肿瘤放射物理学 胡逸明 超简略学习笔记(详细)

肿瘤放射物理学 胡逸明 超简略学习笔记(详细)
肿瘤放射物理学 胡逸明 超简略学习笔记(详细)

将单质看成单个原子,将化合物作质量加权处理后,每克电子数A A

e N M Z

N =,电子数密度(单位体积电子数)A e N n ρ= 衰变常数Ndt

dN =

λ,放射性活度t

e A N A λλ-==0 Bq Ci 10107.31?=

λ

693

.02

1=

T

()γX 光子和非单质的相互作用可以等效为与一单质的相互作用,这种单质用有效原子序数

来表示,m

n

m i

i Z Z ∑=1α,其中m 取3到3.8,()

∑=

n

i i

i j

j j j M Z

w M Z w 1

//α

光电效应为光子将轨道电子电离留下空位,外层电子退激发出X 射线或将能量传递给更外层电子将其电离(俄歇电子),光电效应的

ρ

μτ与8

.3~3Z 成正比,与()3νh 成反比 康普顿效应为光子将一部分能量用于电离轨道电子,自己损失能量后改变运动方向,康普顿效应的

ρ

μc

与原子序数无关,随能量增大而减小 电子对效应为光子从原子核旁经过,在库仑场的作用下生成一对正负电子,其ρ

μp

随原子序数增大而迅速增大,随能量增大而增大

能量从小(keV 200)到大(MeV 5)为光康电 线性衰减系数Idt

dI

-

=μ,质量衰减系数ρμ

在空气中,()γX 辐射产生的次级电子所电离出的同一种符号的离子总电荷量dQ 与dm 的比值为照射量X ,单位是库伦每千克,伦琴和它的关系是1

4

1058.21--??=Kg C R ,照射量不考虑轫致辐射产生的电离

吸收剂量为不仅仅考虑空气时,照射量所转化成的能量,物质对辐射的吸收就是辐射产生的

次级电子对物质原子的电离和次级电子产生的轫致辐射对物质原子的电离,这过程中有次级电子的动能被物质吸收,吸收剂量不考虑轫致辐射的部分,D 的单位1

11-?=Kg J Gy ,和拉德的关系是Rad Gy 1001=

比释动能是吸收剂量加上轫致辐射后总的次级电子的动能被物质吸收的部分,单位也是戈瑞,符号为K

在电子平衡的情况下(考察点的体积尺度远大于次级电子的射程,()γX 辐射能量较低,物质成分均匀),比释动能等于吸收剂量,在空气中,且电子平衡,则有e

W

X D K a a ?

==,e 为每一离子的电荷,

C J e

W

/97.33= MLC 多叶准直器三种安排叶片的位置为

内交-保护靶周围器官和组织 外交-保证足够剂量 中点交

OAR 危及器官,LET 传能线密度,RBE 相对生物效应,OER 氧增加比,m keV μ/10用来区分高低LET 射线,RBE 越高,OER 越小越好,高LET 射线下能达到 SAD 源等中心距SSD 源皮距STD 源瘤距

PDD 百分深度剂量(小于kV 400射线参考点取体表) 矩形野或其它野需要转化成方野 TAR 组织空气比

反射因子BSF 为最大剂量深度处的TAR FSZ 表示射野面积 SAR 散射空气比 TPR 组织模体比 OUF 射野输出因子 S 准直器散射因子 SPR 散射模体剂量比 TMR 组织最大剂量比 SMR 散射最大剂量比 能量从低到高的等剂量分布为

楔形板的楔角σ和使用楔形板后等剂量曲线与水平方向的夹角楔形角α不同 OAR 射野离轴比 POAR 原射线离轴比 BF 边界因子

切线野照射时治疗乳腺癌体外照射最常用的方法

TBI 为()γX 射线全身照射

BMT 骨髓移植

PB-SCT 外周血干细胞移植

STBI 单次全身照射FTBI 分次全身照射 IP 间质性肺炎

高能电子束由于有射程可以有效避免靶区后深度组织的照射,但皮肤剂量相对较高 散射箔或者电磁偏转将电子束展宽,电子限光筒形成射野并且利用散射电子增加电子以弥补射野边缘剂量的不足

高能电子束的百分深度剂量分布分为剂量建成区,高剂量坪区,剂量跌落区,X 射线污染区 电子束治疗的计划设计: 能量与射野的选择 电子束的斜入射修正 组织不均匀性修正 电子束补偿 射野邻接

挡铅技术将不规则野改成适合靶区

近距离照射分为腔内照射,组织间插植照射,管内照射,表面施源器照射 近距离照射满足平方反比定律

系统指治疗体积内获得一适宜的剂量分布,要求必须遵循的一系列放射源分布的规则,如使用放射源的类型,强度,应用的方法和几何设置

低剂量率照射(LDR )h Gy /2~4.0,高剂量率照射(PDR )h Gy /12

腔内照射的斯德哥尔摩系统使用较高强度的放射源分次照射,巴黎系统用低强度放射源连续照射,曼彻斯特系统基于巴黎系统

ICRU 法为中国医学科学院肿瘤医院从斯德哥尔摩系统发展来的 MTD 为最小靶剂量 MCD 为平均中心剂量

150%的MCD 为高剂量区,90%的MCD 为低剂量区

分次照射间隔小于1天,大于等于4小时,为超分割照射;间隔小于4小时,以多次高剂量率照射模拟连续低剂量率照射的方式为脉冲式照射 靶区TV 体表SK

立体定向插植实现步骤:

患者治疗部位影像资料和立体定位参数的获取 三维图像重建 确定插植方向 确定靶剂量 剂量优化

立体定向插植的实施

剂量优化算法LLS 和QP

CI 靶区覆盖指数为接受的剂量等于或大于处方剂量范围的体积和总靶区体积的分数 EI 靶外体积指数为接受的剂量等于或大于处方剂量范围的靶外体积与总靶区体积的分数 HI 靶区剂量均匀性指数指1到1.5倍的剂量的靶区体积占总靶区体积的分数

OI 超剂量体积指数指2倍

治疗增益比为肿瘤控制率和正常组织损伤率之比,治疗比大于1才可能治愈 治疗比为正常组织耐受剂量和肿瘤致死剂量之比

并行组织并发症概率受照射体积和平均剂量的影响,串行组织的放射并发症主要取决于最大剂量

临床剂量学四原则: 肿瘤剂量准确

治疗的肿瘤区域内,剂量变化不超过5%

照射野的设计要提高治疗区域内的剂量,降低照射区正常组织的受量 保护肿瘤周围重要器官

肿瘤区GTV 临床靶区CTV 内靶区ITV 计划靶区PTV 治疗区TV 照射区IV 冷热剂量区CTV 的下上5%

考虑靶区最大剂量时要求面积至少为2平方厘米 靶区平均剂量MTD

靶区模剂量为出现频率最多的剂量

靶区热点为ITV 外大于规定的靶剂量的热剂量区的范围 靶剂量(名义剂量)为有效控制肿瘤的致死剂量 危及体积是RV

体外照射有固定源皮距SSD 技术,等中心定角SAD 技术,旋转ROT 技术 正交野中心轴相互垂直但不相交

肿瘤内泛氧细胞的氧化原理类似于消除铁锈

晚反应正常组织的修复能力比肿瘤组织的强

晚反应组织在整个治疗过程中细胞基本不增殖,肿瘤组织相反 分次照射有利于泛氧细胞治疗

肿瘤控制概率TCP 表示95%杀灭概率,用95TCD 表示 肿瘤控制率和正常组织无并发症概率的乘积UTC P

每个功能单元的损伤是随机的,彼此独立发生的有脊髓,神经,小肠

只有足够多的功能单元同时受损,整个组织或器官才可能受损的有肺,肝和肾 常规每周5次,每次200cGy ,共25此,改为每周3次,共21次 TDF 模型下3169.0538

.110--?=x nd TDF 要保持相等,其中x 为每次治疗的时间间隔,d 为每

次剂量,n 为总次数

L-Q 模型下若总治疗时间不同()01T T K d Nd BED --???

?

? ??+=βα要保持相等,T 为以天为单位的总治疗时间,N 为总的次数,对于晚反应组织,肿瘤组织和早反应组织,βα

,K 和

0T 可分别查表,若总的治疗时间相同(周计),则无需考虑细胞增殖,舍去后面减去的式子

多程治疗下,如第一周和第二周都是5次,每次250cGy ,第三周休息,第四周又是,第五周休息,第六周5次要求剂量满足和常规每周5次,总共30次,每次200cGy 的治疗一样的效果

TDF 模型下作衰减修正

(

)()()()

3

169

.0538.111.0538.111.0538.13169

.0538

.110

57

5352825052114250101030

42

200

30----??

?????+????????+??=

???d

外照射的TDF 如上计算,近距离照射的TDF 用335

.11076.4-??=Tr

TDF ,其中T 为小时

计的插植时间,r 为每小时的剂量

用L-Q 模型时,考虑总的照射时间是否相等,外照射的BED 如上计算,近距离照射的BED

用????

?????

????? ??--??? ??+=-T e R RT BED T

μβαμμ1121,其中R 为每小时的剂量,T 为小时计的照射时间,其它可查表 REV 医生方向观

BEV 射野方向观

DVH 剂量体积直方图 电子射野影像系统EPID 低熔点铅LML

笔形束为通过无限小面积的窄电子束

治疗方案的优化应该贯穿整个放射治疗的计划设计和执行的过程,包括靶区和重要器官范围的确定,治疗目标的选择和物理方案的设计和实施

生物目标函数就是使经过照射后肿瘤的复发概率最低而正常组织或器官的损伤最小,即使

UTC P 最大

最少抗拒线为从入射的皮肤表面到肿瘤中心的射线路径最小 SA 模拟退火算法

FSA 快速模拟退火算法

VSGSA 步长可变的通用退火算法 VFSR 超快速模拟退火算法

理想的放射治疗技术应该按照肿瘤形状给靶区很高的致死剂量,而靶区周围的正常组织不受到照射,要使治疗区的形状和靶区形状一致,需要从三维方向上进行剂量分布的控制 适形放射治疗使高剂量区剂量分布的形状在三维方向上与病变靶区的形状一致 对于不同类型和期别的肿瘤,应该由一个最佳的靶区剂量

治疗计划的设计又分为治疗方针的制定和照射野的设计与剂量分布的计算 物理技术方面的QA 包括治疗机和模拟机的机械和几何参数的检测和调整,加速器剂量监测系统和钴-60计时系统的检测和校对 要特别定期留意床面的下垂情况 治疗过程中剂量不准确的原因

物理剂量的不准确

处方剂量测定的不准确

照射部位解剖结构的差异

治疗机发生故障

工作人员操作失误

治疗计划系统厂家提供的系统文档和用户培训是QA程序的开始

通过阅读文档和接受培训,物理师应该熟练地完成患者的治疗计划设计,指导如何正确输入参数和理解系统的输出,并对系统所采用的计算机硬件和操作系统有初步认识。理解系统所采用的物理模型,指导如何正确输入治疗机的测量数据,能够完成系统的日常维护及处理简单的故障

系统规格是系统购买合同中的一项技术文件

计划系统安装之后验收分为系统硬件,系统软件和计划软件三步

确认系统规格中所要求的功能均已安装之后的算法验证极其重要

确定性效应即非随机性效应,指较大剂量照射全部组织或局部组织,杀死相当数量的细胞,使得组织或器官中产生临床课检查出的组织变化或严重功能性损伤。确定性效应是一种有阀值的效应。

辐射距离防护的基本原理是平方反比定律,屏蔽是外照射防护的主要方法

工作负荷W指规定工作时间内在特定位置处产生的辐射总剂量

使用因子U指原射线或散、漏射线射向防护计算点方向的剂量负荷比或照射时间比

居住因子T指各类人员停留相关区域的时间与治疗机总出射束时间的比例

距离因子d以米为单位,防护计算点或防护区域代表点距放射源的直线距离

主屏蔽墙用来防护原射线,次屏蔽墙用来防护散射线和漏射线

10以上时,高能X光子会与治疗头中多种高原子序数当医用加速器的X射线能量高于MV

的材料,如铅,钨等发生光核反应而产生中子辐射

治疗门一般不用混凝土,用铁,铅类高原子序数的材料,此时必须用含硼的聚乙烯材料,首先将中子慢化,然后将其热中子和中能热中子俘获,再用铅,铁将俘获过程中产生的γ射线吸收

防护检测包括治疗机头和治疗准直器的漏射,治疗室外的X射线剂量,治疗室外的中子剂量

肿瘤放射治疗知识点及试题

名词解释 1.立体定向放射治疗(1. 2.2)指借助CT、MRI或血管数字减影仪(DSA)等精确定位技术和标志靶区的 头颅固定器,使用大量沿球面分布的放射源,对照射靶区实行聚焦照射的治疗方法。 2.立体适形放射治疗(1.2.2)是通过对射线束强度进行调制,在照射野内给出强度变化的射线进行治疗,加 上使用多野照射,得到适合靶区立体形状的剂量分布的放射治疗。 3.潜在致死性放射损伤(1.2.4)当细胞受到非致死放射剂量照射后所产生的非致死性放射损伤,结局可导 致细胞死亡,在某些环境下(如抑制细胞分裂的环境)细胞的损伤也可修复。 4.亚致死性放射损伤(1.2.4)较低剂量照射后所产生的损伤,一般在放射后立即开始被修复。 5.加速再增殖(1.2.4)在放疗疗程中,细胞增殖的速率不一,在某一时间里会出血细胞的加速增殖现行,此 现象被为称为加速再增殖。 6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8-2.0Gy,每周照射5d,总剂量60-70Gy,照射 总时间6~7周的放疗方法。 7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子的任何因素进行修正。一 般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。 8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀灭效应,提高局控率的药物。 包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。 9.放射保护剂(1.2.1)能够有效的保护肿瘤周围的正常组织,减少放射损伤,同时不减少放射对肿瘤的杀灭 效应化学修饰剂。 10.热疗(1.2.1)是一种通过对机体的局部或全身加温以达到治疗疾病的目的的治疗方法。 11.亚临床病灶临床及显微镜均难于发现的,弥散于正常组织间或极小的肿瘤细胞群集,细胞数量级≤ 106,如根治术或化疗完全缓解后状态。 12.微小癌巢为显微镜下可发现的肿瘤细胞群集,细胞数量级>106,如手术边缘病理未净。 13.临床病灶临床或影像学可识辨的病灶,细胞数量级≥109,如剖腹探查术或部分切除术后。 14.密集肿瘤区(GTV)指通过临床检查或影像检查可发现(可测量)的肿瘤范围,包括原发肿瘤及转移灶。 15.计划靶区(PTV)指考虑到治疗过程中器官和病人的移动、射野误差及摆位误差而提出的一个静态 的几何概念,包括临床靶区和考虑到上述因素而在临床靶区周围扩大的范围。CTV+0.5cm 16.“B”症状临床上将不明原因发热38℃以上,连续3天;盗汗;不明原因体重减轻(半年内体重减 轻大于10%)称为“B”症状。 17.咽淋巴环(韦氏环,Waldege’s ring)是由鼻咽腔、扁桃体、舌根、口咽以及软腭背面淋巴组织 所围绕的环形区域。 1、肿瘤放射治疗学:是研究和应用放射物质或放射能来治疗肿瘤的原理和方法一门临床学科。它包括放射物理学、放射生物学、放疗技术学和临床肿瘤学。 2、放射物理学——研究各种放射源的性能和特点,治疗剂量学和防护。 3、放疗技术学——研究具体运用各种放射源或设备治疗病人,射野设置定位技术摆位技术。 4、放射生物学——研究机体正常组织及肿瘤组织对射线反应以及如何改变这些反应的质和量。 5、临床肿瘤学——肿瘤病因学,病理组织学,诊断学以及治疗方案的选择,各种疗法的配合。 6、亚致死性损伤(sublethaldamage,SLD) 细胞受到照射后在一定时间内能够完全修复的损伤。 7、潜在致死性损伤(potential lethal damage,PLD)细胞受到照射后在适宜的环境或条件能够修复,否则将转化为不可逆损伤,从而最终丧失分裂能力。 8、致死性损伤(lethal damage,LD)细胞所受损伤在任何条件下都不能修复。 9、氧效应:放射线和物质作用在有氧和无氧状态下存在差异的现象 无氧状态产生一定生物效应的剂 10、氧增强比=————————————————————

肿瘤放射治疗技术基础知识-4

肿瘤放射治疗技术基础知识-4 (总分:100.00,做题时间:90分钟) 一、A1型题(总题数:40,分数:100.00) 1.公众照射的年均照射的剂量当量限值为 (分数:2.50) A.全身<5mSv任何单个组织或器官<5mSv B.全身<5mSv任何单个组织或器官<50mSv √ C.全身<1mSv任何单个组织或器官<20mSv D.全身<5mSv任何单个组织或器官<15mSv E.全身<20mSv任何单个组织或器官<50mSv 解析: 2.放射工作人员的年剂量当量是指一年内 (分数:2.50) A.工作期间服用的治疗药物剂量总和 B.检查自己身体所拍摄胸片及做CT等所受外照射的剂量当量 C.工作期间所受外照射的剂量当量 D.摄入放射性核素产生的待积剂量当量 E.工作期间所受外照射的剂量当量与摄入放射性核素产生的待积剂量当量的总和√ 解析: 3.为了防止非随机性效应,放射工作人员任一器官或组织所受的年剂量当量不得超过下列限值(分数:2.50) A.大脑50mSv,其他单个器官或组织150mSv B.眼晶体150mSv,其他单个器官或组织500mSv √ C.脊髓50mSv,其他单个器官或组织250mSv D.性腺50mSv,其他单个器官或组织250mSv E.心脏50mSv,其他单个器官或组织750mSv 解析: 4.为了防止随机性效应,放射工作人员受到全身均匀照射时的年剂量当量 (分数:2.50) A.不应超过10mSv B.不应超过20mSv C.不应超过50mSv √ D.不应超过70mSv E.不应超过100mSv 解析: 5.临床患者照射时常用的防护措施有 (分数:2.50) A.照射区域附近使用铅衣,照射区域外使用蜡块 B.照射区域附近使用铅挡块,照射区域外使用铅衣√ C.照射区域附近使用楔形板,照射区域外使用铅衣 D.照射区域附近使用铅衣,照射区域外使用固定面膜 E.照射区域附近使用真空垫,照射区域外使用铅衣 解析: 6.放疗机房屏蔽设计时应当考虑的因素 (分数:2.50) A.尽量减少或避免电离辐射从外部对人体的照射 B.使职业照射工作人员所接受的剂量低于有关法规确定的剂量限值

肿瘤放射治疗学

肿瘤放射治疗学Radiation Oncology (一)放射治疗学简史: a)1885. X 射线的发现 b)1902. 成功治疗一例患皮肤癌的女患者 c)1922. 报告一组喉癌患者的治疗结果,确立放射治疗在临床肿瘤学中的地位 d)1932. 在临床实践累积的基础上Coutard医生提出传统的时间-剂量分割照射方式 e)1951. 提出了立体定向放射手术概念 f)1968. 立体放射外科设备(γ刀)进入临床应用 g)1959. 建立三维适形放射治疗概念 h)1990 提出逆向计划设计概念 (二)肿瘤放疗的地位 a)应用:我国约70%的恶性肿瘤病人需放射治疗; b)地位:1998年WHO统计:目前有45%的恶性肿瘤可以治愈(手术治愈22%,放疗治 愈18%,化疗治愈5%); c)优势:副作用小,器官功能保存完整; (三)放射治疗中的基本概念: a)放射敏感性:组织细胞对射线程度不同的反映; b)肿瘤控制概率&正常组织并发症概率: i.控制肿瘤的同时不能给病人造成不可接受的放射损伤 ii.放射诱发的正常组织改变取决于放射治疗的单次剂量、总剂量、照射体积 c)正常组织耐受量: i.放射最敏感组织(照射1000~2000CGy):生殖腺、晶体、胎儿、生长中的骨、 软骨等。 ii.中等敏感组织(照射2000~4500CGy):肾、肺、心脏、甲状腺、垂体、淋巴结等。 (四)辐射生物效应原理及放射肿瘤学基本原则 a)射线高能粒子在生物体穿射经迹上的能量沉积造成细胞关键靶的损伤效应 i.直接作用:射线粒子次级电子直接造成靶原子的电离或激发,导致生物学改 变。 ii.间接作用:射线粒子或次级电子与另一原子或分子相互作用,产生自由基,间接损伤一定扩散距离内的细胞靶,导致生物学改变。 b)细胞核DNA 双链断裂是辐射引起各种生物效应最基本的损伤; i.DNA 双链断裂是辐射所致最关键的损伤 ii.细胞所发生且未能修复的DNA双链断裂均数与辐射生物效应的严重程度成正比 c)分次照射的生物学基础(4R) i.细胞放射损伤的修复( Repair) ii.周期时相的再分布( Redistribution) iii.肿瘤乏氧细胞的再氧合( Reoxygenation ) iv.再增殖( Repopulation ) d)放疗的常规分割剂量:5d/1w 1次/d 2Gy/次连续5~7周;Gy是指放射剂量单位, 是电离辐射吸收剂量的标准单位,相当于焦耳每千克(1 J·kg -1)。 e)放射治疗的三大基础? f)正常组织和肿瘤组织在电离辐射后反应过程有哪些不同

肿瘤放射治疗知识点及试题

名词解释 1.立体定向放射治疗(1. 2.2)指借助CT、MRI或血管数字减影仪(DSA)等精确 定位技术和标志靶区的头颅固定器,使用大量沿球面分布的放射源,对照射靶区实行聚焦照射的治疗方法。 2.立体适形放射治疗(1.2.2)是通过对射线束强度进行调制,在照射野内给出 强度变化的射线进行治疗,加上使用多野照射,得到适合靶区立体形状的剂量分布的放射治疗。 3.潜在致死性放射损伤(1.2.4)当细胞受到非致死放射剂量照射后所产生的非 致死性放射损伤,结局可导致细胞死亡,在某些环境下(如抑制细胞分裂的环境)细胞的损伤也可修复。 4.亚致死性放射损伤(1.2.4)较低剂量照射后所产生的损伤,一般在放射后立 即开始被修复。 5.加速再增殖(1.2.4)在放疗疗程中,细胞增殖的速率不一,在某一时间里会 出血细胞的加速增殖现行,此现象被为称为加速再增殖。 6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8-2.0Gy,每周照射 5d,总剂量60-70Gy,照射总时间6~7周的放疗方法。 7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子 的任何因素进行修正。一般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。 8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀 灭效应,提高局控率的药物。包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。

9.放射保护剂(1.2.1)能够有效的保护肿瘤周围的正常组织,减少放射损伤, 同时不减少放射对肿瘤的杀灭效应化学修饰剂。 10.热疗(1.2.1)是一种通过对机体的局部或全身加温以达到治疗疾病的目的的 治疗方法。 11.亚临床病灶临床及显微镜均难于发现的,弥散于正常组织间或极小的肿瘤 细胞群集,细胞数量级≤106,如根治术或化疗完全缓解后状态。 12.微小癌巢为显微镜下可发现的肿瘤细胞群集,细胞数量级>106,如手术边 缘病理未净。 13.临床病灶临床或影像学可识辨的病灶,细胞数量级≥109,如剖腹探查术或 部分切除术后。 14.密集肿瘤区(GTV)指通过临床检查或影像检查可发现(可测量)的肿瘤范围, 包括原发肿瘤及转移灶。 15.计划靶区(PTV)指考虑到治疗过程中器官和病人的移动、射野误差及摆位 误差而提出的一个静态的几何概念,包括临床靶区和考虑到上述因素而在临床靶区周围扩大的范围。 CTV+0.5cm 16.“B”症状临床上将不明原因发热38℃以上,连续3天;盗汗;不明原因 体重减轻(半年内体重减轻大于10%)称为“B”症状。 17.咽淋巴环(韦氏环,Waldege’s ring)是由鼻咽腔、扁桃体、舌根、口咽 以及软腭背面淋巴组织所围绕的环形区域。 1、肿瘤放射治疗学:是研究和应用放射物质或放射能来治疗肿瘤的原理和方法一门临床学科。它包括放射物理学、放射生物学、放疗技术学和临床肿瘤学。 2、放射物理学——研究各种放射源的性能和特点,治疗剂量学和防护。 3、放疗技术学——研究具体运用各种放射源或设备治疗病人,射野设置定位技术摆位技术。 4、放射生物学——研究机体正常组织及肿瘤组织对射线反应以及如何改变这些反应的质和量。

《放射治疗学》考试题

《放射治疗学》试卷 姓名专业 一、单项选择题(每题2分,共40分。请将答案写在表格内) 1.用于治疗肿瘤的放射线可以是放射性核素产生的射线是: A.αB.δC.θ 线治疗机和各类加速器产生的不同能量的射线是: A.γB.αC.X 3.各类加速器也能产生的射线是: A.电子束B.高级质子束C.低能粒子束 4.放射治疗与外科手术一样,是: A.局部治疗手段B.全身治疗手段C.化学治疗手段 5.放射治疗是用什么物质杀伤肿瘤细胞,达到治愈的目的 A.放射线B.化学药物C.激光 6.放射线治疗的适应证比较广泛,临床上约有多大比例的恶性肿瘤病人需要做放射治疗A.50% B.70% C.90% 钴的半衰期是: A.年B.年C.年 8.几个半价层厚度的铅,可使原射线的透射率小于5% A.~ B.~7.0 C.~ 9.照射患者一定深度组织的吸收剂量为: A.组织量B.空气量C.机器输出量 10.放射源到体模表面照射野中心的距离是: A.源皮距B.源瘤距C.源床距 11在放射治疗中,直接与肿瘤患者治疗有关的常用设备有: A.DSA B.适形调强C.加速器和钴-60治疗机 钴治疗机的半影有: A.物理半影B.化学半影C.散射半影 13.高能x射线的基本特点是: A.等中心照射较60钴治疗机更准B.在组织中有更高的穿透能力C.照射更准确14.高能电子束的基本特点是: A.高能电子束易于散射B.主要用于深部肿瘤的照射 C.不同能量的电子束在介质中有确定的有限射程 15.模拟治疗定位机的临床应用主要表现在: A.肿瘤和敏感器官的定位B.评价治疗计划的好坏C.固定病人的体位 16.放射治疗中用的楔形板的楔形角度有: A.100.200C 17.放射敏感的肿瘤是指: A.给以较低的剂量即可达到临床治愈B.给以较低的剂量即可达到永久治愈C.该类肿瘤不易远处转移 18.立体定向放射治疗是: A.精确放射治疗B.根治性放射治疗C.普通放射治疗 19.一般来讲,人体组织细胞对放射线的敏感性与组织繁殖能力成正比,与分化程度成反比,即: A.繁殖能力愈强的组织对放射线愈敏感 B.繁殖能力愈强的组织对放射线愈不敏感 C.分化程度愈高的组织对放射线愈敏感 20.各种不同组织接受照射后能够耐受而不致造成不可逆性损伤所需要的最大剂量为: A.该组织的耐受剂量B.该组织的损伤剂量C.该组织的治疗剂量 二、填空题(每空1分,共40分) 1.在照射的线束内,把线束内测量的同等剂量点连线的曲线称_______________。 2.远距离放射治疗的方式有__________放射治疗技术,__________放射放射治疗技术,_________放射治疗技术。3.近距离放射治疗的方式有____________技术,______________技术,_________技术,_____________技术。 4.放射治疗的种类有___________放射治疗,____________放射治疗,__________放射治疗,__________放射治疗,___________放射治疗。 5.肿瘤区__________是指通过临床或影像检查可发现的肿瘤范围,包括_____________,_____________和____________。 6.恶性肿瘤的放射治疗剂量应当选择在正常组织能够耐受且肿瘤细胞致死的范围内,这样才能使肿瘤逐渐消退,周围正常组织不产生严重损伤。对射线不同敏感的肿瘤放射剂量大致分:_______________的肿瘤剂量,______________肿瘤剂量,______________的肿瘤剂量,_____________的肿瘤剂量,_________放射治疗剂量。 7.根据楔形板造成的等剂量曲线倾斜变形结果看,楔形板使用具有__________,放疗摆位中必须注意其__________,严格遵守___________的要求,如果使用中楔形板方向出现错误,结果将适得其反。 8.肿瘤放疗中,由于病灶总是不规则形状,常需要用铅挡块或加速器多叶准直器系统屏蔽遮挡___________或____________,使其免受或少受照射,形成___________。 9.斗蓬野照射技术一般适用于___________隔上病变的治疗,照射范围包括______,___________,__________,___________。 10.全身照射主要用于____________及某些全身广泛性且对_______________的恶性肿瘤的治疗。 11.全身照射技术主要用于白血病的骨髓移植予处理,可以达到三个目的,_________________,________________,________________________。 12.体位固定技术大致分两种_______________, ________________。 三、问答题(20分) 阐述60钴治疗机的临床应用特点。

肿瘤学试题库肿瘤放射治疗基础

肿瘤放射治疗 选择题 A1型题 1.对放射治疗高度敏感的肿瘤是: A(6. 2.1) A.淋巴组织肿瘤 B.结肠癌 C.皮肤鳞癌 D.子宫颈癌 E.乳腺癌 2.近距离治疗在何种肿瘤的治疗中是主要的放疗手段?C(6.2.1) A、鼻咽癌 B、食管癌 C、子宫颈癌 D、肺癌 E、肝癌 3.通过何种方法的使用可改变X线的质?B(6.2.4) A、限光筒 B、滤过板 C、改变球管电流 D、全部方法 E、以上都不是 4.在照射野边缘挡铅块可减少何种半影? D (6.2.4) A、几何半影 B、穿射半影 C、散射半影 D、以上都是 E、以上都不是 5.下同能量的电子束,有效治疗深度(cm)约为电子束能量(MeV)的多少?A( 6.2.4) A、1/3~1/2 B、1/3~2/3 C、1/3~1/4 D、1/4~2/3 E、1/5~1/4 6.以下何种组织属于早反应组织?A(6.2.4) A、肿瘤 B、软组织 C、中枢神经 D、以上都是 E、以上都不是 7.在标准治疗条件下,眼晶体出现白内障的最低耐受量(TD5/5)为:A(6.2.4) A、500cGy B、600cGy C、700cGy

D、1000cGy E、1200cGy 8.在标准治疗条件下造成永久不育,卵巢的最低耐受量(TD5/5)为: A(6.2.4) A、200cGy B、400cGy C、600cGy D、1000cGy E、1200cGy 名词解释 1.立体定向放射治疗(1. 2.2)指借助CT、MRI或血管数字减影仪(DSA)等精确定位技术 和标志靶区的头颅固定器,使用大量沿球面分布的放射源,对照射靶区实行聚焦照射的治疗方法。 2.立体适形放射治疗(1.2.2)是通过对射线束强度进行调制,在照射野内给出强度变化的 射线进行治疗,加上使用多野照射,得到适合靶区立体形状的剂量分布的放射治疗。 3.潜在致死性放射损伤(1.2.4)当细胞受到非致死放射剂量照射后所产生的非致死性放射 损伤,结局可导致细胞死亡,在某些环境下(如抑制细胞分裂的环境)细胞的损伤也可修复。 4.亚致死性放射损伤(1.2.4)较低剂量照射后所产生的损伤,一般在放射后立即开始被修 复。 5.加速再增殖(1.2.4)在放疗疗程中,细胞增殖的速率不一,在某一时间里会出血细胞的 加速增殖现行,此现象被为称为加速再增殖。 6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8+2.0Gy,每周照射5d,总剂量 60-70Gy,照射总时间6~7周的放疗方法。 7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子的任何因素 进行修正。一般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。 8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀灭效应,提 高局控率的药物。包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。 9.放射保护剂(1.2.1)能够有效的保护肿瘤周围的正常组织,减少放射损伤,同时不减少 放射对肿瘤的杀灭效应化学修饰剂。 10.热疗(1.2.1)是一种通过对机体的局部或全身加温以达到治疗疾病的目的的治疗方法。 简答题 1.何为放射治疗的临床剂量学四原则(6.3.1) 答:①肿瘤剂量要求准确.照射野应对准所要治疗的肿瘤即靶区;②治疗的肿瘤区域内,剂量分布要均匀;③射野设计应尽量提高治疗区域内的剂量,降低照射区正常组织的受量;④保护肿瘤周围重要器官免受照射,至少不能使它们接受超过其耐受量的照射。 2.简述放射治疗剂量选择的基本原则(6. 3.4) 答:放射治疗的剂量取决于肿瘤细胞对射线的敏感性、肿瘤的大小,肿瘤周围正常组织对射线的耐受性等。一般情况下治疗鳞癌需要60-70Gy/6-7W,腺癌需要70Gy/7W以上,未分化癌约需50-60Gy/5-6W。 对于亚临床病灶,放疗容易收到好的效果,只需一般剂量的2/3或4/5即可控制肿瘤生长。目前治疗方法多适当地扩大照射野,使其包括可能浸润或可能转移的淋巴区,待达到亚临床剂量后,缩小射野,针对肿瘤补足剂量。对于大的肿瘤,由于血运差及乏氧状态很难

肿瘤放射治疗学试题及答案

肿瘤放射治疗学试题及答案 1、恶性肿瘤:是在人类正常细胞基础上,在多种致癌因素作用下,逐渐形成的、 不断增殖的、个体形态变异或缺失的、具有迁徙和浸润行为的细胞群。临床上常表现为一定体积的肿物。 2、我国目前肿瘤放疗事故(恶性肿瘤最新发病率)为:10万人口每年280例。 3、肿瘤放疗:放射治疗就是用射线杀灭肿瘤细胞的一种局部治疗技术。 4、放疗时常用的射线:射线分两大类:一类是光子射线,如X、γ线,是电磁 波;一类是粒子,如电子、质子、中子。 5、放疗的四大支柱:放射物理学、放射生物学、放射技术和临床肿瘤学。 6、肿瘤细胞放射损伤关键靶点:DNA。 7、射线的直接作用:(另一种答案:破坏单键或双键)。任何射线在被生物物质 所吸收时,是直接和细胞的靶点起作用,启动一系列事件导致生物改变。如:电离、光电、康普顿。 8、射线的间接作用:(另一种答案:电解水-OH,自由基破坏)。射线在细胞内可 能和另一个分子或原子作用产生自由基,它们扩散一定距离,达到一个关键的靶并产生损伤。 9、B-T定律:细胞的放射敏感性与它们的增殖能力成正比。与它们的分化程度 成反比。 10、影响肿瘤组织放射敏感性的因素:组织类型、分化程度、临床因素。 肿瘤自身敏感性:肿瘤负荷、肿瘤分型、分期;肿瘤来源和分化程度;肿瘤部位和血供;照射剂量;2、化学修饰与肿瘤放射效应:放射增敏剂:氧气、多种药物;放射保护剂:低氧、谷胱甘肽加温与放疗;430C加温自身即可杀灭肿瘤细胞;能使S期细胞、乏氧细胞变的敏感;热休克蛋白,42-4450C, 2/周;3、放疗与同步化疗:空间协作:放射控制原发,化疗控制转移;毒性依赖:必须注意两者叠加问题;互相增敏:联合应用,疗效1+1>2,机制不详;保护正常组织:缩小病灶,减少剂量; 11、放射野设计四原则:1、靶区剂量均匀:治疗的肿瘤区域内吸收剂量要均匀,剂量梯度部超5%,90%剂量线包整个靶区。(野对称性);2、准确的靶区和剂量:即CTV准确,考虑到肿瘤类型和生物学行为(不同胶质瘤外扩大不一样),

教学大纲放射肿瘤学

承德医学院 《放射肿瘤学》课程教学大纲 课程编号: 课程名称:放射肿瘤学 英文名称:radioation oncology 课程类型:专业课、必修 总学时:54时讲课学时:48时实验学时:6时 适用对象:医学影像专业、本科 课程简介: 放射治疗学是研究各类射线单独或者结合其他方法治疗肿瘤的一门临床学科。本课程系统介绍了放射肿瘤学的基本概念、基本原理,常见肿瘤的临床诊断、分期、总的治疗原则、放射治疗的原理和方法。 一、课程性质、目的和任务 课程性质:放射治疗学是临床医学中的一个重要课程,以临床医学教育为基础,再学习本专业课程。 课程目的:培养德、智、体美全面发展的应用型放射肿瘤学专业人才;掌握本专业工作所需的基础理论、基础知识和基本技能。 课程任务: 1.业务培养目标:培养从事放射肿瘤学临床医师。 2.业务培养要求:本专业学生应掌握基础医学、临床医学的基础知识,掌握放射肿瘤 学专业基础与专业知识的基本理论知识和操作技能,毕业后能够从事放射肿瘤学的 临床医疗与教学工作。 二、教学基本要求 按照国家教委专业设置的要求,力求通过学习使学生能掌握放射肿瘤学的基本知识、基础理论和基本技能,成为合格的医学肿瘤学专业人才。 (1)教书育人,树立全心全意为患者服务的从医思想。目前,肿瘤是尚未完全攻克的玩疾之一。肿瘤患者有别与其他疾病患者,教学过程中应该注意培养同学们的爱心。 (2)联系相关知识,放射肿瘤学涉及基础医学、临床医学、放射医学知识,教师应注意联系有关知识把要求学生掌握的内容讲深、讲透、深入浅出。 (3)注重实习课教学,特别是放射治疗适应证、放射野的设计和放射治疗并发症的防治较为抽象,实习课更为重要。

肿瘤放射物理学

放射物理复习 轨道电子结合能的概念和计算方法:把电子从所在的能级转移至不受原子核吸引并处于最低能态时所需的能量叫轨道电子结合能。 核子结合能的概念和计算方法:质子和中子等核子结合成原子核放出的能量叫核子结合能计算水和人体骨组质的有效原子序数 计算水和人体骨组质的电子密度 计算Co-60源比活度的极限值 指型电离室测量照射量的原理:绝大部分次级电子来自于室壁材料,少部分来自中间的空气,周围介质产生的次级电子可忽略 指型电离室作为空腔的测量原理:次级电子全部来自于周围介质材料,可忽略来自室壁材料和中间的空气次级电子 何谓电子平衡?离开某一区域的次级电子所带的能量等于进入这一区域的次级电子所带 的能量,就认为这一区域实现了电子平衡 如何描述辐射探测器的特性?能量响应特性(越平坦越好)、剂量率线性(响应)、积分线性、空间分辨率高 X射线与物质相互作用中能量转递的方式光电效应、康普顿效应、电子对效应 用拟合公式表达标称加速电压与PDD20/PDD10之间的关系 二者相辅相成,不可偏废 对应策略:外照射是多射野分野照射;近距离照射是合理布放射源 比较深部X射线、高能X( )射线、高能电子束、和重带电粒子的深度剂量特点。

深部X射线高能X射线高能电子束重带电子粒子 Dmax点皮肤表面在建成区后皮下一定深度 Bragg Peak 适形定义,调强定义 适形:是一种治疗技术,它能使高剂量区剂量分布形状在三维方向上与靶区形状一致;调强:是一种治疗技术,按照一定要求调整射野内各处的剂量注量率的过程; 3DCRT与IMRT的异同点 调强更要求靶区表面和靶区内部各点剂量相等 多叶准直器叶片的描述方式 高度(至少5个半价层)、等中心处宽度、端面形状 多叶准直器整野(Cone Beam)调强的方式 整野调强、扇形束调强 加速器使用束流均整器的目的 将符合高斯分布的射野变成符合一定平坦度要求的射野 临床形成不规则射野的方法及其优缺点 MLC和铅挡块;MLC易成形,形状粗糙、铅挡块制作复杂,形状精细 楔形板的用途及种类 改变射野剂量分布形状; 种类:利用准直器形成的动态楔形板、一楔合成板(60°)、物理楔形板 楔形板楔形因子的测量方法 Co60 :一定源皮距,10cmX10cm, d=5cm,分别测量开野和楔形野 加速器:一定源皮距,10cmX10cm,d=10cm,分别测量开野和楔形野 独立准直器的用途 形成偏轴射野(非对称)、动态楔形板 治疗机剂量处方的规定点(MU/cGy)

肿瘤放射治疗学期末考试重点笔记

精心整理恶性肿瘤的临床治愈率为45℅,其中外科占22℅,放射治疗占18℅,化学治疗占5℅ 根据肿瘤的放射敏感性分类: 1、放射高度敏感的肿瘤:恶性淋巴瘤、睾丸精原细胞瘤、肾母细胞瘤、尤文肉瘤、小细胞肺癌 2、放射中度敏感的肿瘤:鳞状细胞癌、宫颈癌、宫体癌、乳腺癌、皮肤癌、肾移行细胞癌 3、放射低度敏感的肿瘤:胃肠道的腺癌、胰腺癌、前列腺癌 4、放射敏感性较差的肿瘤:纤维肉瘤、脂肪肉瘤、横纹肌肉瘤、恶性纤维组织细胞瘤 放射治疗的禁忌症 1 (1 (2 (3 (4 2 (1(2)肿 3 (14) 3、 (源轴 1、进一步减少肿瘤周围组织和器官进入射野的范围,使正常组织得到保护,提高了靶区剂量; 2、对位于解剖结构复杂、距离重要器官较近、形状不规则肿瘤的治疗,可减少放射治疗并发症的发生; 3、进行大剂量低分割照射,缩短治疗时间,提高肿瘤的控制率。 调强适形放射治疗(IMRT)必将成为21世纪放射治疗技术的主流。 近距离放射治疗:通过人体的自然腔道(如食管、阴道、直肠)或经插针置入、经模板敷贴等方式,将密封的放射源置于瘤体内或管腔内进行照射,称为近距离放射治疗(又称内照射)。 敷贴技术:是将施源器按一定规律固定在适当的模板上,然后敷贴在肿瘤表面进行照射的一种方法。主要用于治疗非常表浅的肿瘤,一般肿瘤浸润深度<5mm为宜。

放射性核素治疗是将放射性核素或其标记物通过口服或静脉注射等方式引入人体内,利用核素的电离辐射效应,抑制或破坏病变组织,达到治疗的目的。人体某种器官或病变对某种放射性核素具有选择性吸收的特点,因而病变局部可受到大剂量照射,其他组织和器官可以得到保护。比如用碘131治疗甲状腺癌,磷32治疗癌性胸水,钐153和锶89治疗骨转移癌等 治疗计划的定量评估,主要是使用剂量体积直方图(DVH)。DVH表示的是肿瘤的体积或正常组织接受的照射剂量,是评估治疗计划的有力工具,可以直接评估高剂量区与靶区的适合度。它不仅可评估单一治疗计划,也可比较多个治疗计划。缺点是不能显示靶区内的剂量分布情况,因此要与等剂量分布图结合使用才能充分发挥作用。 放射性皮炎:一般分为三度:1度为毛囊性丘疹和脱毛,DT20-30GY;2度为红斑反应,DT40GY;3 但更

《放射治疗学》考试题

. '. 《放射治疗学》试卷姓名专业 一、单项选择题(每题2分,共40分。请将答案写在表格内) 1.用于治疗肿瘤的放射线可以是放射性核素产生的射线是: A.αB.δC.θ 2.X线治疗机和各类加速器产生的不同能量的射线是: A.γB.αC.X 3.各类加速器也能产生的射线是: A.电子束B.高级质子束C.低能粒子束 4.放射治疗与外科手术一样,是: A.局部治疗手段B.全身治疗手段C.化学治疗手段 5.放射治疗是用什么物质杀伤肿瘤细胞,达到治愈的目的? A.放射线B.化学药物C.激光 6.放射线治疗的适应证比较广泛,临床上约有多大比例的恶性肿瘤病人需要做放射治疗?A.50% B.70% C.90% 7.60钴的半衰期是: A.5.27年B.6.27年C.7.27年 8.几个半价层厚度的铅,可使原射线的透射率小于5%? A.4.5~5.0 B.6.5~7.0 C.7.5~8.0 9.照射患者一定深度组织的吸收剂量为: A.组织量B.空气量C.机器输出量 10.放射源到体模表面照射野中心的距离是: A.源皮距B.源瘤距C.源床距 11在放射治疗中,直接与肿瘤患者治疗有关的常用设备有: A.DSA B.适形调强C.加速器和钴-60治疗机 12.60钴治疗机的半影有: A.物理半影B.化学半影C.散射半影 13.高能x射线的基本特点是: A.等中心照射较60钴治疗机更准B.在组织中有更高的穿透能力C.照射更准确 14.高能电子束的基本特点是: A.高能电子束易于散射B.主要用于深部肿瘤的照射 C.不同能量的电子束在介质中有确定的有限射程 15.模拟治疗定位机的临床应用主要表现在: A.肿瘤和敏感器官的定位B.评价治疗计划的好坏C.固定病人的体位 16.放射治疗中用的楔形板的楔形角度有: A.100 B.200 C.300 D.400 17.放射敏感的肿瘤是指: A.给以较低的剂量即可达到临床治愈B.给以较低的剂量即可达到永久治愈C.该类肿瘤不易远处转移 18.立体定向放射治疗是: A.精确放射治疗B.根治性放射治疗C.普通放射治疗 19.一般来讲,人体组织细胞对放射线的敏感性与组织繁殖能力成正比,与分化程度成反比,即: A.繁殖能力愈强的组织对放射线愈敏感 B.繁殖能力愈强的组织对放射线愈不敏感 C.分化程度愈高的组织对放射线愈敏感 20.各种不同组织接受照射后能够耐受而不致造成不可逆性损伤所需要的最大剂量为: A.该组织的耐受剂量B.该组织的损伤剂量C.该组织的治疗剂量 二、填空题(每空1分,共40分) 1.在照射的线束内,把线束内测量的同等剂量点连线的曲线称_______________。 2.远距离放射治疗的方式有__________放射治疗技术,__________放射放射治疗技术,_________放射治疗技术。3.近距离放射治疗的方式有____________技术,______________技术,_________技术,_____________技术。 4.放射治疗的种类有___________放射治疗,____________放射治疗,__________放射治疗,__________放射治疗,___________放射治疗。 5.肿瘤区__________是指通过临床或影像检查可发现的肿瘤范围,包括_____________,_____________和____________。 6.恶性肿瘤的放射治疗剂量应当选择在正常组织能够耐受且肿瘤细胞致死的范围内,这样才能使肿瘤逐渐消退,周围正常组织不产生严重损伤。对射线不同敏感的肿瘤放射剂量大致分:_______________的肿瘤剂量,______________肿瘤剂量,______________的肿瘤剂量,_____________的肿瘤剂量,_________放射治疗剂量。 7.根据楔形板造成的等剂量曲线倾斜变形结果看,楔形板使用具有__________,放疗摆位中必须注意其__________,严格遵守___________的要求,如果使用中楔形板方向出现错误,结果将适得其反。 8.肿瘤放疗中,由于病灶总是不规则形状,常需要用铅挡块或加速器多叶准直器系统屏蔽遮挡___________或____________,使其免受或少受照射,形成___________。 9.斗蓬野照射技术一般适用于___________隔上病变的治疗,照射范围包括______,___________,__________,___________。 10.全身照射主要用于____________及某些全身广泛性且对_______________的恶性肿瘤的治疗。 11.全身照射技术主要用于白血病的骨髓移植予处理,可以达到三个目的,_________________,________________,________________________。 12.体位固定技术大致分两种_______________, ________________。 三、问答题(20分) 阐述60钴治疗机的临床应用特点。

[医学类试卷]肿瘤主治医师(肿瘤放射治疗学)专业实践能力模拟试卷4.doc

[医学类试卷]肿瘤主治医师(肿瘤放射治疗学)专业实践能力模拟试卷 4 1 楔形板照射摆位描述不正确的是 (A)看清医嘱要求,楔形板角度和序号 (B)常规楔形板两野照射,厚端相邻 (C)常规楔形板两野照射,尖端相邻 (D)楔形板必须远离患者体表15cm以上 (E)一楔多用时,注意有无楔板的剂量比 2 淋巴瘤治疗放射源宜采用 (A)深部X线机 (B)192铱γ射线 (C)6MV高能X线 (D)10MV高能X线 (E)15MV高能x线 3 已知60钴源皮距(标)75cm,最大方野边长的1/2为10cm,所需斗篷照射野源皮距150cm,求斗篷野照射野边长1/2为 (A)15cm

(B)20cm (C)25cm (D)30cm (E)40cm 4 直线加速器源皮距(标)100cm,最大方野边长的1/2为15cm,斗篷野所需边长的1/2为20cm,那么斗篷野照射的源皮距是_____ (A)115cm (B)120cm (C)125cm (D)133cm (E)140cm 5 淋巴瘤原发于膈上,照射部位不包括 (A)纵隔 (B)肺门 (C)双腋 (D)全颈

(E)腹主动脉旁 6 淋巴瘤原发于膈下时,照射部位包括 (A)纵隔 (B)肺门 (C)双腋 (D)双锁骨下 (E)脾门 7 下列关于淋巴瘤照射技术的描述错误的是 (A)根治性放疗包括原发病灶的整个解剖区与邻近淋巴引流区(B)斗篷野上界由乳突沿体前侧下颌骨上缘到对侧乳突(C)下界到第九胸椎下缘 (D)左右两侧,由肩锁关节沿肱骨干的内侧缘而下到第十胸椎(E)照射野面积一般需40cm×40cm 8 下列关于斗篷野照射体位的描述正确的是 (A)前野体位仰卧位,头后仰,下颌骨垂直床面 (B)双臂置于胸前

肿瘤放射治疗基本知识

1.什么是放射线? 在1895年12月的一个夜晚,德国的一位世界著名的物理学家伦琴(ROentgen 1845~1923年)在物理实验室进行阴极射线特点的研究的试验中发现:放电的玻璃管不仅发射看得见的光,还发射某种看不见的射线,这种射线穿透力很强,能穿透玻璃、木板和肌肉等,也能穿透黑纸使里面包着的底片感光,还能使涂有氰酸钡的纸板闪烁浅绿色的荧光,但对骨头难以穿透。伦琴还用这种射线拍下他夫人手骨的照片。他认为新发现的射线本质很神秘,还只能算一个未知物,于是就把数学中表示本知数的"X"借用过来,称之为"X射线"。后来又经过科学家们多年的研究,才认清了"X射线"的本质,实质上它就是一种光子流,一种电磁波,具有光线的特性,是光谱家族中的成员,只是其振荡频率高,波长短罢了,其波长在1~0.01埃(1埃=10-10米)。X射线在光谱中能量最高、围最宽,可从紫外线直到几十甚至几百兆电子伏特(MeV)。因为其能量高,所以能穿透一定厚度的物质。能量越高,穿透得越厚,所以在医学上能用来透视、照片和进行放射治疗。 科学家们在放射线研究的过程中,还发现放射性同位素在衰变时能放射三种射线:α、β、γ射线。α射线实质上就是氦原子核流,它的电离能力强,但穿透力弱,一薄纸就可挡住;β射线实质上就是电子流,电离能力较α射线弱,而穿透力较强,故常用于放射治疗;γ射线本质上同X射线一样,是一种波长极短,能量甚高的电磁波,是一种光子流,不带电,以光速运动,具有很强的穿透力。因此常常用于放射治疗。 2.什么是放射治疗? 放射治疗是指用放射性同位素的射线,X线治疗机产生的普通X线,加速器产生的高能X线,还有各种加速器所产生的电子束、质子、快中子、负兀介子以及其它重粒子等用来治疗癌瘤。 广义的放射治疗既包括放射治疗科的肿瘤放射治疗,也包括核医学科的用同位素治疗(如131碘治疗甲状腺癌和甲状腺功能亢进,32磷治疗癌性胸水等)。狭义的放射治疗一般仅指前者,即人们一般所称的肿瘤放射治疗。放射治疗有两种照射方式:一种是远距离放疗(外照射),即将放射源与病人身体保持一定距离进行照射,射线从病人体表穿透进人体一定深度,达到治疗肿瘤的目的,这一种用途最广也最主要;另一种是近距离放疗(照射),即将放射源密封置于肿瘤或肿瘤表面,如放入人体的天然腔或组织(如舌、鼻、咽、食管、气管和宫体等部位)进行照射,即采用腔,组织间插植及模型敷贴等方式进行治疗,它是远距离60钴治疗机或加速器治疗癌瘤的辅助手段。近年来,随着各医院医疗设备的不断改进,近距离放疗也逐渐普及。 体、外放射治疗有三个基本区别:①和体外照射相比,体照射放射源强度较小,由几个毫居里到大约100毫居里,而且治疗距离较短;②体外照射,放射线的能量大部分被准直器、限束器等屏蔽,只有小部分能量达到组织;体照射则相反,大部分能量被组织吸收;③体外照射,放射线必须经过皮肤和正常组织才能到达肿瘤,肿瘤剂量受到皮肤和正常组织耐受量的限制,为得到高的均匀的肿瘤剂量,需要选择不同能量的射线和采用多野照射技术等;而体照射,射线直到肿瘤组织,较深部的正常组织受照射量很小。 3.有人把放射治疗称为"烤电",对不对? 有人把放射治疗称为"烤电",这是普通百姓对放射治疗的一种不确切的称谓。可能源于放射治疗使病人放射野的皮肤发红,甚至由于色素沉着增多而变"黑",而联想到用电灯或其它电器设备烘烤皮肤而出现类似的皮肤改变所致。殊不知两者的作用机理并不相同。放射治疗是用放射治疗设备

肿瘤放射治疗学

肿瘤放射治疗学 目录 第一篇基础知识 (2) 第一章总论 (2) 第一节放射治疗的历史、现状和发展方向 (2) 第二节放射治疗技师在放疗中的地位 (4) 第三节放射治疗技师应具备的基本技能 (4)

第一篇基础知识 第一章总论 ⊙大约2/3的肿瘤患者需要放疗(根治性、姑息性)。 ⊙根治性放疗:原发病灶+相关淋巴引流区,剂量高。 ⊙姑息性放疗:减轻症状(肿瘤出血、止痛、患者梗阻或阻塞、预防病理性骨折)改善生活质量 较短时间内,低剂量 不追求肿瘤消退 不因放疗增加患者痛苦 第一节放射治疗的历史、现状和发展方向 一、放射治疗的历史 ⊙放射治疗学只有100多年的历史。 1895年,伦琴发现了X线。 1896年,居里夫人发现了镭。 1922年,出现了深部X线机(深度剂量低,皮肤反应大,表浅肿瘤治疗)。20世纪50年代,出现了60钴远距离治疗机。 (深度剂量大,皮肤减免作用,深部肿瘤治疗)。20世纪60年代,出现了电子直线加速器(目前临床应用最广的外照射治疗机)。⊙近距离放疗,既往放射源应用镭,因防护要求高,临床已摒弃。 ⊙近距离放疗放射源:192铱、137铯、60钴、125碘、198金、252锎。 ⊙计算机系统遥控近距离放射治疗机。 ⊙放射剂量学: 20世纪30年代,物理剂量-伦琴(r);20世纪50年代后,吸收剂量-拉德(rad)格雷(Gy,Gray)。1 Gy=100 cGy=100rad

1934年,Coutard发明分割放射治疗方案。(分割放射优于单次反射效果)剂量-分割-时间 L-Q模式的特点:区分了肿瘤早期反应正常组织V.S晚期反应正常组织。 二、放射治疗的现状 ⊙三维放射治疗(3DRT) ⊙三维立体定向放射治疗(X线,γ线) ⊙调强放射治疗(IMRT) 前列腺癌、头颈部肿瘤(包括鼻咽癌)、乳腺癌、肺癌等效果较好。 ⊙早期乳腺癌,局部切除(保乳术)+术后根治放疗=乳腺癌根治术 ⊙软组织肿瘤,局部扩大切除+术后放疗 ⊙肿瘤控制概率(TCP)V.S正常组织损伤概率(NTCP) 三、今后发展方向 (一)放射物理学 1. 调强放射治疗(IMRT) ⊙影像指导 ⊙呼吸门控系统 2. 高LET射线 ⊙中子射线、重离子、轻离子、质子 (具备高LET射线的物理特性,而不具备高LET射线的放射生物学特性) ⊙改善乏氧细胞周期依赖性 ⊙对一些放射敏感性差的肿瘤可提高疗效 3. 近距离放射治疗 ⊙实体肿瘤效果较好 ⊙提高放射源布置的精确度 ⊙反射源的选择 4. 热疗

放疗基本知识

肿瘤放疗基础知识 1.什么是放疗? 放疗为放射治疗的简称,是治疗肿瘤主要手段之一,它利用放射线杀死癌细胞使肿瘤缩小或消失来治疗肿瘤。放射线破坏照射区(靶区)的细胞,使这些细胞停止分裂直至死亡。放疗的目的是尽最大的努力杀死肿瘤细胞,同时保护正常 组织。 2.那些肿瘤需要放疗? 目前的统计表明,约70%的恶性肿瘤病人在疾病发展的不同阶段需要放疗控制,但对于一个具体的病人来讲,是否采用放疗则应按照肿瘤的规范化治疗原则、肿瘤的发展期别及病人的身体状况而定。临床上适合放疗的肿瘤主要有:鼻咽癌、喉癌、扁桃体癌、舌癌、恶性淋巴瘤、宫颈癌、皮肤癌、脑瘤、食管癌、乳腺癌、肺癌、直肠癌、骨肿瘤、肝癌、软组织肉瘤等。 3.放疗需要多长时间? 根据肿瘤性质和治疗目的,放疗分为根治性放疗、术前放疗、术后放疗、姑 息性放疗。不同的放疗目的放疗完成所需时间各异,下面分别详述: ?根治性放疗:单独用放疗手段控制甚至治愈肿瘤。部分肿瘤,如:鼻咽癌、喉癌、扁桃体癌、舌癌、恶性淋巴瘤、宫颈癌、皮肤癌等单独放疗可治愈。另外肿瘤生长的部位无法手术、或病人不愿手术者也可单独给予根治性放疗。根治性放疗时放疗剂量一定要用够量,否则会留下复发的隐患。一般需要6-7周时间完 成。 ?术前放疗:因肿瘤较大或与周围脏器粘连无法手术,术前先放疗一部分剂量,缩小肿瘤利于手术。一般需要3-4周时间完成,放疗后休息3-6周再手术。 此放疗后休息是为了正常组织修复放疗反应,同时使肿瘤进一步退缩利于手术切除。在放疗和休息期间癌细胞在逐渐死亡,不要担忧因手术推迟癌细胞是否会生 长。 ?术后放疗:因肿瘤生长在特殊部位、或与周围脏器粘连无法完全切除,这些残留肿瘤术后会复发和转移,所以术后应该放疗消灭残存癌细胞。放疗时间根据残存肿瘤多少而定。如果残存肿瘤较多,肉眼就能看到有肿瘤残留,几乎需要与根治性放疗同样的时间和剂量。如果残存肿瘤较少,只有在显微镜下看到有癌细胞残留,一般需要根治性放疗剂量的2/3剂量即可,即4-5周时间。 ?姑息性放疗:因肿瘤生长引起病人痛苦,如骨转移疼痛、肿瘤堵塞或压迫气管引起呼吸困难、压迫静脉引起血液回流障碍至浮肿、脑内转移引起头疼、肿瘤侵犯压迫脊髓引起瘫痪危险等,给予放疗一定剂量缓解症状减轻痛苦。放疗剂量根据肿瘤部位和目的而异,从放疗数次到一月时间不等。 4.什么是外照射、什么是内照射? 根据放射源的远近分为:外放射和内放射。

相关文档
最新文档