in modern nuclear and particle physics. The goal is to equip senior undergraduate or starting graduate students who have no relevant background with basic knowledge to jump start on the experimental research projects. The course covers basic nuclear and particle interaction processes, particle accelerator, passage of particle in matter and detector technologies, basics of statistics and analysis, as well as example experiments which established the foundation of the standard model. The students are expected to work in groups and develop an experimental proposal at the conceptual stage on selected topics, perform estimates on basic observables, and make a 15‐minutes PPT defense at the end of the semester. 课程教学大纲(Course Syllabus)

核物理实验报告

闪烁γ能谱测量实验报告 张传奇2012012784 一、实验目的 1. 加深对γ射线和物质相互作用的理解。 2. 掌握NaI(Tl)γ谱仪的原理及使用方法。 3. 学会测量分析γ能谱。 4. 学会测定γ谱仪的刻度曲线。 二、实验仪器 FH1901NaI(Tl)闪烁谱仪、SR-28 双踪示波器、137Cs放射源、60Co放射源 三、实验原理 1、γ射线与物质相互作用 γ射线与物质相互作用主要有光电效应、康普顿散射及电子对效应。 在光电效应中,原子吸收光子的全部能量,其中一部分消耗与光电子脱离原子束缚所需的能量,另一部分就作为光电子的能量,所以,释放出来的光电子能量就是入射光子的能量和该束缚电子所处的电子的壳层的结合能B γ之差,因此 E光电子=Eγ-Bi= Eγ 即光电子的动能近似等于γ射线的能量。值得注意的是,由于必须满足动量守恒定律,自耦电子不能吸收光子能量二成为光电子。光电效应的发生除入射光子和光电子之外,还需一个第三者参加,这个第三者就是发射光电子之后剩余下来的整个原子,它带走一些反冲能量,由于他的参加,动量和能量守恒才能满足。 康普顿散射是γ光子与原子外层电子相互作用的结果。这是γ光子与物质中“自由”电子(包括束缚甚弱的电子)非弹性散射的过程,根据散射过程中的动量守恒和能量守恒定律可求得散射电子(又称康普顿电子)的动能为: 式中m0c2为电子静止能量,?为γ光子的散射角,v为散射光子频率。 发生康普顿效应时,散射光子可以向各个方向散射。对于不同方向的散射光子,其对应的反冲电子的能量也不同。因而,即使入射γ光子的能量是单一的,反冲电子的能量的确实随散射角连续变化的。 电子对效应时γ光子从原子核旁经过时,在原子核的库仑力的作用下,γ光子转化为一个正电子和一个富电子的过程。根据能量守恒定律,只有当入射光子的能量hv大于m0c2,即大于1.02Mev时,才能发生电子对效应,与光电子效应相似,电子对效应除涉及入射光子和电子对意外,必须要有原子核参加。 2、能谱分析 γ射线与闪烁体发生光电效应时,γ射线产生的光电子动能为:

原子核物理实验方法试卷

原子核物理实验方法试题 一、填空题(每空2分,共20分) 1、带电粒子与物质的相互作用主要有:电离和激发,非弹性碰撞,弹性碰撞 2、电离室工作在饱和区。 3、丫射线同物质的相互作用主要有光电效应,康普顿效应,电子对效应。 4、光子到达光阴极的瞬间至阳极输出脉冲达到某一指定值之间的时间间隔称为渡越时间。 5、误差按其性质可以分为系统误差、随机误差、粗大误差三类。 二、名词解释(每题5分,共20分) 1. 轫致辐射 答:快速电子通过物质时,原子核电磁场使电子动量改变并发射出电磁辐射而损失能量,这种电磁辐射就是轫致辐射。 2. 辐射损伤效应 答:半导体探测器受强辐射照射一段时间以后性能会逐渐变坏,这种效应称为半导体探测器的辐射损伤效应,简称辐射损伤效应。 3. 坪曲线 答:在放射源确定的情况下,探测器输出脉冲计数率随所加工作电压的变化曲线上具有明显的计数坪区,这样的曲线称为坪曲线。 4. 探测器的优质因子 答:探测器的探测效率;的平方与本底计数率的比值,即;2/n b称为探测器的优质因子。 1. 圆柱形电子脉冲电离室的输出电荷主要是由电子所贡献,但在圆柱形正比计数器中输出电荷却主要是正离子的贡献,这是什么原因? 答:对于圆柱形电子脉冲电离室,其输出信号是由入射粒子产生的初始离子对的电子向中央正极漂移过程中,在极板上产生的感应电荷的贡献,由于为圆柱形的电场非均匀性,决定了其输出脉冲幅度基本与电离发生的位置不灵敏。 对于圆柱形正比计数器,雪崩过程仅发生在很小的区域r0内,在r0区域以外 的电子漂移对信号的贡献完全可以忽略。在r0区域内经数量上放大的电子在向丝极飘逸的贡献大约占10?15%主要是经放大后正离子在向阴极漂移所产生的感应电荷的贡献。 2. 试说明G-M管阳极上感应电荷的变化过程。 答: G-M管阳极上感应电荷的变化对有机管和卤素管略有不同,以有机管为例,可分为几个阶段: 1 ?在入射带电粒子径迹产生正负离子对的瞬间阳极呈电中性,电子很快 漂移向阳极过程中,阳极上的正感应电荷增加,但数量很小; 2 ?电子雪崩过程开始,直到正离子鞘形成的过程中,电子很快向阳极运 动,此时,阳极上正感应电荷增加,同时,此电荷流经负载电阻,快前沿的负脉 冲,约占总输出脉冲幅度的10%到达阳极的电子与阳极上的正感应电荷中和。 阳极上留下与正离子鞘等量的负感应电荷。 3?正离子鞘向阴极漂移,负感应电荷流向阴极,同时。在外回路形成输 出信号。 3. 试说明半导体探测器的工作原理。 答:原理:当带电粒子入射到半导体的灵敏体积内,产生电子一空穴对。电子一空穴对在外电场的作用下分别向两极漂移,于是在输出回路中形成信号。 四证明题(每题10分,共10分) 1?试证明光子只有在原子核或电子附近,即存在第三者的情况下才能发生电子 、简答题(每题6分,共18分) 1

MCNP程序在实验核物理中的应用

MCNP程序在实验核物理中的应用 2008年3月14日星期五 一、蒙特卡罗方法简述 1. 蒙特卡罗方法又称为随机抽样技巧或统计试验方法。半个多世纪以来,由于科学技术的发展和计算机的出现与发展,这种发展作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。蒙特卡罗方法是一种计算方法,但与一般数值计算方法有很大区别。它是以概率统计理论为基础的一种方法。由于蒙特卡罗方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,因而该方法的应用领域日趋广泛。 2.蒙特卡罗方法在实验核物理中的应用是该方法最重要的应用领域之一。由于受物理条件地限制,为了得到所求结果,必须借助于理论计算。蒙特卡罗方法具有逼真地描述真实的物理过程的特点,在一定意义上讲,它可以部分代替物理实验,因而成为解决实验核物理中实际问题的非常有效的工具。 3.蒙特卡罗方法所特有的优点,使得它的应用范围越来越大。它的主要应用范围包括:粒子输运问题、统计物理、典型数学问题、真空技术、激光技术以及医学、生物、探矿等方面。蒙特卡罗方法在粒子输运问题中的应用范围主要包括:实验核物理、反应堆物理、高能物理等方面。 二、蒙特卡罗方法应用软件简介 建立完善的通用蒙特卡罗程序可以避免大量的重复性工作,并且可以在程序的基础上,开展对于蒙特卡罗方法技巧的研究以及对于计算结果的改进和修正的研究,而这些研究成果反过来又可以进一步完善蒙特卡罗程序。 1.通用蒙特卡罗程序通常具有以下特点: 具有灵活的几何处理能力 参数通用化,使用方便 元素和介质材料数据齐全 能量范围广,功能强,输出量灵活全面 含有简单可靠又能普遍适用的抽样技巧 具有较强的绘图功能 2.常用的通用蒙特卡罗程序简介 MORSE程序 较早开发的通用蒙特卡罗程序,可以解决中子、光子、中子-光子的联合输运问题。采用组合几何结构,使用群截面数据,程序中包括了几种重要抽样技巧,如俄国轮盘赌和分裂技巧,指数变换技巧,统计估计技巧和能量偏移抽样等。程序提供用户程序,用户可根据需要编写源分布以及记录程序。一般中子能量可从10-6甚至10-9Mev到20Mev。光子能量可在Kev到Gev数量级范围。电子能量也可在Kev到Gev数量级范围。 是美国橡树岭国家实验室从60年代开始研制的大型、多功能、多群中子-光子偶合输运程序。其全名是:Multigroup Oak Ridge Stochastic Experiment Code. EGS程序 EGS是Electron-Gamma Shower 的缩写,它是一个用蒙特卡罗方法模拟在任意几何中,能量从几个KeV到几个TeV的电子-光子簇射过程的通用程序包。由美国Stanford Linear Accelerator Center提供。EGS于1979年第一次公开发表,提供使用。EGS4是1986年发表的EGS程序的最新版本。

近代物理实验习题答案

近代物理实验习题答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

《近代物理实验》练习题参考答案 一、 填空 1、核物理实验探测的主要对象是核衰变时所辐射的射线、射线和中子。因为 这些粒子的尺度非常小,用最先进的电子显微镜也不能观察到,只能根据射线与物质相互作用产生的各种效应实现探测。 2、探测器的能量分辨率是指探测器对于能量很接近的辐射粒子加以区分的能 力。用百分比表示的能量分辨率定义为: %峰位置的脉冲幅度宽度最大计数值一半处的全1000 V V ??=R 。能量分辨率值越小,分辨能力越强。 3、射线与物质相互作用时,其损失能量方式有两种,分别是电离和激发。其 中激发的方式有三种,它们是光电效应、康普顿效应和电子对效应。 4、对于不同的原子,原子核的质量 不同 而使得里德伯常量值发生变化。 5、汞的谱线的塞曼分裂是 反 常塞曼效应。 6、由于氢与氘的 能级 有相同的规律性,故氢和氘的巴耳末公式的形式相同。 7、在塞曼效应实验中,观察纵向效应时放置1/4波片的目的是 将圆偏振光变为线偏振光 。 8、射线探测器主要分“径迹型”和“信号型”两大类。径迹型探测器能给出粒 子运动的轨迹,如核乳胶、固体径迹探测器、威尔逊云室、气泡室、火花室等。这些探测器大多用于高能核物理实验。信号型探测器则当一个辐射粒子

到达时给出一个信号。根据工作原理的不同又可以分成气体探测器、闪烁探测器和半导体探测器三种,这是我们在低能核物理实验中最常用的探测器。 9、测定氢、氘谱线波长时,是把氢、氘光谱与铁光谱拍摄到同一光谱底片上,利用 线性插值法来进行测量。 10、在强磁场中,光谱的分裂是由于能级的分裂引起的。 11、原子光谱是线状光谱。 12、原子的不同能级的总角动量量子数J不同,分裂的子能级的数量也不同。 13、盖革-弥勒计数管按其所充猝灭气体的性质,可以分为①有机管和②卤素管两大类。坪特性是评价盖革-弥勒计数管的重要特性指标。包括起始电压、坪长、坪斜等。一只好的计数管,其坪长不能过短,对于③有机管,其坪长不能低于150伏,对于④卤素管,其坪长不能低于50伏。坪斜应在⑤每伏___以下。计数管工作时工作点应选在坪区的⑥左1/3-1/2__处。 14、由于光栅摄谱仪的色散接近线性,所以可以使用线性插值法测量光谱线波长。 15、必须把光源放在足够强磁场中,才能产生塞曼分裂。 二、简答题 1.如何区分盖革-弥勒计数管的正负极 答:盖革-弥勒计数管的结构通常有两个电极,其中和外部阴极筒相连的电极是阴极(负极),和中间阳极丝相连的是阳极(正极)。 2、在单道闪烁谱仪实验中,为什么要先粗测谱型

核物理实验讲义

实验名称: Si(Li) X射线谱仪 一、目的: 1.了解Si(Li)谱仪的工作原理和基本技能,初步掌握它的使用方法。 2.对谱仪进行能量刻度,计算谱仪的能量分辨率。 3.学会一种元素的分析方法—荧光分析法。 二、设备: 4.Si(Li)探测器 5.前放,主放,高压电源 6.238Pu激发源 7.Mn,Fe,Co,Cu,Zn等纯金属或氧化物片 8.待分析药品 三、步骤: 用238Pu作激发源 1.分别测(Fe,Co,Zn,Mn,Ni,Cu)特征谱,记下每种元素的Kα峰中心道的道数 和半宽度。要求峰中心道记数误差不大于4% 2.测待分析样品特征谱。记下Kα峰位的道址。 四、报告: 1. 由Mn,Fe,Co,Ni,Cu和Zn的k∞峰位道址与能量(由手册中查出)作能量刻度曲 线。 2. 计算各种元素的Kα峰的半宽度(以能量为单位)和能量分辨率,作出能量 E与能量分 辨率的曲线。 3. 根据待分析样品的Kα峰位和能量刻度曲线,确定该元素为何种元素。 实验名称: NaI(Tl) γ单晶闪烁谱仪 一、目的: 1. 了解NaI(Tl)γ单谱的基本结构和单能谱的形状。 2. 用一套标准源对谱仪进行能量刻度,验证分辨率和能量关系。 3. 用相对比较法测未知源的活度。 二、设备: 1.NIM插件箱供电装置。 2.FH~1034A高压,FH1001A线性放大器各一台。 3.FH1001A定标器一台。 4.FJ375 Na(Tl)γ探头一个 5.多道分析器一台 6.标准源一套,待测源一个。

三、步骤: 1选择好工作高压和放大器放大倍数,使137Cs的全能峰位于100道附近(多道分析器的道数选择为256道)。测137Cs的全谱,定时五分钟,并记录下来(参考数:工作高压:4*150伏,放大*4) 2 用137Cs,60Co源对谱仪进行能量刻度:分别记下它们的全能峰道道址和半宽度FWHM 所对应的道数。 3 测未知源的强度:测其能谱和它的一个全能峰的面积:选出与它相应的标准源,测出同 一全能峰的面积:去掉源测本底(注意:测量时要保持能量不变,测量时间,道宽,放大倍数一相同) 注:全能峰下总计数误差<1%。 四、报告: 1. 在半对数坐标纸上画出137Cs的能谱,求出FWHM和能量分辨率。 2. 用标准源做能量刻度曲线。并用最小二乘直线拟合,求出它的直线表达式,并求出 各峰的FWHM的能量值。 3. 鉴别未知源为何种源(说明原因),标出源活度(注意标准源的生产日期,活度,半衰 期)。 实验名称:金硅面垒α谱仪 一、目的: 1.对谱仪进行能量刻度;计算能量分辨率; 2.确定未知源的α能量; 3.测量239Pu的α能量: 二、设备: 1. FH—445A α探头架 2 .FH—42 3 电荷灵敏前置放大器,主放大器 3. S—30 多道分析器 4. 真空机械泵 5. 241Am和239Pu α源 三、步骤: 1.将241Am α源放入真空室内,抽真空。 2.连好线路,调整谱仪参数。确定探测器的工作电压参考数,前置放大*5主放 大100*0.6

原子核物理试题

期末考试试卷(B 卷) 课程名称: 原子核物理 学院: 核科学与技术学院 姓名: 校园卡号: (共150分,请选其中的100作答) 1. 我们知道原子核体积近似地与A 成正比,试说明其内在的物理原因。 2. 重核裂变后,生成的中等重的核常伴随着β衰变,为什么? 3. Bi 21183 衰变至Tl 20781,有两组α粒子,其能量分别为6621keV ,6274keV 。前 者相应是母核衰变至子核基态,后者为衰变至激发态。试求子核Tl 20781激发态的能量。 4. 对于Ca Sc s 42 2068.04221??→?, 查表得3.310),(=m E Z f ,并已知子核的能级特性为+O 。试判断母核的能级特性。 5. 质子轰击7Li 靶,当质子的能量为0.44, 1.06, 2.22 和3.0MeV 时,观测到共振。已知质子和7Li 的结合能为17.21MeV ,试求所形成的复合核能级的激发能。 6. 简述处于激发态的复合核的中子蒸发能谱,并推导之。 7. 什么是内转换电子,内转换电子与β跃迁电子的区别。 期末考试试卷(B 卷)答案 题 号 一 二 三 四 五 六 七 八 九 十 总 分 分 数 阅卷教师

1.解: 核力的作用要比库仑力强,而且主要是吸引力,这样才能克服库仑力形成原子核。核子之间的磁力也比核力小很多,万有引力更是微不足道。 核力是短程力,粗略的说,核力是短程力的强相互作用,而且起作用的主要是吸引力。 2.解: 重核的中质比大于1,甚至达到1.54.对于重核,核内的质子数增多,库仑力排斥增大了,要构成稳定的核就必须要还有更多的种子以消耗库仑排斥力作用。贝塔稳定线表示原子核有中子,质子对称相处的趋势,即中子数和质子数相当时原子核比较稳定。 3.解: 子核的激发能量: MeV E E A A E 7.353]62746621[207211)]()([410=-=--= αα 4.解: 4242 21 20 0.68 3.31/2log log(0.6810) 3.13 s Sc Ca f T β+ ???→?=?= 1/2 l o g f T ?判断跃迁种类几次规则知道该β + 衰变为容许跃迁 01,0;0,1 (1)1;1 i i i i I I I πππ?=-=±=?=?+=+=+故而,故而, 所以,母核42 21 Sc 的能级特性为:0+1+。 5.解: 复合核的激发能为: 代入数据得到: **12**3417.60,18.1319.15,19.84E M eV E M eV E M eV E M eV ==== 6.解: 再通过复合核的反应中,出射粒子的能量也具有麦克斯韦分布的特点,在适当的条件下叫分布也是各向同性的。因此,我们可以用液滴蒸发的图像来处理复合核的衰变,这就是中子蒸发能谱。 推导如下: 令剩余核的激发能 n E E E -=0*由于复合核的衰变至剩余核的激发能为n E E E +→**之间的概率与此间的能级成正比,同时与复合核的中子宽度)(n n E Γ成正比, 于是: n n n n n n dE E E E dE E n )()()(0-Γ∝ρ 又反应截面可以写为 ΓΓ=b CN ab ) (ασσ *A aA a A m E E B m m =++

核物理实验方法习题及答案yanxinzaofortran

第一章习题 1,简述核物理常用基本概念 1,元素(element ):元素,也叫化学元素,指具有相同核电荷数(质子数)的同一类原子的总称。 2,原子(atom ):构成化学元素的基本单元和化学变化中的最小微粒,即不能用化学变化再分的微粒。 3,原子核(atomic nucleus ):简称“核”,位于原子的核心部分,由质子和中子两种微粒构成。 4,核素(nuclide ):指具有一定数目质子和一定数目中子的一种原子。 5,核子(nucleon):质子、反质子、中子和反中子的总称,是组成原子核的粒子。 6,原子序数( atomic number ):是指元素在周期表中的序号,用Z 表示。 7,质量数(mass number ):是原子内质子和中子数之和,用A 表示。 8,中子数(neutron number ):特指原子核内的中子个数,用N 表示。 9,核素表示: N A Z X ,简写为 :X A 10,同重元素(isobar ):质量数相同而中子数和质子数不同的元素。 11,同位素(isotope ):原子序数相同而中子数不同的核素。 12,同中异位素(isotone ):中子数相同而质子数不同的核素。 13,同质异能素(isomer ):处于较长寿命的激发态的核素。 14,原子量(atomic weight ):某种原子的质量与碳-12原子质量的1/12的比值称为该原子的原子量,又称相对原子质量。 15,分子量(molecular weight ):组成分子的所有原子的原子量的总和。 16,同位素丰度(isotope abundance ):自然界中存在的某一元素的各种同位素占所有同位素的相对含量(以原子物质的量百分计)。 17,用丰度计算元素:原子量设元素的原子量为A ,各同位素 的原子量为,各元素的自然界丰度为,则有 18,阿伏伽德罗常数:12g 12C 所包含的C 原子个数,用Na 表示。

原子核物理实验方法

第一章放射性测量中的统计学 放射性事件与核事件,例如核衰变、带电粒子在介质中损耗能量 产生电子—离子对、 射线或中子与物质相互作用产生带电粒子等,在一定时间间隔内事件发生的数目和某一事件发生的时刻都是随机的,即具有统计涨落性。因此在实验测量中,一定时间内测到的核事件数目或某种核事件发生的时刻也总是随机的。了解放射性事件随机性方面的知识,一方面可以检验探测器的工作状态是否正常,分析测量值出现的不确定性是出于统计性原因还是仪器本身有其他误差因素,另一方面可对所测得的计数值进行一些合理校正,给定正确的误差范围,这对以后分析掌握辐射探测器的性能,安排实验测量是很有必要的,本章着重讨论在放射性测量中常遇到的一些统计涨落问题。 第一节核衰变数和计数的统计分布 在放射性测量中,即使所有实验条件都是稳定的,如源的放射性活度、源的位置、源与探测器间的距离、探测器的工作电压等都保持不变,在相同时间内对同一对象进行多次测量,每次测到的计数并不完全相同而是围绕某个平均值上下涨落,这种现象称为放射性计数的统计涨落。这种涨落不是由观测者的主观因素(如观测不准确)造成的,也不是由测量条件变化引起的,而是微观粒子运动过程中的一种规律性现象,是放射性原子核衰变的随机性引起的。在放射性核衰变 中, N个原子核在某个时间间隔内衰变的数目n是不确定的,这就引0 起了放射性测量中计数的涨落,它服从统计分布规律。另一方面,原子核衰变发出的粒子能否被探测器所接收并引起计数,也有统计涨落

问题,即探测效率的随机性问题。下面我们根据数理统计的理论分别讨论其规律性。 一、核衰变的统计分布 假定在0t =时刻有0N 个不稳定的原子核,在某一时间t 内将有一部分核发生衰变。先考虑一个原子核的情形。假如在某一短时间间隔 t ?内放射性原子核衰变的概率t P ?与此原子核过去的历史和现在的环 境无关,则t P ?正比于t ?,因此 t P t λ?=? 比例常数λ是该种放射性核素的特征值,因为衰变与不衰变是两种互相排斥的事件,两者概率之和为1,所以该原子核经过t ?未发生衰变的概率是 11t t q P t λ??=-=-? 若将时间t 分为许多很短的时间间隔t ?,则/t t i ?=,那末该原子核经过2t ?未发生衰变的概率为: 2(1)(1)(1)t t t λλλ-?-?=-? 经过t 时间后未发生衰变的概率为: (1)(1)i i t t i λλ-?=- 令i →∞,则0t ?→,我们有: lim[1()]i t i t e i λλ-→∞+-= 所以一个放射性原子核经过t 时间后未发生衰变的概率为t e λ-,那末对于0t =时刻的0N 个原子核,在经过t 时间后未发生衰变的原子核数目为:

近代物理实验习题答案

《近代物理实验》练习题参考答案 一、 填空 1、 核物理实验探测的主要对象是核衰变时所辐射的射线、射线和中子。因为这些粒子的尺度非常小,用最先进的电子显微镜也不能观察到,只能根据射线与物质相互作用产生的各种效应实现探测。 2、 探测器的能量分辨率是指探测器对于能量很接近的辐射粒子加以区分的能力。用百分比表示的能量分辨率定义为: %峰位置的脉冲幅度宽度最大计数值一半处的全1000 V V ??=R 。能量分辨率值越小,分辨能力越强。 3、 射线与物质相互作用时,其损失能量方式有两种,分别是电离和激发。其中激发的方式有三种,它们是光电效应、康普顿效应和电子对效应。 4、对于不同的原子,原子核的质量 不同 而使得里德伯常量值发生变化。 5、汞的谱线的塞曼分裂是 反 常塞曼效应。 6、由于氢与氘的 能级 有相同的规律性,故氢和氘的巴耳末公式的形式相同。 7、在塞曼效应实验中,观察纵向效应时放置1/4波片的目的是 将圆偏振光变为线偏振光 。 8、 射线探测器主要分“径迹型”和“信号型”两大类。径迹型探测器能给出粒子运动的轨迹,如核乳胶、固体径迹探测器、威尔逊云室、气泡室、

火花室等。这些探测器大多用于高能核物理实验。信号型探测器则当一个辐射粒子到达时给出一个信号。根据工作原理的不同又可以分成气体探测器、闪烁探测器和半导体探测器三种,这是我们在低能核物理实验中最常用的探测器。 9、测定氢、氘谱线波长时,是把氢、氘光谱与铁光谱拍摄到同一光谱底片上,利用 线性插值法来进行测量。 10、在强磁场中,光谱的分裂是由于能级的分裂引起的。 11、原子光谱是线状光谱。 12、原子的不同能级的总角动量量子数J不同,分裂的子能级的数量也不同。 13、盖革-弥勒计数管按其所充猝灭气体的性质,可以分为①有机管和②卤素管两大类。坪特性是评价盖革-弥勒计数管的重要特性指标。包括起始电压、坪长、坪斜等。一只好的计数管,其坪长不能过短,对于③有机管,其坪长不能低于150伏,对于④卤素管,其坪长不能低于50伏。坪斜应在⑤每伏___以下。计数管工作时工作点应选在坪区的⑥左1/3-1/2__处。 14、由于光栅摄谱仪的色散接近线性,所以可以使用线性插值法测量光谱线波长。 15、必须把光源放在足够强磁场中,才能产生塞曼分裂。 二、简答题 1.如何区分盖革-弥勒计数管的正负极

核物理实验分析考试试题

XX 大学 2013-2014 学年度第 1 学期课程考试试题 考试科目: 核物理实验数据处理 考试时间: 2013年12月 9日10时00分--12 时 00分 承担课程学院: XXXXXXX 考试方式: 开卷(九题选做六题) 1. 写一个ROOT 脚本,ex3_gaus.C, 调用随机数产生子产生高斯分布,区间(-6,6), 分30个bin ,画出直方图,比较不同的参数的分布。 提示1:参数组合为:(mean,sigma)=(0,1), (0,2), (1,1), (1,2),把这4个分布的直方图画在同一个图中进行比较。 提示2:hint :高斯分布用gRandom->Gaus(mean,sigma)产生。 提示3:使用Draw()函数的"same"参数可以在一个画板上画多个图。 2. 写一个ROOT 脚本,ex3_pdf.C ,作4个直方图,分别产生10000事例的Gauss,Poisson,Binomial,Landau 分布。创建画布,分成2*2块,将4个直方图画在画布的1-4部分。注意不同分布的参数选择合理性,比如Binomial(ntot,p), ntot>0, 0Rndm()产生均匀分布。 3. 将2题中ROOT 脚本ex3_pdf.C 中产生的直方图储存到mypdf.root 文件中。 提示1:将所画直方图的x/y 轴添加上名称,不同分布用不同颜色。 提示2:将画布存成eps 文件和gif 文件。

核物理专业培养方案

核物理专业培养方案 一、培养目标 本专业培养适应我国核科学建设实际需要,具有系统的、较好的物理学、核物理学基础理论知识和熟练的实验技能,受到良好的科学思维和科学实验的基本训练,对核技术的应用有较全面的了解,适应性强,协作精神好,勇于创新的原子核物理学专门人才。学生毕业后可以继续攻读粒子物理与原子核物理学科、物理学其它学科以及相关应用科学学科的研究生学位;也可以在核物理学及其相关的高技术领域,从事科学研究、技术开发、教学和相关管理工作。 二、业务培养要求 1. 具有较强的获取知识、更新知识和应用知识的能力,良好的表达能力、社交能力和计算机及信息技术应用能力。 2. 在核工程与核技术的科研开发领域,能够综合应用所学理论知识,分析解决实际问题,进行综合实验和工程实践。 3. 比较系统地掌握一门外语,掌握计算机及信息技术应用知识,能够进行中外文文献检索,了解本专业科研方法和发展趋势,掌握科技写作知识。同时能够分析归纳,整理总结,撰写论文,具有通过创造性思维进行创新实验和科技研究开发的能力。 4. 掌握核物理专业的基本科学知识和体系。掌握原子核物理学、核电子学、辐射探测方法、辐射防护、核技术应用等专业基础知识。同时根据专业方向的不同,加强部分专业知识的学习,了解本专业方向的理论前沿、研究动态、应用前景以及相关技术、产业的发展状况。 三、主干学科及主要课程 主干学科:物理学 主要课程:物理学一级学科主干课程:力学、热学、电磁学、光学、原子物理、普通物理实验Ⅰ-Ⅲ、电子线路、电子线路实验、近代物理实验Ⅰ-Ⅱ、理论力学、热力学与统计物理、电动力学、量子力学Ⅰ、固体物理Ⅰ、高等数学、线性代数、概率统计、应用软件基础、数学物理方法、集成电路应用、传感器原理与应用(含实验)、计算机基础与应用(含实验)、电磁测量技术实验、现代电力电子技术基础、综合信息技术实验、嵌入式系统软件与单片机C语言开发、FPGA和CPLD的HDL设计等。核物理专业主干课程:原子核物理学,核物理实验及实验方法,核电子学,辐射剂量与防护,核技术基础等。 四、专业特色 物理基础宽厚扎实、实验实践技能优秀,在传统核物理专业教学基础上,在核结构、核技术应用以及核医学几个方面展开培养工作,培养出适应性更强、技术更全面、理工兼备的高素质核物理专门化人才。 五、修业年限 一般为4年。 六、学位授予 理学学士。 七、毕业合格标准 1.具有良好的思想道德和身体素质,符合学校规定的德育和体育标准。 2.通过培养方案规定的全部教学环节,达到本专业各环节要求的总学分185学分。其中:理论教学149学分;实践教学环节36学分。

核物理

高三物理第一轮总复习阶梯训练(二十四)——核物理 重要结论: 1.磁场中的衰变:外切圆是α衰变,内切圆是β衰变,半径与电量成反比。 2.a c b d X Y → 经过几次α、β衰变?先用质量数求α衰变次数,再由电荷数求β衰变次数。 3.平衡核方程:质量数和电荷数守恒。 4.1u=931.5MeV 。 5.经核反应总质量增大时吸能,总质量减少时放能。 衰变、裂变、聚变都是放能的核反应;仅在人工转变中有一些是吸能的核反应。 6.氢原子任一能级上:E=E P +E K ,E=-E K ,E P =-2E K , 量子数n ↑ →E ↑→E P ↑→E K ↓→V ↓→T ↑ 7.半衰期的大小由放射性元素的原子核内部本身的因素决定,跟物体所处的物理状态或化学状态无关。 8.使原子发生能级跃迁时,入射的若是光子,光子的能量必须等于两个定态的能级差或超过电离能;入射的若是电子,电子的能量必须大于或等于两个定态的能级差。 9.原子在某一定态下的能量值为2 1 n E E n = ,该能量包括电子绕核运动的动能和电子与原子核组成的系统的电势能。 综合练习: 1.关于天然放射现象,下列说法正确的是 A.α射线是由氦原子核衰变产生的 B.β射线是由原子核外电子电离产生的 C.γ射线是由原子核外的内层电子跃迁产生的 D.通过化学反应不能改变物质的放射性 2.太阳光中包含的某种紫外线的频率为v 1,VCD 影碟机中读取光盘数字信号的红色激光的频率为v 2,人体透视使用的X 光的频率为v 3,则下列结论正确的是: A .这三种频率的大小关系是v 1v 0)的光照射在阴极上,下列说法正确的有: A .照射光强度越大,单位时间内产生的光电子数目就越多 B .阴极材料的逸出功等于hv C .当在A 、K 之间加一数值为U 的反向电压时,光电流恰好为零,则光电子的最大初动能为eU D .当入射光频率增大为原来的2倍时,光电子的最大初动能也增大为2倍 5.关于天然放射现象,下列说法正确的是: A .放射性元素的原子核内的核子有半数发生变化所需的时间就是半衰期 B .放射性物质放出的射线中,α粒子动能很大,因此贯穿物质的本领很强 C .当放射性元素的原子的核外电子具有较高能量时,将发生β衰变 D .放射性的原子核发生衰变后产生的新核从高能级向低能级跃迁时,辐射出γ射线 6.放射性元素的原子核 Rn 222 86 原来静止在垂直于纸面向里的匀强磁场中的 A 点处。后来由于发生了某种衰变,放出的射线粒子和 新生成的原子核形成了如图所示的两个圆形径迹1、2。下列说法中正确的是: A .该衰变可能是α衰变也可能是β衰变 B .新生成的原子核的径迹可能是1,也可能是2 C .射线粒子和新生成的原子核都是沿逆时针方向旋转的 D .射线粒子和新生成的原子核在磁场中做圆周运动的周期相同 7.一个质子和一个中子聚变结合成一个氘核,同时辐射一个γ光子。已知质子、中子、氘核的质量分别为m 1、m 2、m 3,普朗克常量 为h ,真空中的光速为c 。下列说法正确的是:

1.2 核物理实验2

实验1.2 & 1.3 核物理实验2 Part 1 放射性半衰期测量 一、引言 半衰期是放射性核素的重要特性之一,每种放射性核素都有着它特有的半衰期,且与包含该核素的物质所处的物理、化学状态无关,因而测定半衰期就成了鉴别放射性核素的一种方法,在核物理研究和核技术应用中具有十分重要的意义。 不同核素半衰期的差别很大,最长可达1014年,最短仅为10-14秒。因而测量方法也不同。半衰期为毫秒以下的核素,可以用延迟符合等方法来测量,半衰期为10年以上的长寿命核素可以用比放射性法测量。本实验中样品铟的半衰期为54.1分,可以用测量衰变曲线的方法来测定。 二、实验目的 1. 了解中子活化的基本知识; 2. 了解放射性衰变的基本规律; 3. 掌握用衰变曲线法测量核素的放射性半衰期的基本原理和方法。 三、实验原理 1. 放射性衰变基本规律 一个原子核自发地发射出射线而转变成另一种核或状态的过程称为核的放射性衰变。就一个放射性原子来说,它何时衰变,完全是随机事件,而对大量原子核的衰变,其过程却存在一些基本规律。 设在时刻t ,存在N (t )个放射性原子核,经过d t 时间,衰变掉d N 个原子核,则有: t e N N t N N λλ-?=?=-0d d 式中N 0为t =0时的放射性原子核个数,λ称为衰变常数,它表示每个原子核在单位时间内衰变的几率。单位时间内衰变的原子核个数称为放射性的活度,用A 表示,单位为贝可(Bq ):

t t e A A e N N t N A λλλλ--?=??==- =00d d 式中A 0=λN 0。即为t =0时的活度。上式就是放射性衰变的基本规律。 λ由原子核的性质决定,与核外电子的状态无明显的关系,所以原子核所处物质的物理化学状态决定,并不会引起λ值的变化。 定义放射性活度降低到原来值的一半所需时间为半衰期,用2 1T 表示。由上式可得: λ 2 ln 2 1= T 放射源在单位时间内发射的射线粒子数称作发射强度。由于每次衰变发射的射线数目是不变的,所以放射源的辐射强度I 也服从指数衰减的规律,即: ()()t e n t n λ-=0 式中n (t )为t 时刻发射强度,n (0)为t =0时刻发射强度。测得发射强度n (t )随时间变化的关系,就可求得λ。再由前式,求得半衰期2 1T 。 实验上无法测得某一时刻的发射强度n (t ),而只能测得从t 1到t 2这段时间内的计数N ,从而可以求得平均计数率: t N t t N n ?=-= 12 可以证明,只要时间间隔Δt 满足下式: t T t t ≤??? ? ? ??????210289.0 就可以用n 来表示时刻2 2 1t t t += 的计数率,并满足下式: ()()t e n t n λ-?=0 式中n (0)为t =0时的计数率,则只需在相同的测量条件下,选择合适的测量时间Δt ,测得n 随时间的变化关系,就可根据上式求得λ值。 2. 中子活化原理

相关文档
最新文档