高效沉淀池

高效沉淀池
高效沉淀池

高效沉淀池

工作原理:

高效沉淀池分为混凝区、絮凝区、预沉淀区和斜板沉淀池四个部分,原水先投加混凝剂,通过搅拌器的搅拌作用,保证一定的速度梯度,使混凝剂与原水快速混合。进入絮凝池,再投加絮凝剂,在池内的搅拌机搅拌下,对水中悬浮固体进行剪切,重新形成更大的易于沉降的絮凝体。进入沉淀池,沉淀池分为预沉区及斜管沉淀区,在预沉区中,易于沉淀的絮体快速沉降,未来得及沉淀以及不易沉淀的微小絮体被斜管捕获,最终高质量的出水通过池顶集水槽收集排出。

1、混凝池

对于高效沉淀池的前混凝池,在混凝池中设置快速搅拌机,使投加的混凝剂快速分散,与池内原水充分混合均匀,用以形成小的絮体。混凝剂的投加量需通过优化烧杯试验确定适当的投加率。

2、絮凝池

絮凝池分为两个部份,由慢速搅拌反应区和推流反应区组成串联反应单元,絮凝过程,经过混凝的原水从搅拌反应器的底部进入絮凝池内源性导流筒的底部,絮凝剂加在涡轮的底部,原水、回流污泥和助凝剂由导流筒内的搅拌桨由下至上混合均匀。在导流筒周边区域,主要是推流使絮凝以较慢的速度进行,并分散低能量以确保絮凝物增大致

密。获得较大的絮体,到达沉淀区内快速沉淀。其中推流反应区混合液进入预沉区域的速度,即要保证矾花不在此处沉积。同时,从反应池到预沉池的转移速度仍需限制在低于米/s的范围内,以保证矾花不会发生破损。

3、沉淀池

斜板(管)沉淀池是根据浅池沉淀理论设计出的一种高效组合式沉淀池;水沿斜板或斜管上升流动,分离出的泥渣在重力作用下沿着斜板(管)向下滑至池底。沉淀效率仅为沉淀池表面积的函数,而与水深无关。当沉淀池容积为定值时,池子越浅则A值越大,沉淀效率越高。斜板冲洗系统为了保持长期运行过程中的功能效果,需要定期对进行反冲洗。

常用的无机盐类混凝剂

常用有机合成高分子混凝剂

影响因素:

1、进出水水量

进水量控制均匀稳定的进水量,配水均匀性对沉淀效果的影响很大,表面负荷在高峰流量不超过20m3/m2?h。

2、水力停留时间HRT

混凝池停留时间一般~5min,絮凝停留时间一般5min~10min

3、加药量

药剂配置经验浓度PAC 10%-20%,PAM %~%。投加量每吨水中分别投加PAC 约1kg-3kg,PAM 。

4、斜管沉淀池

根据实践表明,斜管沉淀池倾角越小,则沉淀面积越大,沉淀效率越高,但是会对排泥不利,所以最佳倾斜角定在60度。斜管设计一般可采用下列数据:管径为25~35 毫米;斜长为米;倾角为60°。斜管沉淀池的清水区保护高度一般不宜小于米;底部配水区高度不宜小于米。

5、污泥回流

高效沉淀池控制的关键是活性污泥回流至絮凝池,与原始SS相互接触、吸附、沉淀,以达到泥水分离的目的,但回流污泥量如何控制是关键,如果没有足够的污泥,沉淀池出水效果会比较差,如果污泥量过多,就会超出固体负荷的限制,泥床有上升的,澄清区斜管侧可能会有大面积跑泥现象。回流污泥主要通过调节回流泵流量,依据沉淀池最佳出水,确定最佳污泥回流百分比。一般污泥百分比在3%~15%之间。絮凝反应区污泥质量浓度控制在120~180mg/L;

6、搅拌机速度控制

搅拌机转速必须确保聚合物搅拌充足和絮凝良好。如果转速过高,那么絮凝颗粒可能被打碎,如果转速过低,污泥可能会沉淀在反应池底部。凝聚搅拌强度控制在80~120 r/m in,絮凝搅拌强度控制在15~20r/min。

7、泥位控制

泥床的作用在于为回流污泥提供足够的泥量,并提高污泥浓度。泥位的稳定性是判断高密池运行状况的一个指标。通过仪表监测污泥界面并以此为依据对排

泥进行控制和调节。确定高低泥位的界限。一般沉淀池污泥位控制在~范围内

六、PAC、PAM加药效果影响因素

1.水温的影响:水温对混凝效果有较大的影响,水温过高或过低都对混凝不利,最适宜的混凝水温为20~30℃之间。水温低时,絮凝体形成缓慢,絮凝颗粒细小,混凝效果较差,水温过高时,混凝效果也会变差,主要由于水温高时混凝剂水解反应速度过快,形成的絮凝体水合作用增强、松散不易沉降;在污水处理时,产生的污泥体积大,含水量高,不易处理。

2.水的pH值的影响:水的pH值对混凝效果的影响很大,主要从两方面来影响混凝效果。一方面是水的pH值直接与水中胶体颗粒的表面电荷和电位有关,不同的pH值下胶体颗粒的表面电荷和电位不同,所需要的混凝剂量也不同;另一方面,水的pH值对混凝剂的水解反映有显著影响,不同混凝剂的最佳水解反映所需要的pH值范围不同,因此,水的pH值对混凝效果的影响也因混凝剂种类而异。聚合氯化铝的最佳pH值范围在5~9之间。

3.水的碱度的影响:由于混凝剂加入原水中后,发生水解反应,反应过程中要消耗水的碱度,特别是无机盐类混凝剂,消耗的碱度更多。当原水中碱度很低时,投入混凝剂因消耗水中的碱度而使水的pH值降低,如果水的pH值超出混凝剂最佳混凝pH值范围,将使混凝效果受到显著影响。当原水碱度低或混凝剂投量较大时,通常需要加入一定量的碱性药剂如石灰等来提高混凝效果。

4.水中SS浓度的影响:水中颗粒浓度对混凝效果有明显影响,杂质颗粒浓度过低时,颗粒间的碰撞几率大大减小,混凝效果变差。

5.水力条件的影响:通常快速混合阶段要使投入的混凝剂迅速均匀地分散到原水中,这样混凝剂能均匀地在水中水解聚合并使胶体颗粒脱稳凝集,快速混合要求有快速而剧烈的水力或机械搅拌作用,而且短时间内完成。絮凝阶段搅拌强度

和水流速度应随絮凝体的增大而逐渐降低,避免已聚集的絮凝体被打碎而影响混凝沉淀效果。同时,由于絮凝反应是一个絮凝体逐渐增长的缓慢过程,需要保证一定的絮凝作用时间。

高效沉淀池方案设计

20000t/d高效沉淀池 方 案 设 计 二零**年**月

第一章概述 1.1总则 ***人一贯奉行“一次做对、顾客满意”的质量方针,严格贯彻ISO9001质量管理体系和ISO14001环境管理体系,健全“顾客全程星级体系”,为顾客提供一流的服务。卓越的品质,完美的服务,使得通用产品畅销全球。 公司注册资金10800万元,占地面积60000余平米,拥有各类生产检测设备60余套,高、中级工程师20多名,一级建造师7名,二级建造师10名。公司还与国内外相关行业设计院所及大专院校进行项目合作,不断研发制造适合市场需求的技术和产品,先后获得14项国家技术专利。 公司先后获得“江苏省环保产业骨干企业”,“江苏省高新技术企业”,“重合同守信用企业”,“AAA级资信企业”等荣誉称号;通过了ISO9001质量管理体系认证,ISO14001环境管理体系认证及GB/T28001职业健康安全管理体系认证;拥有环保工程专业承包壹级资质,建筑机电安装工程专业承包贰级资质,市政公用工程施工总承包叁级资质。 公司业务涉及项目合作、运营(BT/BOT/PPP项目),工程总承包及水处理设备制造。公司现拥有三大不同板块产品,分别为城市(生活)污水处理设备、工业废水处理设备、自来水处理设备。 公司在“清污净水,保护环境,优质美观,诚信服务”的企业宗旨下,不断拓展自己的环保治理之路,已成为具有较强综合实力和影响力的品牌:投资运营多个污水处理厂,总承包20多个污水处理厂工程,产品销售网络已覆盖全国各大中城市并出口韩国、伊拉克、古巴、毛里求斯等国家和地区。 产权驱动创新,创新引领发展。通用人承载着保护环境的责任与使命,正迈向全球的舞台,向世界发出中国的声音:清污净水,智慧环保,************集团! 1.2方案说明 该项目为市政污水,处理水量为830m3/h。

反应沉淀池间现场施工方法

第一节工程概况 本工程由反应池、沉淀池、框架梁柱、网架等几部分组成,除顶部为钢网架外其余均为钢筋砼构筑物,框架梁、框架柱、构造柱、承台及桩基强度等级C35,垫层均采用C15,承台基础为桩基础,反应池、沉淀池基础均在细砂层上承载力200KPa,砼强度等级C35S8。该构筑物中还附有大量的预埋件、栏杆、钢爬梯、套管等,具体构造详见施工图,本工程按7度抗震设防。 1. 1 2-1.7m。3-1.7m。 2. **********岩山 1 2 大了防水施工的难度,因此,进行此部位施工时需更加引起重视,以保证整个工程的防水质量。 3、本工程质量要求高,加之工期也较紧,所以,必须将质量意识观念贯穿始终,加强质量的全面管理。 4、本工程要求在较短的时间中,同时完成土建及安装任务,涉及到多工种同时施工,彼此间的配合协调绝对不能忽视,否则工程将无法顺利进行。

第三节施工方案 1.施工顺序 定位放线→施工降水→土方开挖→清理地基→砼垫层→测量放线→绑扎底板筋(预埋套管)、侧壁及中隔墙筋(一次到顶、予埋套管、铁件及止水钢板)→底板木模→浇底板砼及墙体施工缝下墙体砼→搭脚手架→支墙模及支撑→处理施工逢→浇墙砼→拆模(按规范及设计要求时间)→做满水试验→回填土。 注:框架施工顺序类同 2. 1、定位放线 (1 (2)(弹墨线) (3 2、高程控制 (1 (2 (3 竖筋。 3、沉降观测 为保证构筑物安全,按专项措施,根据国家水准点设置永久基准点,顶板施工完后,在转角和分区处设观测点,待稳固后进行第一次观测,作好记录,以此作为该工程沉降观测原始数据。 观测次数在基础完成观察一次,框架主体完成后观察一次,装修完成后观察一次,以后每隔三月观测一次,及时应作好记录,并随同做好气象资料记录及沉降变化曲线等资料。 3.施工降水: 本工程地下水位的标高为1.4米-4.0米之间。施工降水采用轻型管井降水。因反应沉淀池间基坑深度超过地下水位,需采取降水措施。在定位测量完成后,根据放坡系数确定基坑边缘,在距基坑边缘约50cm位置布置降水井

高效沉淀池设计方案

高效沉淀池设计方案 Document number:BGCG-0857-BTDO-0089-2022

3600m3/d高效沉淀池 方 案 设 计 二零一三年七月 目录

第一章概述 总则 德安人一贯奉行“一次做对、顾客满意”的质量方针,严格贯彻ISO9001质量管理体系和ISO14001环境管理体系,健全“顾客全程星级体系”,为顾客提供一流的服务。卓越的品质,完美的服务,使得德安产品畅销全球。 我们坚持奉行“二十一世纪经营是以德安天下”的经营理念,服务于大众,服务于社会,共创二十一世纪的全球化环保集团。 德安集团,国家级高新技术企业,中国环保产业骨干企业,建有博士后科研工作站,以“净化环境、服务全球”为己任。通过近20年的发展,德安已形成完善的研发平台和销售服务平台,可提供:城乡给水处理、污水处理及中水回用、工业水处理及回用、水厂升级改造、污水厂升级改造、城乡垃圾资源化、河道湖泊治理等系列解决方案及设计、施工总承包服务。还提供水处理设备的研发、制造、销售一条龙服务。 德安通过持续科研创新,建有科研中心和中试工厂,并与清华大学、浙江大学、武汉大学以及国际生态城市建设者协会等国内外科研机构开展了多方向、多层次的深度合作,联合成立了多家科研机构。拥有300余项专利,并获得多个国家级奖项,继D型滤池广泛推广应用及编制行业标准,DA-EH污水处理工艺成功应用于国内外市政污水处理项目之后,又研制成功并向市场推出智慧型WTBOX多功能污水处理装置、循环冷却水协同处理装置、DE型滤池、DF滤池、DA新型滤布滤池、DA 高效沉淀池、活动式螺杆污泥脱水机、DA螺旋式高效生物填料等多个领先技术,广泛应用于多个水处理领域工程。近期还将隆重推出DA无污泥污水处理技术、DA 高效全自动油水分离器、水平流鳍片式沉淀池和污泥资源化治地膜技术等,期待与您的合作。 方案说明 该项目为煤矿废水,处理水量为150m3/h,进水SS≤2200mg/L,经处理后,出SS度≤80mg/L。据此,浙江德安科技股份有限公司根据建设方提供的资料推荐以下处理方案。 第二章方案基础 设计依据 《室外给水设计规范》(GB50013-2006) 《室外排水设计规范》(GB50014-2006)

混凝反应池和沉淀池设计

一、 ? 二、 混凝反应池 1.混凝剂投加方法 选用湿法投加,适于各种形式的混凝剂,易于调节。采用重力投配装置,操作方法简单,混凝剂在溶药箱内溶解后直接将溶液投入管中。 2. 平流式隔板反应槽 由于对场地使用没有限制,故混凝反应池采用平流式隔板反应池,该池反应效果好,构造简单,施工方便。絮凝体形成的适宜流速为15-30cm/s ,时间为15-30min 左右。 取流速为20cm/s ,停留时间为T=15min=900s ,Q=0.012m 3/s ,则反应池容积为 V = 8.10900012.0=?=Qt (m 3) 取水深为h = 0.5 m ,则反应槽面积为 ? S = V/h = = (m 2) 分6个廊道,则每个廊道面积为 S1 = S/6 =6 = (m 2) 取廊道宽为0.6m ,则长为6m 。 六、竖流沉淀池 1. 设计参数设定 设计2座竖流式沉淀池,中心进水,周边出水。取中心管流速为v 0=0.03m/s , 表面负荷1.0m 3/m 2·h ,沉淀时间为,泥斗锥角50°,池底边长0.5m ,超高为h 1=0.4m ,缓冲层高h 4=。 ^ 2. 设计计算: 中心管计算 最大设计流量Qmax=0.018m 3/s , 中心管有效面积f 1=0 max v Q =(m 2), d=0 max 4v Q π=(m )

取缝隙流出的速度为v 1=0.015m/s, 喇叭口直径d 1==×=(m ) 反射板直径d2==×= (m ) ; 3. 中心管喇叭口到反射板之间高度 h 3=π11max d v Q =π ??2.1015.0018.0=(m) 4.沉淀区有效水深 取废水在沉淀池中流速v =2m/h,沉淀时间t = h ; 则沉淀区有效水深 h 2=vt=×=(m) 5.沉淀区总面积 沉淀区有效断面积 f 2= v Q max =3600/2018.0= (m 2) · 沉淀区总面积A= f 1 + f 2 = + =33 (m 2) 6.尺寸计算 沉淀池直径 D = πA 4=π33 4?=6.48 m ,取D=6.5 m ; 池直径与沉淀区高度比值D/ h 2=3= <3 (适合) 7.污泥斗计算 泥斗深h5= 2 5.05.6-tg50°=(m ); 泥斗容积为V=3 1××++×=55 (m 3) 。 沉淀池总高度 H=h 1+h 2+h 3+h 4+h 5=++++= (m) 8.出水方式 (1)出流堰 出流堰采用水平薄壁堰,出流槽设于池外,堰沿池内壁设置,故堰长 L = =?=5.614.3D π (m) 每池各由20块钢板堰拼接,则每块堰板长度为 L 1=20= (m) ?

高效沉淀池

高效沉淀池工艺 工艺概述: 高效沉淀池工艺是依托污泥混凝、循环、斜管分离及浓 缩等多种理论,通过合理的水力和结构设计,开发出的 集泥水分离与污泥浓缩功能于一体的新一代沉淀工艺。 该工艺特殊的反应区和澄清区设计,尤其适用于中水回 用和各类废水高标准排放领域。 工艺原理: 高效沉淀池由反应区和澄清区两部分组成。反应区包括混合反应区和推流反应区;澄 清区包括入口预沉区、斜管沉淀区及浓缩区。 在混合反应区内,靠搅拌器的提升混合作用完成泥 渣、药剂、原水的快速凝聚反应,然后经叶轮提升至推 流反应区进行慢速絮凝反应,以结成较大的絮凝体。整 个反应区(混合和推流反应区)可获得大量高密度均质 的矾花,这种高密度的矾花使得污泥在沉淀区的沉降速 度较快,而不影响出水水质。 高效沉淀池工艺结构图 在澄清区,矾花慢速地从预沉区进入到沉淀区使大部分矾花在预沉区沉淀,剩余矾花进入斜管沉 淀区完成剩余矾花沉淀过程。矾花在沉淀区下部累 积成污泥并浓缩,浓缩区分为两层,一层位于排泥 斗上部,经泵提升至反应池进水端以循环利用;一 层位于排泥斗下部,由泵排出进入污泥处理系统。 澄清水通过集水槽收集进入后续处理构筑物。 优点: ● 絮凝体循环使用提高了絮凝剂的使用效果,节约10%至30%的药剂; ● 斜管的布置提升了沉淀效果,具有较高的沉淀速度,可达20 m /h-40m /h ; ● 排放的污泥浓度高:可达30-550克/升。一体化污泥浓缩避免了后续的浓缩工艺,产 生的污泥可以直接进行脱水处理。 ● 耐冲击负荷:对进水波动不敏感。

处理效率高,单位面积产水量大,占地面积小,土建投资低,尤其适用于改扩建工程; ▲应用领域: ◎饮用水:地表水的澄清和(或)软化; ◎工业自来水:工业自来水的制备; ◎城镇污水:初级沉淀和(或)深度除磷; ◎雨水处理:雨水收集处理后回用; ▲配套设备 1、反应区设备 高效沉淀池反应区设备由导流筒及提升式混合搅拌机组成。 结构说明: 导流筒由圆筒体、锥体及稳流栅组成。稳流栅的作用是消除上升流体的旋涡。 提升式混合搅拌机主要由减速机、立轴、搅拌桨叶(轴流式)及电控箱组成。减速机采用搅拌专用减速机,能同时承受弯矩和扭矩作用;立轴采用管轴结构,具有足够的刚度和强度;搅拌桨叶采用轴流提升设计,具有低扬程,大流量的特性;电控箱内设变频装置,可通过调节搅拌机的转速,实现最佳的搅拌、混合效果。 主要特点: ①特殊的轴流叶轮设计,提供大循环流量。 ②变频调速,适应性强。 ③搅拌专用减速机结构简单。 ④叶轮与导流筒间隙的合理设计,极大的提高了原水、絮凝剂和回流污泥的混合。 ⑤稳流栅内外双层的特殊设计,完全达到消除漩涡的目的。 2、澄清区设备 高效沉淀池澄清区设备主要由中心传动浓缩刮泥机、出水槽、斜管及支撑板组成。

反应池沉淀池工艺计算书

无锡西区燃机热电联产工程第一批辅机设备 2*500m3/h反应沉淀池 工艺计算书 江苏道和有限公司

目录 1、设计参数 (2) 2、工艺计算 (2) (1)管道混合器计算 (2) (2)絮凝反应池计算 (2) (3)沉淀池计算 (5)

1、设计参数 水处理能力 Q=500 ~575m 3/h 数量: 2座(合建) 处理工艺 药剂混合反应、絮凝、沉淀 混合时间 t=3~5秒 反应时间 T=13~15 min 沉淀池上升流速 V=2.0~2.3 mm/s (表面负荷7.20~8.28 m 3/m 2·h ) 要求最大外形尺寸 2座合建,(池外壁)17.8m (长)×14.8m (宽)×6.5m (高) 2、工艺计算 (1)管道混合器计算 ①混合时间计算: 管道混合器规格:DN400*L3300mm 管内流速:s m V /05.124.0360050012 =??? ??÷÷÷=π 混合时间:L÷V1=3.3÷1.05=3.14s ②水头损失: 内置混合单元3段 m N g v D N g v h 35.038.9205.14.043.1243.1224.024.02=???=??? ? ?????? ??==ζ ③校核GT 值: 9.97814 .31014.135.098003=???==-T h G μγ GT=978.9×3.14=3073(≥2000,符合要求) (2)絮凝反应池计算 絮凝反应池容积:Q÷60×T=575÷60×13=124.6m 3 絮凝反应池与沉淀池合建,沉淀池净宽6.6m 。絮凝反应池分三段,每段四格,隔墙墙厚0.2m ,池总高6.5m ,其中超高0.3m ,泥斗高1.0m ,平均水深为5m 。 絮凝反应池宽度:(6.6-0.2*3)÷4=1.5m 絮凝反应池长度:124.6÷6÷5=4.153m (取4.2m )

最新加强一级高效沉淀池处理工艺研究

加强一级高效沉淀池处理工艺研究

加强一级高效沉淀池处理工艺研究

摘要:由于经济的发展,很多城市附近水环境的有机污染不仅没有得到控制,还有恶化趋势。解决城市污水处理问题的根本途径是普及二级处理设施。我国的城市污水处理厂以二级生物处理为主,特别是近年建成的城市污水处理厂多是二级生物处理。全国117座城市污水处理厂中仅有24座为一级处理,约占总数的20.5%、总处理能力的17%;二级处理厂有93座,约占总数的79.5%、总处理能力的83%。二级生物处理污水厂由于能耗大,运行费用高,相当数量的污水处理厂没能正常运行,实际处理能力低于设计能力。 关键词:高效沉淀池   1 概述 由于经济的发展,很多城市附近水环境的有机污染不仅没有得到控制,还有恶化趋势。解决城市污水处理问题的根本途径是普及二级处理设施。我国的城市污水处理厂

以二级生物处理为主,特别是近年建成的城市污水处理厂多是二级生物处理。全国117座城市污水处理厂中仅有24座为一级处理,约占总数的20.5%、总处理能力的17%;二级处理厂有93座,约占总数的79.5%、总处理能力的83%。二级生物处理污水厂由于能耗大,运行费用高,相当数量的污水处理厂没能正常运行,实际处理能力低于设计能力。 污水强化一级处理工艺的研究,在基建与运行费用增加不多的条件下,较大地提高污染物的去除率,以达到大幅度削减有机污染物总量的目的。本研究的目的:结合上海某预处理厂出水的具体水质特点,综合考虑前人的研究成果,主要对高效沉淀池应用于城市污水化学强化一级处理进行较为系统的试验研究,确定各种工艺的处理效果、最优运行条件及参数; 2 高效沉淀池原理 2.1 化学加强一级处理基本原理

高效沉淀池

高效沉淀池工艺 工艺概述:高效沉淀池工艺是依托污泥混凝、循环、斜管分离及 浓缩等多种理论,通过合理的水力和结构设计,开发出的集泥水分 离与污泥浓缩功能于一体的新一代沉淀工艺。该工艺特殊的反应区 和澄清区设计,尤其适用于中水回用和各类废水高标准排放领域。 工艺原理: 高效沉淀池由反应区和澄清区两部分组成。反应区包括混合 反应区和推流反应区;澄清区包括入口预沉区、斜管沉淀区及浓缩 区。 在混合反应区内,靠搅拌器的提升混合作用完成泥渣、药 剂、原水的快速凝聚反应,然后经叶轮提升至推流反应区进行慢速 絮凝反应,以结成较大的絮凝体。整个反应区(混合和推流反应 区)可获得大量高密度均质的矾花,这种高密度的矾花使得污泥在 沉淀区的沉降速度较快,而不影响出水水质。 在澄清区,矾花慢速地从预沉区进入到沉淀区使大部分矾花 在预沉区沉淀,剩余矾花进入斜管沉淀区完成剩余矾花沉淀过程。 矾花在沉淀区下部累积成污泥并浓缩,浓缩区分为两层,一层位于 排泥斗上部,经泵提升至反应池进水端以循环利用;一层位 于排泥斗下部,由泵排出进入污泥处理系统。澄清水通过集 水槽收集进入后续处理构筑物。 优点: 絮凝体循环使用提高了絮凝剂的使用效果,节约 10%至30% 的药剂; 斜管的布置提升了沉淀效果,具有较高的沉淀速度,可达20 m/h-40m/h; 排放的污泥浓度高:可达30-550 克/升。一体化污泥浓缩避免了后续的浓缩工艺,产生的污泥可以直接进行脱水处理。 耐冲击负荷:对进水波动不敏感。 处理效率高,单位面积产水量大,占地面积小,土建投资低,尤其适用于改扩建工程;

▲应用领域: ◎ 饮用水:地表水的澄清和(或)软化; ◎ 工业自来水:工业自来水的制备; ◎ 城镇污水:初级沉淀和(或)深度除磷; ◎ 雨水处理:雨水收集处理后回用; ▲ 配套设备 1、反应区设备 高效沉淀池反应区设备由导流筒及提升式混合搅拌机组成。 结构说明: 导流筒由圆筒体、锥体及稳流栅组成。稳流栅的作用是消除上升流体的旋涡。 提升式混合搅拌机主要由减速机、立轴、搅拌桨叶(轴流式)及电控箱组成。减速机采用搅拌专用减速机,能同时承受弯矩和扭矩作用;立轴采用管轴结构,具有足够的刚度和强度;搅拌桨叶采用轴流提升设计,具有低扬程,大流量的特性;电控箱内设变频装置,可通过调节搅拌机的转速,实现最佳的搅拌、混合效果。 主要特点: ①特殊的轴流叶轮设计,提供大循环流量。 ②变频调速,适应性强。 ③搅拌专用减速机结构简单。 ④叶轮与导流筒间隙的合理设计,极大的提高了原水、絮凝剂和回流污泥的混合。 ⑤稳流栅内外双层的特殊设计,完全达到消除漩涡的目的。 2、澄清区设备 高效沉淀池澄清区设备主要由中心传动浓缩刮泥机、出水槽、斜管及支撑板组成。

平流式沉淀池

第一章总论 本次课程设计主要任务是对某城市50000m3/d污水处理厂三级处理工艺及部分构筑物进行设计。本设计所处理的原水,属于市政污水经过二级生物处理后的出水(中水),水的浊度、CODcr、SS等,均符合国家污水排放标准。但是作为景观用水和部分工业补充用水,其浊度和卫生指标偏高,需要进行进一步的深度处理,本次课程设计的目的就是以活性污泥法处理后的出水作为原水,采用混凝—沉淀工艺进一步处理,达到景观和部分工业用水的要求。 第一节设计任务和内容 一、设计任务 1、本次课程设计为初步工艺设计及部分构筑物设计计算,设计要求如下: (1)工艺设计:给出污水混凝—沉淀处理工艺流程图,并说明理由;给出设计高程图,要求为一次提升,自然流动。 (2)给出所要求单个构筑物结构设计,并设计计算,给出设计图。包括平面图、A- A、B- B、高程图以及工艺流程图。 2、处理工艺流程 来自于二级生物处理的污水,经格栅截留大颗粒有机物和漂浮物后,通过剂量槽后,经过泵提升后进入三级污水处理厂,经三级污水处理后符合要求的出水进入城市工业用水管道。 第二节基本资料 一、污水处理水量与水质 进入水处理厂的城市中水的水量与水质为: 设计流量:日处理废水50000m3 中水水质:PH值~7.0

水温4.5~25℃ ≤ 50 mg/L COD Cr ≤ 20 mg/L BOD 5 SS ≤ 250 mg/L TN ≤ 5 mg/L TP ≤ 0.05 mg/L 二、处理要求 中水经深度处理后应符合以下要求: PH值~7.0 ≤20 mg/L COD cr BOD ≤15 mg/L 5 SS ≤ 10 mg/L TN ≤ 5 mg/L TP ≤ 0.05 mg/L 三、气象及水文资料: 风向:冬季主导风向为西北风,夏季主导风向为东南风。风速:平均风速 < 2m/s, 最大风速 20m/s。 气温:年平均温度为6℃ 最冷月平均为-13.5 ℃ (1月) 最热月平均为22 ℃(7月) 水文:年平均降水量:417.5mm 年平均蒸发量:1824.2mm 地下水初见水位: 6~8m 地形地貌:厂区地势由西向东呈下降趋势。

某12000方高效沉淀池池设计计算

某12000方高效沉淀池池设计计算 一、设计水量 Q=12000m3/d=500m3/h=0.14m3/s 二、构筑物设计 1、澄清区 水的有效水深:本项目的有效水深按6.7米设计。 斜管上升流速:12~25m/h,取20 m/h。 ——斜管面积A1=500/20=25m2; 沉淀段入口流速取60 m/h。 ——沉淀入口段面积A2=500/60=8.3m2; 中间总集水槽宽度:B=0.9(1.5Q)0.4=0.9×(1.5×0.14)0.4=0.48m 取B=0.6m。 从已知条件中可以列出方程: X?X1=8.3 ——① (X-2)?(X-X1-0.4)=25 ——② 可以推出:A=X3-2.4X2-33.3X+16.3=0 当X=7.0时 A=8.6>0 所以取X=7.0。即澄清池的尺寸:7.0m×7.0m×6.7m=328m3 原水在澄清池中的停留时间:t=328/0.14=2342s=39min; X1=8.3/X=1.2 , 取X1=1.2m,墙厚0.2m 斜管区面积:7.0m×5.6m=39.2m2 水在斜管区的上升流速:0.14/39.2=0.0035m/s=12.6m/h

从而计算出沉淀入口段的尺寸:7m×1.2m。 沉淀入口段的过堰流速取0.05m/s,则水层高度:0.14÷0.05÷7=0.4m。另外考虑到此处设置堰的目的是使推流段经混凝的原水均匀的进入到沉淀段,流速应该比较低,应该以不破坏絮体为目的。如果按照堰上水深的公式去计算:h=(Q/1.86b)2/3=(0.14/1.86×7)2/3=0.046m。则流速为0.23m/s。这么大的流速经混凝的原水从推流段进入到沉淀段,则絮体可能被破坏。 因此,考虑一些因素,取1.05m的水层高度。 推流段的停留时间3~5min,取4 min。 V=500×3/60=25 m3 则宽度:25÷2.65÷7=1.34m,取1.5m。 2、污泥回流及排放系统

高效沉淀池施工方案.

南京浦口污水处理厂一期工程高效沉淀池施工方案 审核: 编制:

一.工程概况 (3) 二. 编制依据 (7) 三.施工准备及人员安排 (8) 四、主要施工方法 (9) 4.1 施工程序 (9) 4.2 工程测量 (9) 4.3 基础降水 (10) 4.4 基础开挖 (10) 4.5 级配砂石垫层施工 (12) 4.6 钢筋施工 (12) 4.7 模板施工 (14) 4.8 混凝土施工 (16) 五、季节性施工措施 (19) 5.1施工准备工作 (19) 5.2 雨季施工技术措施 (19) 六、确保工程质量技术组织措施 (20) 6.1质量保证措施 (20) 6.2工程质量目标 (20) 6.3质量保证体系 (20) 6.4工程施工依据 (21) 6.5保证工程质量主要措施 (21) 6.6工期保证措施 (21) 七、确保工程安全生产的技术组织措施 (22) 八、施工现场安全保证措施 (24)

一. 工程概况 1.1 项目概况 浦口经济开发区污水厂一期工程位于南京市浦口经济开发区桥林镇高旺河下游入江口附近。污水处理厂厂址处现为一片农田,地形相对较平缓,大部分区域现状地面标高为6.5m(吴淞高程系),高旺河入长江口处,多年平均水位为6.6~6.8m,设计洪水位11.00m。 考虑厂区雨水的排放、周边道路、厂区防洪及土方平衡等因素,污水处理厂设计地面标高确定为8.00m 污水厂一期工程土建5万m3/d,设备2.5万m3/d。 本工程污水处理采用多模式A/A/O工艺。主要工艺流程见下图 1.2 现场条件及同围环境 (1)本工程施工现场已经具备施工条件,道路交通及施工用临时用水用电均能满足现场施工需要,施工现场和周围环境等情况已现场踏勘为准。 (2)将施工所需的水、电线路接至施工场地的时间、地点和供应要求:合同签订后发包人提供水、电接口,土建中标人负责布设工地现场的临时供水、临时供电设施并进行日常维护管理以保证满足整个工程期间(包括最高峰值时)的需要,所发生的布设维护管理费用含

污水处理中沉淀工艺的原理及特点

污水处理中沉淀工艺的原理及特点 针对沉淀是去除水中悬浮物的主要单元,对沉淀工艺的进展方面进行了论述,主要介绍 了平流式沉淀池、蜂窝斜管填料沉淀池、高密度沉淀池、拦截式沉淀池的特点和优点,旨在 提高沉淀池的沉降效率。 目前,国内外的给水处理工艺大多采用沉淀(澄清)过滤和消毒形式,其中沉淀部分对 原水中悬浮物的去除显得尤为重要。沉淀池作为去除水中悬浮物的主要设施之一,在水行业 得到了广泛的应用。纵观沉淀构筑物的发展可以发现,在20世纪6O年代以前主要采用平流式、竖流式和辐流式沉淀池,60年代起各种澄清池盛行一时,70年代后,主要是斜管、斜板及复合型沉淀池。沉淀构筑物形式的改进提高了沉淀分离的效率。沉淀池的设计和开发都是 围绕怎样增加沉淀面积和改变水流流态这两方面进行的。沉淀池的设计总是以提高沉淀池的 沉降效率为目的。提高沉降效率有两种方法:1)缩短颗粒的沉淀距离、增大沉淀池面积,斜管沉淀属这一类;2)增大矾花颗粒的下沉速度,通过采用高效絮凝剂和优化絮凝工艺来实现。 1、平流式沉淀池 平流式沉淀池是目前我国大中型给水厂使用最广泛的池型,具有结构简单、管理方便、 耐冲击负荷强等优点。平流式沉淀池为矩形,上部为沉淀区,下部为污泥区,池前部有进水区,池后部有出水区。经混凝的原水流入沉淀池后,沿进水区整个截面均匀分配,进入沉淀区,然后缓慢流向出口区。水中的颗粒沉于池底,沉积的污泥定期排出池外。 2、蜂窝斜板(管)沉淀池 蜂窝斜板(管)沉淀是把与水平面成一定角度(一般为60。)的众多蜂窝斜板(管)组 件置于沉淀池中。水流可从下向上或从上向下流动,颗粒则沉于底部,而后自动滑下。从改 善沉淀池水力条件来分析,由于沉淀池水力半径大大减小,从而使雷诺数R大为降低,弗劳 德数大为提高,满足了水流稳定性和层流的要求。为了进一步提高沉淀效率,许多改良型的 蜂窝斜板(管)沉淀池应运而生。 蜂窝斜管填料特点: 1. 湿周大,水力半径小。 2. 层流状态好,颗粒沉降不受絮流干扰。 3. 当斜管填料管长为1米时,有效负荷按3-5吨/米2·时设计。V0控制在2.5-3.0毫米/秒范围内,出水水质最佳。 4. 在取水口处采用斜管填料,管长2.0~3.0米时,可在50-100公斤/米3泥砂含量的高浊 度中安全运行处理。 5. 采用斜管填料沉淀池,其处理能力是平流式沉淀池的3-5倍,加速澄清池和脉冲澄清池的 2-3倍。 6.采用优质无毒,孔径表面积大,不易老化,耐久性强,表面光滑,耐酸耐碱,轻质耐压,使用寿 命长,组装方便,安装牢固。

高效沉淀池设计方案

3600m3/d 高效沉淀池 方 案 设 计 二零一三年七月 目录 第一章概述................................................................. 1.1 总则................................................................... 1.2 方案说明............................................................... 第二章方案基础. ............................................................ 2.1 设计依据............................................................... 2.2 设计原则...............................................................

2.4 设计进水水量........................................................... 2.5 设计进、出水水质....................................................... 2.5.1 设计进水水质. ....................................................... 2.5.2 设计出水水质. ....................................................... 第三章工艺设计. ............................................................ 3.1 处理方案选择........................................................... 3.2 工艺选择............................................................... 3.2.1 混合............................................................... 3.2.2 反应............................................................... 3.2.3 沉淀............................................................... 3.2.4 工艺比选. ........................................................... 3.3 原则流程............................................................... 3.4 工艺说明............................................................... 第四章工艺单元设计. ........................................................ 4.1 主要工艺构(建)筑物、处理设备. ......................................... 4.1.1 加药系统. ........................................................... 4.1.2 高效沉淀池. ......................................................... 4.2 管材及防腐、防渗措施................................................... 4.2.1 管材............................................................... 4.2.2 防腐措施........................................................... 第五章电气设计. ............................................................ 5.1 设计依据............................................................... 5.2 设计范围............................................................... 5.3 电动装置控制要求....................................................... 第六章自动化系统及仪表. .................................................... 6.1 设计依据............................................................... 6.2 防雷、接地............................................................. 6.3 自控要求............................................................... 第七章建筑结构设计. ........................................................

反应沉淀池施工组织设计

第一章、工程概况及特点 第一节、工程建设概况 XXXX市西山工业供水工程三标段反应沉淀池,工程位于XXXX市西山青年渠幸福分水闸下游1.5KM处。工程设计单位为XXXX西北设计研究院有限公司,建设单位为XXXX管理经营有限公司。 反应沉淀池建筑面积为2261㎡;主体结构为全现浇框架结构,池体为钢筋砼结构,建筑高度13米。 工程合理使用年限为50年,抗震设防烈度为8度,抗震等级框架结构为一级,工作环境类别为二(b),屋面防水等级为三级,耐火等级为二级。 工程质量要求:合格。 工程工期要求:计划于2009年9月10日开工,2010年9月10日竣工。第二节、建筑设计特点 4)反应沉淀池 反应沉淀池分为池体部分和外围护框架部分; 外围护大屋面为网架结构,由专业公司设计施工; 反应沉淀池屋面:防水等级3级,4厚SBS 防水卷材,30厚细石混凝土找平层,1:6水泥焦渣找2%坡,保温采用90厚挤塑聚苯板;雨棚为3厚聚氨酯涂膜防水层; 楼地面:防滑地砖,规格600*600*8; 踢脚:与楼地面相对应踢脚; 地砖踢脚值班室、控制室; 顶棚:卫生间顶棚为硬质PVC条板吊顶,其他房间为白色水性耐擦洗涂料;

外墙:外墙弹性涂料,弹性底涂,柔性腻子,玻璃纤维网格布,挤塑聚苯板; 外门为彩钢夹芯板保温大门; 窗为带纱窗中空玻璃塑钢窗60型材,5+9+5厚白玻; 反应沉淀池池体内壁在水位线以下500处到池顶贴白色泳池砖。 池上部四周设有防护不锈钢栏杆。 散水:细石混凝土散水。 第三节、结构设计特点 本工程抗震设防烈度为八度第一组,2类建筑场地,框架抗震等级为一级,结构安全等级为二级,设计使用年限50年,露天环境与水土接触的构件所处环境类别为二b类环境,其余为一类环境。 1、框架结构的独立基础和水池的基础应当坐落在持力卵石层上,基坑开挖时应注意不得扰动基底原状土,且当开挖时应预留一定的人工开挖厚反应沉淀池分为池体部分和外围护框架部分。外围护部分基础为独立基础,基底标高不一,独立基础间设地梁,地梁上设钢筋混凝土挡土墙至±0.00。地上部分为框架结构,中间层设有廊道。女儿墙为2.8米高200厚钢筋混凝土墙。反应沉淀池为整体式水工钢筋混凝土结构,是该单位工程的主要和关键部位。池壁厚度主要为300和400厚,高度在6米以上。反应沉淀池池体部分主要有反应池、沉淀池两大部分组成。反应池由纵横向GB池壁构成网状式布局,各网孔池体间通过池壁上的洞口串通。沉淀池大空间结构布局,四周为钢筋混凝土池壁。 2、混凝土强度等级 反应沉淀池结构采用C30混凝土,基础垫层采用C15素混凝土;池体

高密度沉淀池技术

高效沉淀池技术 工艺概述: 高效沉淀池工艺是依托污泥混凝、循环、斜管分离及浓缩等多种理论,通过合理的水力和结构设计,开发出的集泥水分离与污泥浓缩功能于一体的新一代沉淀工艺。该工艺特殊的 反应区和澄清区设计,尤其适用于中水回用和各类废水高标准排放领域。 工艺原理: 高效沉淀池由反应区和澄清区两部分组成。反应区包括混合反应区和推流反应区;澄清区包括入口预沉区、斜管沉淀区及浓缩区。 反应区:泥渣、药剂、原水在混合反应区通过搅拌快速混合、凝聚,并在叶轮的提升作用下进入推流反应区完成慢速絮凝反应,以结成较大的絮凝体。整个反应区(混合和推流反 应区)可以获得大量高密度均质的矾花,水中的悬浮物以这种矾花为载体,可以在沉淀区快速沉降,而不影响出水水质。 澄清区:矾花慢速的从推流反应区进入预沉区,使得大部分矾花在预沉区沉淀,剩 余矾花在斜管沉淀区沉淀进入浓缩区累积、浓缩,澄清水通过集水槽收集进入后续处理构筑物。 浓缩区絮体经泵提升回流至反应池进水端循环利用,以保障系统絮体的浓度,增强系统的抗负荷能力;集泥坑内絮体及污泥由泵排出,进入污泥处理系统。 工艺优势:

?絮凝体循环利用,可节约10%至30%的药剂。 ?沉淀区布置斜管,提升了沉淀效果,出水水质好。 ?矾花密度高且均质,使系统的沉淀速度可达20 m/h-40m/h,有效的减小了占地面积。 ?排放的絮体浓度高达30-550g/L,可直接进行脱水,无需经浓缩池浓缩处理。 ?采用絮体回流技术,有效的保障了系统絮体浓度,使得系统耐冲击负荷能力强。 ?处理效率高,单位面积产水量大,占地面积小,土建投资低,尤其适用于改扩建工程。 应用领域: ◎生活污水及工业废水的深度处理。 ◎中水回用的预处理。 ◎自然水体的初级絮凝沉淀。 ◎原有水厂提标改造。

高效沉淀池设计方案(DOC)

3600m3/d高效沉淀池 方 案 设 计

二零一三年七月 目录 第一章概述 (1) 1.1总则 (1) 1.2方案说明 (1) 第二章方案基础 (2) 2.1设计依据 (2) 2.2设计原则 (2) 2.3项目范围 (3) 2.4设计进水水量 (3) 2.5设计进、出水水质 (3) 2.5.1设计进水水质 (3) 2.5.2设计出水水质 (3) 第三章工艺设计 (4) 3.1处理方案选择 (4) 3.2工艺选择 (4) 3.2.1 混合 (4) 3.2.2 反应 (4) 3.2.3 沉淀 (5) 3.2.4工艺比选 (7) 3.3原则流程 (7) 3.4工艺说明 (8) 第四章工艺单元设计 (9) 4.1主要工艺构(建)筑物、处理设备 (9) 4.1.1加药系统 (9) 4.1.2高效沉淀池 (10) 4.2管材及防腐、防渗措施 (11)

4.2.1 管材 (11) 4.2.2 防腐措施 (11) 第五章电气设计 (12) 5.1设计依据 (12) 5.2设计范围 (12) 5.3电动装置控制要求 (12) 第六章自动化系统及仪表 (13) 6.1设计依据 (13) 6.2防雷、接地 (13) 6.3自控要求 (13) 第七章建筑结构设计 (14) 7.1设计依据 (14) 7.2建筑装修 (14) 7.3抗震等级 (14) 7.4耐火等级 (14) 7.5地基处理 (14) 第八章环境保护、节能与劳动卫生 (15) 8.1环境保护 (15) 8.2节能措施 (15) 8.3劳动安全卫生措施 (15) 第九章设备(构筑物)材料 (16) 第十章运行成本分析 (17) 第十一章质量及售后服务承诺 (18)

反应沉淀池计算

网格絮凝池 1.1 设计参数 絮凝池设计(近期)2组,每池设计流量为: s m h m Q /182.0/25.6562 ×24 1.0510×0.3334==?=。 絮凝时间t=12 min ,设计平均水深h=3.3 m 。 1.2 设计计算 絮凝池的有效容积V :V=Qt=0.182×12×60=131.04 m 3 絮凝池的有效面积:A 1=V/h=131.04/3.3=39.7 m 2 水流经过每个的竖井流速v 1取0.12 m/s ,由此得单格面积: f=Q/ v 1=0.182/0.12=1.52 m 2 设计单格为正方形,边长采用1.30 m ,因此实际每格面积为1.69 m 3,由此得到分格数为n=39.7/1.69=24格。 实际絮凝时间为:min 25.124.7350.182 24 3.31.301.30==???= s t 絮凝池得平均水深为3.3 m ,取超高为0.45 m ,泥斗深度0.65 m 得到池得总高度为: H=3.3+0.45+0.65=4.4 m 。 从絮凝池到沉淀池的过渡段净宽1.5米。 取絮凝池的格墙宽为200 mm ,即0.2 m , 单组絮凝池:长:1.3×6+0.2×7=9.2 m 宽:1.3×4+0.2×5=6.2 m 进水管管径的确定:Q=0.182 m 3/s ,取流速为v=1.0m/s ,管径 m v Q D 481.00 .114.3182 .044=??== π,采用DN500铸铁管。 为避免反应池底部集泥,影响水处理效果,在每个反应池底各设Dg200mm 穿孔排泥管。采用坡度1%的满流管。 过孔洞流速v 2按照进口流速0.30m/s 递减到0.10 m/s ,上孔上缘在最高水位以下,下孔下缘与池底平齐,单竖井的池壁厚为200mm 。

高效沉淀池设计方案

高效沉淀池设计方案 Document number:PBGCG-0857-BTDO-0089-PTT1998

3600m3/d高效沉淀池 方 案 设 计 二零一三年七月 目录

第一章概述 总则 德安人一贯奉行“一次做对、顾客满意”的质量方针,严格贯彻ISO9001质量管理体系和ISO14001环境管理体系,健全“顾客全程星级体系”,为顾客提供一流的服务。卓越的品质,完美的服务,使得德安产品畅销全球。 我们坚持奉行“二十一世纪经营是以德安天下”的经营理念,服务于大众,服务于社会,共创二十一世纪的全球化环保集团。 德安集团,国家级高新技术企业,中国环保产业骨干企业,建有博士后科研工作站,以“净化环境、服务全球”为己任。通过近20年的发展,德安已形成完善的研发平台和销售服务平台,可提供:城乡给水处理、污水处理及中水回用、工业水处理及回用、水厂升级改造、污水厂升级改造、城乡垃圾资源化、河道湖泊治理等系列解决方案及设计、施工总承包服务。还提供水处理设备的研发、制造、销售一条龙服务。 德安通过持续科研创新,建有科研中心和中试工厂,并与清华大学、浙江大学、武汉大学以及国际生态城市建设者协会等国内外科研机构开展了多方向、多层次的深度合作,联合成立了多家科研机构。拥有300余项专利,并获得多个国家级奖项,继D型滤池广泛推广应用及编制行业标准,DA-EH污水处理工艺成功应用于国内外市政污水处理项目之后,又研制成功并向市场推出智慧型WTBOX多功能污水处理装置、循环冷却水协同处理装置、DE型滤池、DF滤池、DA新型滤布滤池、DA高效沉淀池、活动式螺杆污泥脱水机、DA螺旋式高效生物填料等多个领先技术,广泛应用于多个水处理领域工程。近期还将隆重推出DA无污泥污水处理技术、DA高效全自动油水分离器、水平流鳍片式沉淀池和污泥资源化治地膜技术等,期待与您的合作。 方案说明 该项目为煤矿废水,处理水量为150m3/h,进水SS≤2200mg/L,经处理后,出SS 度≤80mg/L。据此,浙江德安科技股份有限公司根据建设方提供的资料推荐以下处理方案。 第二章方案基础 设计依据 ?《室外给水设计规范》(GB50013-2006) ?《室外排水设计规范》(GB50014-2006) ?《水处理设备技术条件》(JB/T2932-1999)

相关文档
最新文档