三相不平衡的原因、危害以及解决措施!

三相不平衡的原因、危害以及解决措施!
三相不平衡的原因、危害以及解决措施!

三相不平衡是电能质量的一个重要指标,虽然影响电力系统的因素有很多,但正常性不平衡的情况大多是因为三相元件、线路参数或负荷不对称。由于三相负荷的因素是不一定的,所以供电点的三相电压和电流极易出现不平衡的现象,损耗线路。不仅如此,其对供电点上的电动机也会造成不利的影响,危害电动机的正常运行。

配电网三相不平衡的原因

1、三相负荷的不合理分配。

很多的装表接电的工作人员并没有专业的对于三相负荷平衡的知识概念,因此在接电的时候并没有注意到要控制三相负荷平衡,只是盲目和随意的进行电路的接电荷装表,这在很大程度上造成了三相负荷的不平衡。

其次,我国的大多数电路都是动力和照明混为一体的,所以在使用单相的用电设备时,用电的效率就会降低,这样的差异进一步加剧了配电变压器三相负荷的不平衡状况。

2、用电负荷的不断变化。

造成用电负荷不稳定的原因包括了地II经常出现的拆迁,移表或者用电用户的增加;

临时用电和季节性用电的不稳定性。这样在总量上和时间上的不确定和不集中性使得用电的负荷也不得不跟随实际情况而变化。

3、对于配变负荷的监视力度的削弱。

在配电网的管理上,经常会忽略三相负荷分配中的管理问题。在配电网的检测上,对配电变压器的三相负荷也没有进行定期的检测和调整。

除此之外,还有很多因素造成了三相不平衡的现象,例如线路的影响以及三相负荷矩的不相等等。

三相不平衡的危害

1、增加线路的电能损耗

在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。

当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。

当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。

2、增加配电变压器的电能损耗

配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。因为配变的功率损耗是随负载的不平衡度而变化的。

3、配变出力减少

配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本一致,各相额定容量相等。配变的最大允许出力要受到每相额定容量的限制。

假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少。其出力减少程度与三相负载的不平衡度有关。

三相负载不平衡越大,配变出力减少越多。

为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。假如配变在过载工况下运行,即极易引发配变发热,严重时甚至会造成配变烧损。

4、配变产生零序电流

配变在三相负载不平衡工况下运行,将产生零序电流,该电流将随三相负载不平衡的程度而变化,不平衡度越大,则零序电流也越大。运行中的配变若存在零序电流,则其铁芯中将产生零序磁通。

(高压侧没有零序电流)这迫使零序磁通只能以油箱壁及钢构件作为通道通过,而钢构件的导磁率较低,零序电流通过钢构件时,即要产生磁滞和涡流损耗,从而使配变的钢构件局部温度升高发热。

配变的绕组绝缘因过热而加快老化,导致设备寿命降低。同时,零序电流的存也会增加配变的损耗。

5、影响用电设备的安全运行

配变是根据三相负载平衡运行工况设计的,其每相绕组的电阻、漏抗和激磁阻抗基本一致。当配变在三相负载平衡时运行,其三相电流基本相等,配变内部每相压降也基本相同,则配变输出的三相电压也是平衡的。

假如配变在三相负载不平衡时运行,其各相输出电流就不相等,其配变内部三相压降就不相等,这必将导致配变输出电压三相不平衡。

同时,配变在三相负载不平衡时运行,三相输出电流不一样,而中性线就会有电流通过。

因而使中性线产生阻抗压降,从而导致中性点漂移,致使各相相电压发生变化。

负载重的一相电压降低,而负载轻的一相电压升高。

在电压不平衡状况下供电,即容易造成电压高的一相接带的用户用电设备烧坏,而电压低的一相接带的用户用电设备则可能无法使用。所以三相负载不平衡运行时,将严重危及用电设备的安全运行。

6、电动机效率降低

配变在三相负载不平衡工况下运行,将引起输出电压三相不平衡。由于不平衡电压存在着正序、负序、零序三个电压分量,当这种不平衡的电压输入电动机后,负序电压产生旋转磁场与正序电压产生的旋转磁场相反,起到制动作用。但由于正序磁场比负序磁场要强得多,电动机仍按正序磁场方向转动。

而由于负序磁场的制动作用,必将引起电动机输出功率减少,从而导致电动机效率降低。同时,电动机的温升和无功损耗,也将随三相电压的不平衡度而增大。所以电动机在三相电压不平衡状况下运行,是非常不经济和不安全的。

改进配电网三相不平衡的技术

1、注重对三相负荷的合理分配

在对三相负荷的分配问题上,电力工作人员应当在实际的工作中将相关的数据进行认真的采集和记录,达到能够在一定程度上预测用电负荷的状态。

其次,可以通过装设平衡装置的方式来达到更好三相平衡的分配问题。

2、对三相负荷中不平衡电流的治理方法

根据不平衡电流电纳的补偿原理,在任何一个可以确定的时刻,主要出现了三相不接地的不平衡负载,那么他们中的每一个相负载都可以同一个电阻和电容形成并联的形式。

因此,在不平衡电流治理电纳补偿理论的指导下,可以将不同性质符合的等效进行分析,确定相间和相对地的无功补偿量。

当配电变压器要进行不平衡电流的补偿时,应该满足一下的几点原则。

一是需要注意到电流的治理应当有两个内容,一个是补偿功率因数,一个是调节三相电流不平衡,这两者共同确定了补偿所需要的无功功率。

第二点,在实际的工程施工时,应当采用全容性的治理方式,与电感补偿相区分,避免出现严重过补偿的情况。

第三点是需要考虑到负荷是会随着时间的变化而变化的,基于这种特性,补偿量也应该根据负荷的变化进行适当的调整。

第四点表现在装置开关和补偿设备的投切次数的限制,要在设计时将全天的优化方案进行策略的管理。

总之,在进行比例调节系数额设置时,需要同时考虑功率因数的限制条件以及过补偿限制的条件。

3、增设对三相负荷的检测调整

定期开设对三相负荷的检测工作也是非常必要的。在对三相符合的合理分配以及控制后,相关部门应当开设检测工作。

电力的平衡不能是绝对的,只能是尽力做到相对的平衡,在实际的检测工作中,各部门应当以国家和相关部门制定的平衡度的衡量指标作为一个标准,将检测的结果进行专业的记录和分析,对各相的负荷电流进行定期的检测,以便于及时发现一些三相的不平衡状况。

当在检测过程中发现有安全隐患的部位,要及时的进行调整和修改。对于检测过程中未发现问题的部位,也应当提高瞽惕。在检测结束以后,不仅需要进行数据的整理和分析,还要进行及时的反馈。

这里的反馈主要是指根据检测结果推断出的三相需要进行的调整,以及对于新技术在三相中运用的可能性预测。通过合理的检测和对检测结果的深入分析,我们可以在最大程度上避免不平衡现象的出现,降低用电事故的出现。

由不对称负荷引起的电网三相电压不平衡可以采取的解决办法

1、将不对称负荷分散接在不同的供电点,以减少集中连接造成不平衡度严重超标的问题。

2、使用交叉换相等办法使不对称负荷合理分配到各相,尽量使其平衡化。

3、加大负荷接入点的短路容量,如改变网络或提高供电电压级别提高系统承受不平衡负荷的能力。

4、装设平衡装置。

简要列出以上几种解决三相电压或电流不平衡对电网及电能质量危害的技术措施。具体应该采取哪一种措施更为合理有效,还要根据实际情况,经过技术和经济比较后确定实施。

在低压三相四线制的城市居民和农网供电系统中

由于用电户多为单相负荷或单相和三相负荷混用,并且负荷大小不同和用电时间的不同。所以,电网中三相间的不平衡电流是客观存在的,并且这种用电不平衡状况无规律性,也无法事先预知。导致了低压供电系统三相负载的长期性不平衡。对于三相不平衡电流,电力部门除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。

三相不平衡的原因、危害以及解决措施!

三相不平衡就是电能质量得一个重要指标,虽然影响电力系统得因素有很多,但正常性不平衡得情况大多就是因为三相元件、线路参数或负荷不对称。由于三相负荷得因素就是不一定得,所以供电点得三相电压与电流极易出现不平衡得现象,损耗线路。不仅如此,其对供电点上得电动机也会造成不利得影响,危害电动机得正常运行。 配电网三相不平衡得原因 1、三相负荷得不合理分配。 很多得装表接电得工作人员并没有专业得对于三相负荷平衡得知识概念,因此在接电得时候并没有注意到要控制三相负荷平衡,只就是盲目与随意得进行电路得接电荷装表,这在很大程度上造成了三相负荷得不平衡。 其次,我国得大多数电路都就是动力与照明混为一体得,所以在使用单相得用电设备时,用电得效率就会降低,这样得差异进一步加剧了配电变压器三相负荷得不平衡状况。 2、用电负荷得不断变化。 造成用电负荷不稳定得原因包括了地II经常出现得拆迁,移表或者用电用户得增加; 临时用电与季节性用电得不稳定性。这样在总量上与时间上得不确定与不集中性使得用电得负荷也不得不跟随实际情况而变化。 3、对于配变负荷得监视力度得削弱。 在配电网得管理上,经常会忽略三相负荷分配中得管理问题。在配电网得检测上,对配电变压器得三相负荷也没有进行定期得检测与调整。 除此之外,还有很多因素造成了三相不平衡得现象,例如线路得影响以及三相负荷矩得不相等等。 三相不平衡得危害 1、增加线路得电能损耗 在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流得平方成正比。 当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。 当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路得损耗。 2、增加配电变压器得电能损耗 配电变压器就是低压电网得供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗得增加。因为配变得功率损耗就是随负载得不平衡度而变化得。 3、配变出力减少 配变设计时,其绕组结构就是按负载平衡运行工况设计得,其绕组性能基本一致,各相额定容量相等。配变得最大允许出力要受到每相额定容量得限制。 假如当配变处于三相负载不平衡工况下运行,负载轻得一相就有富余容量,从而使配变得出力减少。其出力减少程度与三相负载得不平衡度有关。

三相不平衡调节装置技术方案汇总

三相不平衡调节装置方案 1 产品研发背景 目前,在国家电网公司中、低压配电网系统中,存在着大量的单相、不对称、非线性、冲击性负荷,三相负荷系统是随机变化的,这些负荷会使配电系统产生三相不平衡,三相负荷不平衡会导致供电系统三相电压、电流的不平衡,引起电网负序电压和负序电流,影响供电质量,进而增加线路损耗,降低供电可靠性。 三相不平衡治理装置是专门针对上述问题而研发的一款产品,不同于传统的治理装置,它融合了半导体器件与接触器开关的优点,能够避免接触器开关在负荷投切瞬间产生的较大涌流和开通、关断时间间隔长的问题,使负载用户在负载换相投切过程中可正常供电;也能避免半导体器件长期运行带来的发热问题。配网三相不平衡治理装置的应用,将大幅提高配网运行稳定性和智能化,可对国网公司提出的建设坚强智能电网的要求起到很好的支撑作用。 2 产品技术参数

3 技术方案 3.1总体方案 三相不平衡调节装置主要由主控制器与换相开关组成。主控制器是整个装置的控制核心,换相开关是装置的执行机构,它们之间通过GPRS无线通讯进行信息交互,相互配合完成对配网三相不平衡问题的治理。装置系统示意图如下所示。 主控制器是整个装置的控制终端,每套装置只有一个主控制器。它负责采集整个装置的各种状态信息和数据,通过逻辑运算发出各种指令完成整个装置的操控。它检测配网总线的电压信号;接收换相开关上传的负载电流数据,计算负载平衡度及分布情况,通过分析计算给各个换相开关发出换相命令;接收换相开关上传的运行状态和故障信息,然后做出相应的控制操作。 换相开关是装置的分支和执行机构,根据配变的容量与负载的分布情况不同可灵活选择换相开关的容量和数量。它负责采集负载电流数据,与自身的状态信息一起通过GPRS无线通讯上传给主控制器;接收主控制器的换相命令进行换相操作;接收主控制器的故障保护命令进行相应的操作;显示自身的运行状态信息。

不平衡电流的危害

不平衡电流的危害 电网中三相间的不平衡电流是普遍存在的,在城市民用电网及农用电网中由于大量单相负荷的存在,三相间的电流不平衡现象尤为严重。对于三相不平衡电流,除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。正因为找不到解决问题的有效办法,因此反而不被人们所重视,也很少有人进行研究。 电网中的不平衡电流会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成三相电压不平衡因而降低供电质量,甚至会影响电能表的精度而造成计量损失。 理论研究证明:在输出同样功率的情况下,三相电流平衡时变压器及线路的铜损最小,也就是说:三相不平衡现象增加了变压器及线路的铜损。 不平衡电流对系统铜损的影响 设某系统的三相线路及变压器绕组的总电阻为R。如果三相电流平衡,IA=100A,IB=100A,IC=100A,则总铜损=1002R+1002R+1002R=30000R。 如果三相电流不平衡,IA=50A,IB=100A,IC=150A,则总铜损=502R+1002R+1502R=35000R,比平衡状态的铜损增加了17%。 在更为严重的状态下,如果IA=0A,IB=150A,IC=150A,则总铜损=1502R+1502R=45000R,比平衡状态的铜损增加了50%。 在最严重的状态下,如果IA=0A,IB=0A,IC=300A,则总铜损=3002R=90000R,比平衡状态的铜损增加了3倍。 不平衡电流对变压器的影响 现有的10/0.4KV的低压配电变压器多为Yyn0接法三相三柱铁心的变压器。这种类型的变压器,当二次侧负荷不平衡且有零线电流时,零线电流即为零序电流,而在一次侧由于无中点引出线因此零序电流无法流通,故零序电流不能安匝平衡,对铁心而言,有一个激磁零序电流,它受零序激磁阻抗控制,根据磁路的设计,这一零序激磁阻抗较大,零序电流使相电压的对称受到影响,中性点会偏移。由计算得知,当零线电流为额定电流的25%时,中性点移位约为额定电压的7%。国家标准GB50052-95第6.08条规定: “当选用Yyn0结线组别的三相变压器,其由单相不平衡负荷引起的电流不得超过低压绕组额定电流的25%,且其中一相的电流在满载时不得超过额定电流值。”由于上述规定,限制了Yyn0结线配电变压器接用单相负荷的容量,也影响了变压器设备能力的充分利用。 并且,对三相三柱的磁路而言,零序磁通不能在磁路内成回路,必须在油箱壁及紧固件内形成回路,而油箱壁及紧固件内的磁通会产生较大的涡流损耗,因而使变压器的铁损增加。当零序电流过大导致零序磁通过大时,由于中性点漂移过大会引起某些相电压过高而导致铁心磁饱和,使铁损急剧增加,加上紧固件过热等因素,可能会发生任何一相电流均未过载而变压器却因局部过热而损坏的事故。 由于Yyn0结线组的配电变压器与的零序激磁阻抗较大,因此零线电流会造成较大的电压变化,形成比较严重的三相电压不平衡现象,不但影响单相用户,对三相用户的影响更大。

三相不平衡的定义、危害及解决方法

三相不平衡 定义:是指在电力系统中三相电流(或电压)幅值不一致,且幅值差超过规定范围。由于各相电源所加的负荷不均衡所致,属于基波负荷配置问题。发生三相不平衡即与用户负荷特性有关,同时与电力系统的规划、负荷分配也有关。《电能质量三相电压允许不平衡度》(GB/T15543-1995)适用于交流额定频率为50 赫兹。在电力系统正常运行方式下,由于负序分量而引起的PCC 点连接点的电压不平衡。该标准规定:电力系统公共连接点正常运行方式下不平衡度允许值为2%,短时间不得超过4%。电流不平衡不超过10%。 实践证明,一般情况下三相负荷不平衡可引起线损率升高2%-10%,三相负荷不平衡度若超过10%,则线损显著增加。有关规程规定:配电变压器出口处的负荷电流不平衡度应小于10%,中性线电流不应超过低压侧额定电流的25%,低压主干线及主要分支线的首端电流不平衡度应小于20%。 危害: 1.增加线路的电能损耗。在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。 三相四线制结线方式,当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小;当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。当三相负荷不平衡时,无论何种负荷分配情况,电流不平衡度越大,线损增量也越大。 2.增加配电变压器的电能损耗。配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。因为配变的功率损耗是随负载的不平衡度而变化的。 在生产、生活用电中,三相负载不平衡时,使变压器处于不对称运行状态。造成变压器的损耗增大(包括空载损耗和负载损耗)。根据变压器运行规程规定,在运行中的变压器中性线电流不得超过变压器低压侧额定电流的25%。此外,三相负载不平衡运行会造成变压器零序电流过大,局部金属件升温增高,甚至会导致变压器烧毁。

三相电流不平衡

近年来,由于城农网改造及加强供用电管理,使供电企业的经济和社会效益有了明显提高。但一些单位在加强管理、降损节能的同时,只看到了许多表面化现象,而对有关技术改进方面缺少足够的重视。 低压电网的三相平衡一直就是困扰供电单位的主要问题之一,低压电网大多是经10/0.4KV变压器降压后,以三相四线制向用户供电,是三相生产用电与单相负载混合用电的供电网络。在装接单相用户时,供电部门应该将单相负载均衡地分接在A、B、C三相上。但在实际工作及运行中,线路的标志、接电人员的疏忽再加上由于单相用户的不可控增容、大功率单相负载的接入以及单相负载用电的不同时性等,都造成了三相负载的不平衡。低压电网若在三相负荷不平衡度较大情况下运行,将会给低压电网与电气设备造成不良影响。 一、低压电网三相平衡的重要性 1.三相负荷平衡是安全供电的基础。三相负荷不平衡,轻则降低线路和配电变压器的供电效率,重则会因重负荷相超载过多,可能造成某相导线烧断、开关烧坏甚至配电变压器单相烧毁等严重后果。 2.三相负荷平衡才能保证用户的电能质量。三相负荷严重不对称,中性点电位就会发生偏移,线路压降和功率损失就会大大增加。接在重负荷相的单相用户易出现电压偏低,电灯不亮、电器效能降低、小水泵易烧毁等问题。而接在轻负荷相的单相用户易出现电压偏高,可能造成电器绝缘击穿、缩短电器使用寿命或损坏电器。对动力用户来说,三相电压不平衡,会引起电机过热现象。 3.三相负荷保持平衡是节约能耗、降损降价的基础。三相负荷不平衡将产生不平衡电压,加大电压偏移,增大中性线电流,从而增大线路损耗。实践证明,一般情况下三相负荷不平衡可引起线损率升高2%-10%,三相负荷不平衡度若超过10%,则线损显著增加。 有关规程规定:配电变压器出口处的负荷电流不平衡度应小于10%,中性线电流不应超过低压侧额定电流的25%,低压主干线及主要分支线的首端电流不平衡度应小于20%。通过电网技术改造,要真正使低压电网线损达到12%以下,上述指标只能紧缩,不能放大。 4.只有三相阻抗平衡,才能保证低压漏电总保护良好运行,防止人身触电伤亡事故。 二、三相负载不平衡的影响 1.增加线路的电能损耗。在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。 当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。 2.增加配电变压器的电能损耗。配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。因为配变的功率损耗是随负载的不平衡度而变化的。 3.配变出力减少。配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本一致,各相额定容量相等。配变的最大允许出力要受到每相额定容量的限制。假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少。其出力减少程度与三相负载的不平衡度有关。三相负载不平衡越大,配变出力减少越多。为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。假如配变在过载工况下运行,即极易引发配变发热,严重时甚至会造成配变烧损。 4.配变产生零序电流。配变在三相负载不平衡工况下运行,将产生零序电流,该电流将随三相负载不平衡的程度而变化,不平衡度越大,则零序电流也越大。运行中的配变若存在零序电流,则其铁芯中将产生零序磁通。(高压侧没有零序电流)这迫使零序磁通只能以油

三相不平衡危害

不平衡电流的危害 时间:2013-01-28 11:27来源:未知作者:admin 点击: 231 次 . 电网中三相间的不平衡电流是普遍存在的,在城市民用电网及农用电网中由于大量单相负荷的存在,三相间的电流不平衡现象尤为严重。对于三相不平衡电流,除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。正因为找不到解决问题的有效办法,因此反而不被人们所重视,也很少有人进行研究。 电网中的不平衡电流会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成三相电压不平衡因而降低供电质量,甚至会影响电能表的精度而造成计量损失。 理论研究证明:在输出同样功率的情况下,三相电流平衡时变压器及线路的铜损最小,也就是说:三相不平衡现象增加了变压器及线路的铜损。 不平衡电流对系统铜损的影响: 设某系统的三相线路及变压器绕组的总电阻为R。如果三相电流平衡, IA=100A,IB=100A,IC=100A,则总铜损=100*100R+100*100R+100*100R=30000R。 如果三相电流不平衡,IA=50A,IB=100A,IC=150A,则总铜损 =50*50R+100*100R+150*150R=35000R,比平衡状态的铜损增加了17%。 在更为严重的状态下,如果IA=0A,IB=150A,IC=150A,则总铜损 =150*150R+150*150R=45000R,比平衡状态的铜损增加了50%。 在最严重的状态下,如果IA=0A,IB=0A,IC=300A,则总铜损=300*300R=90000R,比平衡状态的铜损增加了3倍。 不平衡电流对变压器的影响: 现有的10/0.4KV的低压配电变压器多为Yyn0接法三相三柱铁心的变压器。这种类型的变压器,当二次侧负荷不平衡且有零线电流时,零线电流即为零序电流,而在一次侧由于无中点引出线因此零序电流无法流通,故零序电流不能安匝平衡,对铁心而言,有一个激磁零序电流,它受零序激磁阻抗控制,根据磁路的设计,这一零序激磁阻抗较大,零序电流使相电压的对称受到影响,中性点会偏移。 由计算得知,当零线电流为额定电流的25%时,中性点移位约为额定电压的7%。国家标准GB50052-95第6.08条规定: “当选用Yyn0结线组别的三相变压器,其由单相不平衡负荷引起的电流不得超过低压绕组额定电流的25%,且其中一相的电流在满载时不得超过额定电流值。”由于上述规定,限制了Yyn0结线配电变压器接用单相负荷的容量,也影响了变压器设备能力的充分利用。 并且,对三相三柱的磁路而言,零序磁通不能在磁路内成回路,必须在油箱壁及紧固件内形成回路,而油箱壁及紧固件内的磁通会产生较大的涡流损耗,因而使变压器的铁损增加。当零序电流过大导致零序磁通过大时,由于中性点漂移过大会引起某些相电压过高而导致铁心磁饱和,使铁损急剧增加,加上紧固件过热等因素,可能会发生任何一相电流均未过载而变压器却因局部过热而损坏的事

浅谈三相负荷不平衡的原因及危害(新版)

浅谈三相负荷不平衡的原因及 危害(新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0423

浅谈三相负荷不平衡的原因及危害(新版) [摘要]低压电网三相负荷可能因多种原因,导致不平衡,甚至不平衡度非常严重。三相负荷不平衡对低压电网、配电变压器、6~10kV高压线路均造成危害,对供电企业安全供电降低线损、用户安全用电影响较大。 [关键词]低压电网、三相负荷不平衡、安全供电、降低线损 1引言 农网改造中采取了诸如配电变压器放置在负荷中心,增添配电变压器数量,缩短供电半径,加大导线直径,增加低压线路,用电户电能表集中安装等措施,极大地改变了农村低压电网状况,给我们建造了一个好的电网“硬件”。但若“软件”配套不好,尤其是三相负荷不平衡,则不能挖掘出这个好“硬件”的内部潜力,致使低压电网的可靠性和稳定性差,线损率较高。

2三相负荷不平衡的原因 低压电网三相负荷失衡有以下数种原因: (1)低压电网三相负荷不平衡要增加损耗,虽然是是早已被提出来了的。但在农网改造前,由于①农村低压电网不在电业部门的必管范围,设备线路状况极差,线损很高,收不够上缴电费就涨电价,即线损水平虽高但降损的压力不大。②农村照明等单相负荷很小,只占总用电负荷的5~20%左右,故虽进行过低压整改,多是把配电变压器移到负荷中心、改造低压线路、整改户内线路等。三相负荷不平衡由于是较次要的因素,没有也不可能引起人们足够注意,故实践很少,亦不可能提出调平三相负荷的具体方法。 (2)农网改造由于规模大、任务重、时间紧,不可能面面俱到(如规划调平三相负荷);加之改造资金有限,为了降低费用,架设了一定数量的单相两线线路,尤其是低压分支线路中,单相两线线路占一定比例;还有在下户线接火施工中,一些施工人员素质低,没有三相负荷平衡的概念,施工中或随意接单相负荷,或为了不接成380V,把单相负荷都接到中间两根线上。这在一定程度上加重了

三相负载不平衡

一般是用矢量分析,口头给你解释吧。 三相四线时,任何一相总的单相负荷都有两个回路,一是和零线组成220V回路,二是和另一相串联构成380V回路,当三相平衡的时候,线电压和相电压之间构成一个和谐的回路,零线上没有电流。当负荷不平衡的时候,串联在线电压之间的两相负荷不一样大,但串联电路电流相等,于是负荷大的一相多余的电流就从零线走了。三相负荷的每一相都和另两相负荷有串联关系,于是大于负荷小相的另两相多余电流,就构成了零线电流。 如下图所示,A相接了一个灯,B相接了两个灯,C相接了三个灯,A相的一个灯通过零线和B相两个灯串联接于AB线电压,A相的一个灯也通过零线和C相三个灯串联接于AC线电压,A相的灯泡也不会烧,就是因为AB相多余负荷的电流从零线走了,如果零线断了,没有回路,A相的负荷瞬间就跳闸或烧毁,接着B相的负荷跳闸或烧毁,留下最大负荷的A 相保持完好。当负荷不平衡时,三相四线时总零线是决定不能断线的,否则就是严重事故。向左转|向右转 对于三相四线制系统,三相负载不平衡时,中性线会有电流流过,由于接地电阻及中性线导线电阻的存在,中性线对地电位会有所升高,三相电压会稍有不平衡,但不大。严重的三相负载不平衡,会使中性线电流过大,中性线对地电位较高,三相电压明显不平衡。更严重时中性线电流可能会超过允许载流量,中性线被烧断,三相电压相差极大,负载轻的一相上电压过高(最高时能达到线电压),设备烧毁。 对于三相三线制系统,三相负载不平衡时,三相电压会不均衡,Y形接线系统的中性点会产生零序过电压。 N线的电流为10+20+30-3*10=30A 因为,每相10A可在零线上,实现三相归零,那就只剩下L1、L2的10+20=30A的电流.又因相对相是380V,如L1、

配电网三相不平衡常见原因分析

龙源期刊网 https://www.360docs.net/doc/8617567979.html, 配电网三相不平衡常见原因分析 作者:杨磊刘天纵张兆娴张翠 来源:《科技风》2017年第02期 摘要:随着用电需求不断增加,对配电网的要求也越来越高。不仅要保证供电可靠性,还要保证电能质量。然而,在实际运行中,由于多种原因,可能造成配电台区发生严重三相不平衡,威胁配电网安全经济运行。因此,对造成三相不平衡原因进行归纳分析十分重要。本文阐述了三相不平衡的概念和实际应用中对三相不平衡台区的判定,总结了三相不平衡的四个主要危害,并对遇到的超过100个三相不平衡台区进行重点分析,归纳了产生三相不平衡的四个主要原因,为三相不平衡台区原因查找及治理提供参考。 关键词:配电网;配电变压器;三相不平衡 当前,配电网结构复杂,电力用户的用电类型也多种多样,由于负荷类型不同、用电时间不同等多种原因,可能导致配电变压器台区出现严重的三相不平衡。随着用户对电能质量的要求不断提高,配电网三相不平衡问题日益突出。在配电台区中,理想状态是使负荷平均地分配到A、B、C三相上并运行于三相平衡状态,但实际中很难做到。实际负荷多以单相负荷、单-三相负荷混合形式存在,某些地区单相负荷占比大,所以会产生三相不平衡,严重的三相不平衡状态会对供电质量造成影响,本文主要对实际中遇到的超过100个三相不平衡台区的产生原因进行归纳分析,总结了四个主要原因。 一、三相不平衡概念 三相不平衡是电能质量的指标之一,分为三相电压不衡和三相电流不平衡。对于三相电压不平衡,国标GB15543-2008《电能质量三相电压不平衡》对电压不平衡的定义为,三相电压在幅值上不同或相位差不是120度,或兼而有之[ 1 ]。且规定电力系统公共连接点电压不平衡度限值为负序电压不平衡度允许值不超过2%,短时不超过4%。 在实际中,还常用到三相电流不平衡的概念,三相电流不平衡与三相电压不平衡类似,引入三相电流不平衡度来表示不平衡程度大小,国网公司PMS2.0监测系统中将其定义为: 三相不平衡度=(最大相电流-最小相电流)/最大相电流*100%, 根据上述定义,如果某台区三相不平衡度大于25%且负载率大于60%,持续时间在2小时以上,就认为该台区三相不平衡。图1为某个三相不平衡台区24小时电流波形。 ■ 图1 三相不平衡台区某天电流波形

电动机三相电流不平衡的原因及表现

For personal use only in study and research; not for commercial use 电动机三相电流不平衡的原因及表现 1三相电压不平衡 如果三相电压不平衡,电动机内就有逆序电流和逆序磁场存在,产生较大的逆序转矩,造成电动机三相电流分配不平衡,使某相绕组电流增大。当三相电压不平衡度达5%时,可使电动机相电流超过正常值的20%以上。三相电压不平衡主要表现在: (1)变压器三相绕组中某相发生异常,输送不对称电源电压。 (2)输电线路长,导线截面大小不均,阻抗压降不同,造成各相电压不平衡。 (3)动力、照明混合共用,其中单相负载多,如:家用电器、电炉、焊机等过于集中于某一相或某二相,造成各相用电负荷分布不均,使供电电压、电流不平衡。 2负载过重 电动机处于过载运行状态,尤其是起动时,电动机定、转子电流增大发热。时间略长,极易出现绕组电流不平衡现象。负载过重主要表现在: (1)皮带、齿轮等传动机构过紧或过松。 (2)联轴机件歪斜,传动机构有异物卡住。 (3)润滑油干涩,轴承卡壳,机械锈死(其中包括电动机本身机械故障)。 (4)电压过高或过低,使损耗增加。 (5)负载搭配不当,电动机额定功率小于实际负载。 3定子、转子经组故障 定子绕组出现匝间短路、局部接地、断路等,都会引起走子绕组中某一相或其二根电流过大,使三相电流严重不平衡。走子、转子绕组故障表现在: (1)定于内膛有灰尘、杂物、硬性创伤,造成匝间短路。 (2)定子绕组某相断路。 (3)定子绕组受潮,有漏电流现象。 (4)轴承、转子受损变形,转子与走子绕组相擦。 (5)鼠笼式转子绕组断条焊裂,产生不稳定电流。 4操作、维护不当 操作人员不能定期做好电气设备的检查保养工作,是人为造成电动机漏电、缺相运行,产生不平衡电流的主要因素。 操作维护不当主要表现在: (1)操作安装人员将相、零线接反。 (2)进线与接线盒相碰,有漏电流。 (3)各连接开关、触点松脱、氧化等原因造成缺相现象。 (4)频繁起动,起动时间过长或过短,造成熔丝断相。

HYSPC三相不平衡自动调节装置

- 3 - HYSPC 乾坤大挪移效果示意图 从B 相引进100A ,转移到A 相、C 相各50A 使变压器的A 、B 、C 相输出均衡,避免了电能质量问题的发生。 HYSPC 三相不平衡自动调节效果示意图 a 有效治理因中线局部发热老化,甚至是火灾的风险; b 有效治理因局部电压不平衡,引起的设备误报警; c 有效治理因零地电压偏高而导致控制系统弱电设备烧毁的风险; d 不会增加有功损耗。 HYSPC - 100/400-4-W HYSPC 三相不平衡自动调节装置 3正常工作条件和安装条件 3.1环境温度:-10℃~ +40℃ 3.2相对湿度:5%~95%,无凝露 3.3海拔高度:≤1500m ,1500~4000m 之间,根据GB/T3859.2,每增加100m ,功率降低1%3.4环境条件:无有害气体和蒸汽,无导电性或爆炸性尘埃,无剧烈的机械振动 3.5户外安装:模块上下出风口至少要保留 15cm 空间,机柜前后至少保留60cm 空间以方便维护 2型号及含义 户外 4:三相四线 3:三相三线 电压等级:400V 容量: 35kvar 、70kvar 、100kvar 三相不平衡调节企业代码 HY SPC 100 / 400 - 4 - W 1概述及自动调节效果示意图 低压配网中的三相不平衡是普遍存在的。在城网及农网中由于大量单相负荷的存在,三相间的电流不平衡现象尤为严重。电网中的电流不平衡会增加线路及变压器的损耗、降低变压器的出力、影响变压器的运行安全,还会造成零点漂移,导致三相电压不平衡,降低供电质量。针对上述情况,我公司本着优化电能质量、实现节能减排的目的,精心设计研发出了三相不平衡自动调节装置。该装置在额定容量内将零序电流滤除90%以上,三相不平衡度控制在10%以内。

电动机三相电流不平衡的原因及表现

电动机三相电流不平衡的原因及表现 1三相电压不平衡 如果三相电压不平衡,电动机内就有逆序电流和逆序磁场存在,产生较大的逆序转矩,造成电动机三相电流分配不平衡,使某相绕组电流增大。当三相电压不平衡度达5%时,可使电动机相电流超过正常值的20%以上。三相电压不平衡主要表现在: (1)变压器三相绕组中某相发生异常,输送不对称电源电压。 (2)输电线路长,导线截面大小不均,阻抗压降不同,造成各相电压不平衡。 (3)动力、照明混合共用,其中单相负载多,如:家用电器、电炉、焊机等过于集中于某一相或某二相,造成各相用电负荷分布不均,使供电电压、电流不平衡。 2负载过重 电动机处于过载运行状态,尤其是起动时,电动机定、转子电流增大发热。时间略长,极易出现绕组电流不平衡现象。负载过重主要表现在: (1)皮带、齿轮等传动机构过紧或过松。 (2)联轴机件歪斜,传动机构有异物卡住。 (3)润滑油干涩,轴承卡壳,机械锈死(其中包括电动机本身机械故障)。 (4)电压过高或过低,使损耗增加。 (5)负载搭配不当,电动机额定功率小于实际负载。 3定子、转子经组故障 定子绕组出现匝间短路、局部接地、断路等,都会引起走子绕组中某一相或其二根电流过大,使三相电流严重不平衡。走子、转子绕组故障表现在: (1)定于内膛有灰尘、杂物、硬性创伤,造成匝间短路。 (2)定子绕组某相断路。 (3)定子绕组受潮,有漏电流现象。 (4)轴承、转子受损变形,转子与走子绕组相擦。 (5)鼠笼式转子绕组断条焊裂,产生不稳定电流。 4操作、维护不当 操作人员不能定期做好电气设备的检查保养工作,是人为造成电动机漏电、缺相运行,产生不平衡电流的主要因素。 操作维护不当主要表现在: (1)操作安装人员将相、零线接反。 (2)进线与接线盒相碰,有漏电流。 (3)各连接开关、触点松脱、氧化等原因造成缺相现象。 (4)频繁起动,起动时间过长或过短,造成熔丝断相。 (5)长期使用,缺少保养,使电动机衰老,局部绝缘退化。

三相电压不平衡的区分判断方法和解决办法

三相电压不平衡的区分判断方法和解决办法 引起三相电压不平衡的原因有多种,如:单相接地、断线谐振等,运行管理人员只有将其正确区分开来,才能快速处理。 一、断线故障如果一相断线但未接地,或断路器、隔离开关一相未接通,电压互感器保险丝熔断均造成三相参数不对称。上一电压等级线路一相断线时,下一电压等级的电压表现为三个相电压都降低,其中一相较低,另两相较高但二者电压值接近。本级线路断线时,断线相电压为零,未断线相电压仍为相电压。 二、接地故障当线路一相断线并单相接地时,虽引起三相电压 不平衡,但接地后电压值不改变。单相接地分为金属性接地和非金属性接地两种。金属性接地,故障相电压为零或接近零,非故障相电压升高1.732倍,且持久不变;非金属性接地,接地相电压不为零而是降低为某一数值,其他两相升高不到1.732倍。 谐振原因随着工业的飞速发展,非线性电力负荷大量增加,某 些负荷不仅产生谐波,还引起供电电压波动与闪变,甚至引起三相电压不平衡。

谐振引起三相电压不平衡有两种: 一种是基频谐振,特征类似于单相接地,即一相电压降低,另两相电压升高,查找故障原因时不易找到故障点,此时可检查特殊用户,若不是接地原因,可能就是谐振引起的。 另一种是分频谐振或高频谐振,特征是三相电压同时升高。 另外,还要注意,空投母线切除部分线路或单相接地故障消失时,如出现接地信号,且一相、两相或三相电压超过线电压,电压表指针打到头,并同时缓慢移动,或三相电压轮流升高超过线电压,遇到这种情况,一般均属谐振引起。 三相不平衡的危害和影响:

对变压器的危害。在生产、生活用电中,三相负载不平衡时,使变压器处于不对称运行状态。造成变压器的损耗增大(包括空载损耗和负载损耗)。根据变压器运行规程规定,在运行中的变压器中性线电流不得超过变压器低压侧额定电流的25%。此外,三相负载不平衡运行会造成变压器零序电流过大,局部金属件升温增高,甚至会导致变压器烧毁。 对用电设备的影响。三相电压不平衡的发生将导致达到数倍电流不平衡的发生。诱导电动机中逆扭矩增加,从而使电动机的温度上升,效率下降,能耗增加,发生震动,输出亏耗等影响。各相之间的不平衡会导致用电设备使用寿命缩短,加速设备部件更换频率,增加设备维护的成本。断路器允许电流的余量减少,当负载变更或交替时容易发生超载、短路现象。中性线中流入过大的不平衡电流,导致中性线增粗。 对线损的影响。三相四线制结线方式,当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小;当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。当三相负荷不平衡时,无论何种负荷分配情况,电流不平衡度越大,线损增量也越大。三相不平衡的危害及解决办法: 一、三相电压或电流不平衡等因素产生的主要危害: 1、旋转电机在不对称状态下运行,会使转子产生附加损耗及发热,从而引起电机整体或局部升温,此外反向磁场产生附加力矩会使

三相电压、电流不平衡的影响

三相电压不平衡度是指三相系统中三相电压的不平衡程度,用电压或电流负序分量与正序分量的均方根百分比表示。三相电压不平衡(即存在负序分量)会引起继电保护误动、电机附加振动力矩和发热。额定转矩的电动机,如长期在负序电压含量4%的状态下运行,由于发热,电动机绝缘的寿命将会降低一半,若某相电压高于额定电压,其运行寿命的下降将更加严重。 我国目前执行的GB/T 15543—1995《三相电压允许不平衡度》规定了电力系统公共连接点正常电压不平衡度允许值为2%,同时规定了短时的不平衡度不得超过4%,其短时允许值的概念是指任何时刻均不能超过的限制值,以保证继电保护和自动装置正确动作。对接入公共连接点的每个用户引起该点正常电压不平衡度允许值一般为1.3% 。 大部分用户在使用过程中发生的三相电力不平衡主要原因如下: 1)太偏重于单相负载使各相之间发生不平衡; 2)系统的无效电力,高次谐波电流使各相之间发生不平衡; 3)机器接触端子及电缆接触不良导致另外的不平衡; 4)外部环境的人力,电力导致不平衡的发生; 三相不平衡对负载的影响: 1)电压不平衡的发生导致达到数倍的电流不平衡的发生; 2)诱导电动机中逆扭矩增加使温度上升,效率降低,损失增加,发生震动,输出节减等影响; 3)各相之间不平衡的发生带来缩短机器寿命和加快机器及部品交替周期和增加了设备维持补修的费用; 4)断路器容许电流的余量减少,负载变更时或负载交替时发生超载、短路; 5)中性线中流入过大的不平衡电流所以中性线增粗; 三相负载不平衡运行对变压器的危害 1)三相负载不平衡将增加变压器的损耗; 2)三相负载不平衡运行会造成变压器零序电流过大,局部金属件温升增高; 三相负荷不平衡对线损的影响 采用三相四线制供电方式,由于用户较为分散,线路较长,如果三相负荷不平衡,将直接增加电能在线路的损耗:当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小。 当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。 当三相负荷不平衡时,不论何种负荷分配情况,电流不平衡度越大,线损增量也越大。 为此在三相四线制的低压网络运行中,应经常测量三相负荷并进行调整,使之平衡,这是降损节能的一项有效措施,对于输送距离比较远的配电线路来说,效果尤为显著。 三相电压不平衡度是指三相电力系统中三相电压的不平衡程度,用电压负序分量与正序分量的方均根值百分比表示;测量时需要在系统正常运行的最小运行方式下,负荷不平衡度最大的时候测量;按上一版国标规定(网上也能查到新国 标),电力系统公共连接点正常电压不平衡度允许值为2%,短时不得超过4%。接入公共连接点的每个用户引起该点正常电压不平衡度允许值一般为1.3% 。

三相不平衡的危害以及解决措施

三相不平衡的危害以及解决措施 1如果说起三相不平衡的危害就要先知道它形成的原因1.1三相负荷的不合理分配 很多的工作人员并没有专业的对于三相负荷平衡的知识概念,因此在接线的时候并没有注意到要控制三相负荷平衡,只是盲目和随意的进行电路的接电荷装表,这在很大程度上造成了三相负荷的不平衡。其次,我国的大多数电路都是动力和照明混为一体的,所以在使用单相的用电设备时,用电的效率就会降低,这样的差异进一步加剧了配电变压器三相负荷的不平衡状况。 1.2用电负荷的不断变化 造成用电负荷不稳定的原因临时用电和季节性用电的不稳定性。这样在总量上和时间上的不确定和不集中性使得用电的负荷也不得不跟随实际情况而变化。 1.3对于配变负荷的监视力度的削弱 在配电网的管理上,经常会忽略三相负荷分配中的管理问题。在配电网的检测上,对配电变压器的三相负荷也没有进行定期的检测和调整。2三相不平衡的危害 2.1增加线路的电能损耗 在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。 当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。 2.2增加配电变压器的电能损耗 配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。因为配变的功率损耗是随负载的不平衡度而变化的。 2.3影响用电设备的安全运行 配电变压器是根据三相负载平衡运行工况设计的,其每相绕组的电阻、漏抗和激磁阻抗基本一致。当配变在三相负载平衡时运行,其三相电流基本相等,配变内部每相压降也基本相同,则配变输出的三相电压也是平衡的。 假如配变在三相负载不平衡时运行,其各相输出电流就不相等,其配变内部三相压降就不相等,这必将导致配变输出电压三相不平衡。 同时,配变在三相负载不平衡时运行,三相输出电流不一样,而中性线就会有电流通过。 因而使中性线产生阻抗压降,从而导致中性点漂移,致使各相相电压发生变化。负载重的一相电压降低,而负载轻的一相电压升高。 在电压不平衡状况下供电,即容易造成电压高的一相接带的用户用电设备烧坏,而电压低的一相接带的用户用电设备则可能无法使用。所以三相负载不平衡运行时,将严重危及用电设备的安全运行。 2.4电动机效率降低 配变在三相负载不平衡工况下运行,将引起输出电压三相不平衡。由于不平衡电压存在着正序、负序、零序三个电压分量,当这种不平衡的电压输入电动机后,负序电压产生旋转磁场与正序电压产生的旋转磁场相反,起到制动作用。但由于正序磁场比负序磁场要强得多,电动机仍按正序磁场方向转动。 而由于负序磁场的制动作用,必将引起电动机输出功率减少,从而导致电动机效率降低。同时,电动机的温升和无功损耗,也将随三相电压的不平衡度而增大。所以电动机在三相电压不平衡状况下运行,是非常不经济和不安全的。 3改进配电网三相不平衡的方法 (1)注重对三相负荷的合理分配。 (2)在对三相负荷的分配问题上,电力工作人员应当在实际的工作中将相关的数据进行认真的采集和记录,达到能够在一定程度上预测用电负荷的状态。 (3)其次,可以通过装设平衡装置的方式来达到更好三相平衡的分配问题。 (4)进行合理有效的无功补偿:一个是补偿功率因数一个是调节三相电流不平衡,这两者共同确定了补偿所需要的无功功率。 (5)需要考虑到负荷是会随着时间的变化而变化的,基于这种特性,补偿量也应该根据负荷的变化进行适当的调整。 (6)在装置开关和补偿设备的投切次数的限制,要在设计时设计成自动投切需要同时考虑功率因数的限制条件以及过补偿限制的条件。并需要考虑到负荷是会随着时间的变化而变化的,基于这种特性,补偿量也应该根据负荷的变化进行适当的调整。 除以上各项方法外还应该、增设对三相负荷的检测调整定期开设对三相负荷的检测工作也是非常必要的。 电力的平衡不能是绝对的,只能是尽力做到相对的平衡,在实际的检测工作中,各部门应当以国家和相关部门制定的平衡度的衡量指标作为一个标准,将检测的结果进行专业的记录和分析,对各相的负荷电流进行定期的检测,以便于及时发现一些三相的不平衡状况。通过合理的检测和对检测结果的深入分析,我们可以在最大程度上避免不平衡现象的出现,降低用电事故的出现。

三相不平衡调节装置技术方案建议书汇总

三相不平衡调节装置技术方案建议书汇总

三相不平衡调节装置方案 1 产品研发背景 目前,在国家电网公司中、低压配电网系统中,存在着大量的单相、不对称、非线性、冲击性负荷,三相负荷系统是随机变化的,这些负荷会使配电系统产生三相不平衡,三相负荷不平衡会导致供电系统三相电压、电流的不平衡,引起电网负序电压和负序电流,影响供电质量,进而增加线路损耗,降低供电可靠性。 三相不平衡治理装置是专门针对上述问题而研发的一款产品,不同于传统的治理装置,它融合了半导体器件与接触器开关的优点,能够避免接触器开关在负荷投切瞬间产生的较大涌流和开通、关断时间间隔长的问题,使负载用户在负载换相投切过程中可正常供电;也能避免半导体器件长期运行带来的发热问题。配网三相不平衡治理装置的应用,将大幅提高配网运行稳定性和智能化,可对国网公司提出的建设坚强智能电网的要求起到很好的支撑作用。 2 产品技术参数 三相不平衡调节装置 系统参数 装置标准配置 主控制器*1+换相开关 *9 接线方式 三相四线制 工作状态 正常运行,故障报警, 电源供电 冷却方式 自然散热 噪声 ≤65dB 控制器 供电电源 220V/50Hz ,40W 采样精度 ≤1% 通讯接口 GPRS/RS485 绝缘电阻 ﹥1M Ω 绝缘强度 2000V AC ,60s 外壳防护等级 IP54

机械尺寸 400*350*150(宽*高*深)mm 重量 10kg 环境温度 -25~45℃ 环境湿度 0~95%,无凝露 海拔 ≤1000m 换相开 关 额定电压 AC380V 额定频率 50Hz 额定电流 100A 最大允许电流 150A 换相时间 ≤10ms 通讯接口 GPRS/RS485 绝缘电阻 ﹥1M Ω 绝缘强度 2000V AC ,60s 外壳防护等级 IP54 机械尺寸 250*500*200(宽*高*深)mm 重量 15kg 环境温度 -25~45℃ 环境湿度 0~95%,无凝露 海拔 ≤1000m 3 技术方案 3.1总体方案 三相不平衡调节装置主要由主控制器与换相开关组成。主控制器是整个装置的控制核心,换相开关是装置的执行机构,它们之间通过GPRS 无线通讯进行信息交互,相互配合完成对配网三相不平衡问题的治理。装置系统示意图如下所示。

变频器三相输出不平衡的故障原因

变频器三相输出不平衡的故障原因在实际维修中变频器u、v、w三相输出不平衡可分为三种情况: (1)变频器显示器显示:(missmgmotophase)输出缺相,如排除检测电路故障,则通过直接检查igbt模块和驱动电路,结论为igbt模块损坏,同时驱动电路也有问题。通过更换igbt模块和驱动电路上元器件如光耦,pnp,npn一对驱动晶体管,电解电容,稳压管等基本能解决问题。 (2)变频器输出u、v、w之间相差100v左右,(输出380v为例)驱动电路中s1~s6中间的某一路驱动电路无驱动电压和驱动信号波形,通过测量输出端子u、v、w—p之间。 (3)u、v、w—n之间直流电压,可找到这一路驱动电压不正常或没有驱动信号波形,它导致u、v、w中的某一相不能正常工作所引起相位差。解决办法为检查驱动电路电压是否正常,光耦是否坏了,电解电容是否漏液等。通过示波器测量6路波形符合技术要求,问题也就可解决了。 还有另一种现象是变频器u、v、w三相输出交流电压之间相差大于3%,虽然能使用,但是不能长期使用和大负载使用。这主要是驱动电路s1~s6之间主要器件不对称所至,如晶体管的技术参数,稳压管的参数,电容的液枯,漏液和漏电等,6路驱动电路上器件的耗损使其参数上有一定的差别,导致变频器输出u、v、w之间产生微小的电位差。上述情况虽然能使用,但是技术上是不能容许的。我公司追求精益求精对各种器件通过筛选老化,如晶体管技术参数和稳压管技术参数一致、配对等,保证驱动电路中驱动信号符合技术要求,确保igbt模块饱和,导通时间上一致是由器件上的质量保证,修理好的变频器在做负载试验时,电动机运转中电动机声音轻盈,在修理前和修理后带相同功率电动机和相同功率负载,后者的电动机三相电流相对要小得多 1过流 过流是变频器报警最为频繁的现象。

三相不平衡电流的危害

三相不平衡电流的危害 电网中三相间的不平衡电流是普遍存在的,在城市民用电网及农用电网中由于大量单相负荷的存在,三相间的电流不平衡现象尤为严重。对于三相不平衡电流,除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。正因为找不到解决问题的有效办法,因此反而不被人们所重视,也很少有人进行研究。 电网中的不平衡电流会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成三相电压不平衡因而降低供电质量,甚至会影响电能表的精度而造成计量损失。 理论研究证明:在输出同样功率的情况下,三相电流平衡时变压器及线路的铜损最小,也就是说:三相不平衡现象增加了变压器及线路的铜损。 不平衡电流对系统铜损的影响 设某系统的三相线路及变压器绕组的总电阻为R。如果三相电流平衡,IA=100A,IB=100A,IC=100A,则总铜损=1002R+1002R+1002R=30000R。 如果三相电流不平衡,IA=50A,IB=100A,IC=150A,则总铜损 =502R+1002R+1502R=35000R,比平衡状态的铜损增加了17%。 在更为严重的状态下,如果IA=0A,IB=150A,IC=150A,则总铜损 =1502R+1502R=45000R,比平衡状态的铜损增加了50%。 在最严重的状态下,如果IA=0A,IB=0A,IC=300A,则总铜损=3002R=90000R,比平衡状态的铜损增加了3倍。 不平衡电流对变压器的影响 现有的10/0.4KV的低压配电变压器多为Yyn0接法三相三柱铁心的变压器。这种类型的变压器,当二次侧负荷不平衡且有零线电流时,零线电流即为零序电流,而在一次侧由于无中点引出线因此零序电流无法流通,故零序电流不能安匝平衡,对铁心而言,有一个激磁零序电流,它受零序激磁阻抗控制,根据磁路的设计,这一零序激磁阻抗较大,零序电流使相电压的对称受到影响,中性点会偏移。由计算得知,当零线电流为额定电流的25%时,中性点移位约为额定电压的7%。国家标准GB50052-95第6.08条规定: “当选用Yyn0结线组别的三相变压器,其由单相不平衡负荷引起的电流不得超过低压绕组额定电流的25%,且其中一相的电流在满载时不得超过额定电流值。”由于上述规定,限制了Yyn0结线配电变压器接用单相负荷的容量,也影响了变压器设备能力的充分利用。 并且,对三相三柱的磁路而言,零序磁通不能在磁路内成回路,必须在油箱壁及紧固件内形成回路,而油箱壁及紧固件内的磁通会产生较大的涡流损耗,因而使变压器的铁损增加。当零序电流过大导致零序磁通过大时,由于中性点漂移过大

相关文档
最新文档