步进电机及驱动器工作原理

步进电机及驱动器工作原理
步进电机及驱动器工作原理

1、步进电机是一种作为控制用的特种电机, 它的旋转是以固定的角度(称为"步距角")一步一步运行的, 其特点是没有积累误差(精度为100%), 所以广泛应用于各种开环控制。步进电机的运行要有一电子装置进行驱动, 这种装置就是步进电机驱动器, 它是把控制系统发出的脉冲信号转化为步进电机的角位移, 或者说: 控制系统每发一个脉冲信号, 通过驱动器就使步进电机旋转一步距角。所以步进电机的转速与脉冲信号的频率成正比。所以,控制步进脉冲信号的频率,可以对电机精确调速;控制步进脉冲的个数,可以对电机精确定位目的;

2、步进电机通过细分驱动器的驱动,其步距角变小了,如驱动器工作在10

细分状态时,其步距角只为‘电机固有步距角‘的十分之一,也就是说:‘当驱动器工作在不细分的整步状态时,控制系统每发一个步进脉冲,电机转动1.8°;而用细分驱动器工作在10细分状态时,电机只转动了0.18° ‘,这就是细分的基本概念。细分功能完全是由驱动器靠精确控制电机的相电流所产生,与电机无关。

3、驱动器细分有什么优点,为什么一定建议使用细分功能?

驱动器细分后的主要优点为:完全消除了电机的低频振荡。低频振荡是步进电机(尤其是反应式电机)的固有特性,而细分是消除它的唯一途径,如果您的步进电机有时要在共振区工作(如走圆弧),选择细分驱动器是唯一的选择。提高了电机的输出转矩。尤其是对三相反应式电机,其力矩比不细分时提高约

30-40% 。提高了电机的分辨率。由于减小了步距角、提高了步距的均匀度,‘提高电机的分辨率‘是不言而喻的。

细分的基木概念为:步进电机通过细分驱动器的驱动,其步距角变小了。

如驱动器工作在10细分状态时,其步距角只为‘电机固有步距角’的十分之一,也就是:当驱动器工作在不细分的整步状态时,控制系统每发一个步进脉冲,

电机转动1.80;而用细分驱动器工作在10细分状态时,电机只转动了0.180。细分功能完全是山驱动器靠精确控制电机的相电流所产生的,与电机无关。

驱动器细分后的平要优点为:完全消除了电机的低频振荡;提高了电机的

输出转矩,尤其是对三相反应式电机,其力矩比不细分时提高约30-40%;提高

了电机的分辨率,山于减小了步距角、提高了步距的均匀度,‘提高电机的分辨率’是不言而喻的。以上这些优点,尤其是在性能卜的优点,并不是一个量的变化,而是质的匕跃。因此,在性能上的优点是细分的真正优点。

细分原理

当要求步进电动机有更小的步距角,更高的分辨率(即脉冲当影,或者为减小电动机振动、噪声等原因,可以在每次输入脉冲切换时,不是将绕组电流个部通入或切除,而是只改变相应绕组中额定的一部分,则电动机的合成磁势也只旋转步距角的一部分,转子的每步运行也只有步距角的一部分。这里,绕组电流不是一个方被,而是阶梯波,额定电流是台阶式的投入或切除,电流分成步进电机细分驱动控制器的研究

多少个台阶,则转子就以同样的

步数转过一个步距角。这种将一

个步跟角细分成若干步的驱动

方法,称为细分驱动。细分驱动

时绕组阶梯电流波形示意图如

图2-10所示。

细分技术又称为微步距控

制技术,是步进电动机开环控制

最新技术之一,利用计算机数字

处理技术和D/A转换技术,将

图2

Fig2-10

to 绕组阶梯电流彼推图

.Waveform of Winding Current

各相绕组电流通过PWM控制,获得按规律改变其幅值的大小和方向,实现将

步进电动机一个整步均分为若干个更细的微步。每个微步距可能是原来基本步距的数卜分之一,甚至是数百分之一。

步进电机的细分技术实质上是一种电子阻尼技术,其主要目的是提高电机的运转精度,实现步进电机步距角的高精度细分;其次,细分技术的附带功能是减弱或消除步进电机的低频振动。低频振荡是步进电机(尤其是反应式电机) 的固有特性,而细分是消除它的唯一途径。如果步进电机有时要在共振区工作(如走圆弧),选择细分驱动器是唯一的选择。

步进电机细分驱动的本质是把对绕组的矩形电流波供电改为阶梯形电流波供电。要求绕组中的电流以若干个等幅等宽的阶梯上升到额定值,或以同样的阶梯从额定值下降到零。虽

然这种驭动电源的结构比

较复杂,但有如卜优点:在

不改变电机内部结构的前

提下,使步进电机具有更小

的步距角、更高的分辨率;

使电机运行平稳,减小或消

除电机振荡、减小噪声。

以三相反应式步进电机

为例,采用磁势转换图直观

分析细分驱动的原理。对应

于半步工作方一式,状态转换

(a) A--*AB

图 2-1 1 合成磁势矢量图

表为A-AB--B-BC-C-CA----。如果将每相绕组电流分为四个等幅等宽的阶梯土升或下降,则将步进电机的每一步分为四步完成,即对步进电机进行四细分驱动

初始状态时A相通额定电流,即iA- i ,; 当第一个CP脉冲到来时,B相不是

马土通额定电流,而只是通额定电流的四分之一,即ix 1/4i,,此时电机的磁势

山A相的i、和B相的1/4i、合成,合成磁势情况如图2-11 (b)所示。当第二个CP

脉冲到来时,A相电流不变,B相电流增大到1/2i,,以此类推。可见,上述细分使原来从A状态只需一步变为需四步运行到AB,如图2-11所示。

斩波恒流驱动

以上驱动线路所采取的多种措施,大多只有一个目的,这就是要使导通相不论在锁定、低频或高频工作时都保持额定值。斩波恒流驭动方式可较好地解决这个问题并提高步进电机的效率和力矩。斩波型驱动大体上可分为两种:一

种是斩波恒流驱动,另一种是斩波平滑驱动。较]’一泛应用的是斩波恒流驱动,J陌流斩波功放的优点为:

(I) 各相斩波频率相同,有效地抑制了因各相斩波频率不同而产生的噪声;

(2 )斩波频率高,消除了H频噪声,电机运行时安静无污染;

(3 )高频运行时电流平滑,高频性能好;

步进电机细分驱动控制器的研究

(4)斩波频率和脉宽可调,容易调整最佳运行状态:

斩波恒流 3a动电路的主回路由高压晶体管、电动机绕组、晶体管串联而成。与高低压驱动器不同的是,低压管发射极串联一个小的电阻接地,电动机绕组的电流经这个小电阴通地,小电阻的压降与电动机绕组电流成正比,所以这个电阻称为取样电阻。

斩波恒流驱动原理图如图2-8所示。Ic,和IC2分别是两个控制门,控制T 和T,两个晶体管的导通和截止。由环形分配器来的相绕组导通脉冲,送到门IC2 与Ic,中,通过Ic,直接开通晶体管TL,而门IC,除环形分配器来的信号之外,还有一路信号来自比较器。比较器的两个输入端,其中之一接给定电平,另一个接来自取样电阻的电压信号。在环形分配器导通脉冲到来之前,IC,和IC2都处于关门状态,输出低电平,TH和TL都截it,取样电阻中无电流流过,反馈到比较器的输入信号为零,比较器输出高电平。当环形分配器输出导通信号时,高电平使Ic,和IC:门打开,输出高电平使TH和TL两管导通,高电压经TH向电动机绕组供电。由于电动机绕组有较大电感,所以电流成指数上升,但所加电压较高,所以电流上升较快。取样电阻上的电压代表了电流的大小。当电流超过所设定值时,比较器输入的取样电压超过给定电压,比较器翻转,输出变低电平,从而IC,也输出低电平,关断高压管TH。此时磁场能量将使绕组电流按原方向继续流动,经由低压管TL,取样电阻、地线、二极管D。构成的续流回路消耗磁场的能量。此时电流将按指数曲线衰减,逐渐下降。当取样电阻上得到的电压小于给定电压时,比较器又翻转回去,输出高电平,打开高压管,电源又开始向绕组供电,电流又会上升。如此反复,电动机绕组的电流就稳定在由给定电平所决定的数值上,形成小小的锯齿波。当环形分配器输出低电平时,高低压管都

截III,此时绕

组的续流与

高低压时相

同,经D1,

D2向电源泄

放。泄放回路

的特点与高

低压马议动时

基本相同。

图 2一8 斩波恒流驱动原理图

斩波恒流驱动中,由于驭动电压较高,电动机绕组回路又不串电阻,所以电流上升很决。当到达所需要的数值时,由于取样电阻反馈控制作用,绕组电流可以恒定在确定的数值卜,而且不随电动机的转速而变化,从而保证在很大的频率范围内电动机都能输出}陌定的转矩。

在环形分配器所给出的相绕组导通时间内,电源电压并不是直向绕组供电,而只是一个个的窄脉冲,总的输入能量是各脉冲时间的电压与电流乘积积分的总和,与其它几种驰动力一式比较,取自电源的能量大幅度下降。因此,这种驭动器有很高的效率。

这种驱动器的另一优点是减少电动机共振现象的发生。山于电动机共振的根本原因是能量过剩,而斩波恒流驱动输入的能量是自动随着绕组电流调节。能量过剩时,续流时间延长,而供电时间减小,因此可减小能量的积聚。实验线路的测试表明,用这种驱动器驱动步进电动机,低频共振现象基本消除,在任何频率下,电动机都可稳定运行。

上述斩波恒流驱动中,斩波频率是由绕组的电感、比较器的回差等诸因素决定,没有外来的固定频率。这种斩波电路称为自激式斩波恒流电路,如果用其它办法形成固定的频率来斩波,称为他激式。

恒流斩波驱动方式是在专用集成电路中最常用的获得高性能的方式。通常,步进电动机使用较高电压电源,使绕组电流几乎以直线上升到预定值,由电流检测器控制一个斩波控制电路,关断这绕组的功率开关,绕组电流在续流回路中续流并下降,下降至某一设定值或经过某一规定时间后,斩波控制电路又令主功率开关接通。如此反复控制,由功率开关的反复开关对绕组电流进行斩波控制,使电流平均值趋向丁维持恒定。具体控制方法有定频PWM方法或使用

单稳电路的关断定脉宽方法,这种方式使步进电动机电流的大小和波形是,1]控

的。如果电流的基准值可以设定和控制,结合后面的内容,也就是通过可实现半步、1/4步和微步距控制。

H 桥双极性驱动

永磁式步进电机和混合式步进电机的绕组励磁必须使用双极性供电,即励磁绕组需正反向交错通以电流,这样的绕组需要H桥双极性驱动。双极性驱动的优点除效率高以外,更重要的是可以得到最佳的中低频特性,使保持力矩恒定;同时由于驱动器集成化,使其与计算机接曰非常简单,用程序代替复杂的逻辑控制,因此控制简化易于实现。

步进电机细分驱动控制器的研究

H 桥功率集成电路包括有半桥、双半

桥、四半桥、单H桥、双H桥等,功率级

有达林顿晶体管的或DMOS结构的。它们

都有较完善的基极(或栅极)驱动电路,包

括DMOS上桥臂驱动用充电泵电路,防止

上下桥臂在换向时直通的连锁保护电路;

还有各种对电压、电流、温度的监控保护

电路,从而提高了集成电路的可靠性;它

们有高开关速度,适用于开关型控制方

式。

H 桥功率开关常用于可逆直流电动

机、音圈电动机、步进电动机相绕组的双

极性驱动。半桥功率开关,即推挽式功率

开关可用作这些电动机绕组T型驱动,或

用两个半桥构成一个H全桥,三个半桥可

构成一个三相逆变桥以驱动三相交流电动机。

4t1f {卜

戈__一一

-乙、了布价r‘

绕全目

-I 卜

图2-9

_,Sl、S4开

一卜S1开

H桥双极性驱动

Fig.2- 9 H-bridgeB ipolarD riving

图2-9为H桥双极性驭动的一相

电路。当要求实现步距角细分时,该方法就不能达到要求了,这时就要引入步进电机细分技术。

在步进电机细分驱动控制器中,恒流斩波技术和H桥驭动通常是联系在

起的。其典型的工作过程如下:当步进信号为高电平时,使S.导通,电流经

+Vcc -S]- 绕组-S4-R截止。与后面讲到的细分驱动相结合,这时就可以用

电机电枢采样电阻去采样电机电枢电流,经RC网络转换为电压值后,与D/A 转换器输出的预定IW1值相比较。如果当前的电流使转换的电压值小于I值,比较器输出高电平,保持S,, S4导通状态,电源电压全部加在负载上,使负载电流通过电源-S,一负载~S4-地或电源一S2一负载~S3一地的回路,以指数规律增加。接在采样电阻端的阻容网络上的电压值V RA也随之增长;当负载电流增加到或超过网值电流时,V RA随后也达到网值电压,滞后的时间与阻容网络的时间常数有关,从而使比较器翻转,触发单稳电路翻转,关断S1,绕组中的电流经Vcc-D2-绕组-D3-R释放,其大小呈指数规律衰减并趋向于零。

当采用固定关断时间控制方式时,当关断时间到达的时候,则输出开关重新闭合,电枢电流又呈指数规律增长,重复前面的过程,形成电枢电流的固定关断时间斩波控制。}几述过程重复进行,在步进信号为H电平时,可保持绕组

电流在设定值处,波动极小,l_作电流非常平滑,实现恒流斩波作用。在步进

信号为低电平期间,Si, S4截止,S2, S3导通,绕组电流改换方向,与上述相同,由S2, S3完成恒流斩波功能。

在传感电流的输出端与地之间加入并行阻容网络,一方面将该电流转化为

电l}信号,与D/A转换器的输出的网值电压相比较,触发斩波过程;另一方Ihi 通过该低通滤波器可以将电流开关噪声的影响滤除。

每相由四只功率晶体管1桥组成双极性驱动方式,使每相绕组双向轮流通电。双极性驱动方式即当电机绕组中的电流反相时,定子磁通也被反相。

二极管 D I- D4为晶体管释放电流提供通路,使晶体管截止时贮存在相绕组

电感里的部分能量返回到电源,缩短晶体管关断时间。方波发生电路由RT值确定其振荡频率,为功率驱动电路提供恒频脉冲信号。检流电阻RA、基准电服VRA和比较器A。组成线圈电流检测电路,目的是控制绕组电流维持在恒定状态。

有关步进电动机驱动系统的基本知识

1、系统常识:步进电动机和步进电动机驱动器构成步进电机驱动系统。步进电动机驱动系统的性能,不但取决于步进电动机自身的性能,也取决于步进电动机驱动器的优劣。对步进电动机驱动器的研究几乎是与步进电动机的研究同步进行的。

2、系统概述:步进电动机是一种将电脉冲转化为角位移的执行元件。当步进电动机驱动器接收到一个脉冲信号(来自控制器),它就驱动步进电动机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。

3、系统控制:步进电动机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电动机驱动器)。控制器(脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

4、用途:? 步进电动机是一种控制用的特种电机,作为执行元件,是机电一体化的关键产品之一,随着微电子和计算机技术的发展(步进电动机驱动器性能提高),步进电动机的需求量与日俱增。步进电动机在运行中精度没有积累误差的特点,使其广泛应用于各种自动化控制系统,特别是开环控制系统。?

5、步进电机按结构分类:步进电动机也叫脉冲电机,包括反应式步进电动机(VR)、永磁式步进电动机(PM)、混合式步进电动机(HB)等。

(1)反应式步进电动机:也叫感应式、磁滞式或磁阻式步进电动机。其定子和转子均由软磁材料制成,定子上均匀分布的大磁极上装有多相励磁绕组,定、转子周边均匀分布小齿和槽,通电后利用磁导的变化产生转矩。一般为三、四、五、六相;可实现大转矩输出(消耗功率较大,电流最高可达20A,驱动电压较高);步距角小(最小可做到10’);断电时无定位转矩;电机内阻尼较小,单步运行(指脉冲频率很低时)震荡时间较长;启动和运行频率较高。

(2)永磁式步进电动机:通常电机转子由永磁材料制成,软磁材料制成的定子上有多相励磁绕组,定、转子周边没有小齿和槽,通电后利用永磁体与定子电流磁场相互作用产生转矩。一般为两相或四相;输出转矩小(消耗功率较小,电流一般小于2A,驱动电压12V);步距角大(例如7.5度、15度、22.5度等);断电时具有一定的保持转矩;启动和运行频率较低。(3)混合式步进电动机:也叫永磁反应式、永磁感应式步进电动机,混合了永磁式和反应式的优点。其定子和四相反应式步进电动机没有区别(但同一相的两个磁极相对,且两个磁极上绕组产生的N、S极性必须相同),转子结构较为复杂(转子内部为圆柱形永磁铁,两端

外套软磁材料,周边有小齿和槽)。一般为两相或四相;须供给正负脉冲信号;输出转矩较永磁式大(消耗功率相对较小);步距角较永磁式小(一般为1.8度);断电时无定位转矩;启动和运行频率较高;是目前发展较快的一种步进电动机。

6、步进电动机按工作方式分类:可分为功率式和伺服式两种。

(1)功率式:输出转矩较大,能直接带动较大负载(一般使用反应式、混合式步进电动机)。(2)伺服式:输出转矩较小,只能带动较小负载(一般使用永磁式、混合式步进电动机)。

7、步进电动机的选择:

(1)首先选择类型,其次是具体的品种与型号。

(2)反应式、永磁式和混合式三种步进电动机的性能指标、外形尺寸、安装方法、脉冲电源种类和控制电路等都不同,价格差异也很大,选择时应综合考虑。

(3)具有控制集成电路的步进电动机应优先考虑。

8、步进电动机的基本参数:

(1)电机固有步距角:它表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角的值,如86BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°、整步工作时为1.8°),这个步距角可以称之为‘电机固有步距角’,它不一定是电机工作时的实际步距角,实际步距角和驱动器有关。

(2)步进电动机的相数:是指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电动机。电机相数不同,其步距角也不同,一般二相电机的步距角为0.9°/1.8°、三相的为0.75°/1.5°、五相的为0.36°/0.72°。步进电动机增加相数能提高性能,但步进电机的结构和驱动电源都会更复杂,成本也会增加。

(3)保持转矩(HOLDING TORQUE):也叫最大静转矩,是在额定静态电流下施加在已通电的步进电动机转轴上而不产生连续旋转的最大转矩。它是步进电动机最重要的参数之一,通常

步进电动机在低速时的力矩接近保持转矩。由于步进电动机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m 的步进电动机。

(4)步距精度:可以用定位误差来表示,也可以用步距角误差来表示。

(5)矩角特性:步进电动机的转子离开平衡位置后所具有的恢复转矩,随着转角的偏移而变化。步进电动机静转矩与失调角的关系称为矩角特性。

(6)静态温升:指电机静止不动时,按规定的运行方式中最多的相数通以额定静态电流,达到稳定的热平衡状态时的温升。

(7)动态温升:电机在某一频率下空载运行,按规定的运行时间进行工作,运行时间结束后电机所达到的温升叫动态温升。

(8)转矩特性:它表示电机转矩和单相通电时励磁电流的关系。

(9)启动矩频特性:启动频率与负载转矩的关系称为启动矩频特性。

(10)运行矩频特性/惯频特性:略

(11)升降频时间:指电机从启动频率升到最高运行频率或从最高运行频率降到启动频率所需的时间。

(12)DETENT TORQUE:是指步进电动机没有通电的情况下,定子锁住转子的力矩。DETENT TORQUE 在国内没有统一的翻译方式,容易产生误解;反应式步进电动机的转子不是永磁材

料,所以它没有DETENT TORQUE。

9、步进电动机的一些特点:

(1)步进电动机没有积累误差:一般步进电动机的精度为实际步距角的3-5%,且不累积。????? (2)步进电动机在工作时,脉冲信号按一定顺序轮流加到各相绕组上(由驱动器内的环形分配器控制绕组通断电的方式)。

(3)即使是同一台步进电动机,在使用不同驱动方案时,其矩频特性也相差很大。

(4)步进电动机与其它电动机不同,其标称额定电压和额定电流只是参考值;又因为步进电动机是以脉冲方式供电,电源电压是其最高电压,而不是平均电压,所以,步进电动机可以超出其额定值范围工作。但选择时不应偏离额定值太远。

(5)步进电动机外表允许的最高温度:步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电动机外表温度在摄氏80-90度完全正常。

(6)步进电动机的力矩会随转速的升高而下降:当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。

(7)步进电动机低速时可以正常运转,但若高于一定频率就无法启动,并伴有啸叫声。

步进电动机有一个技术参数:空载启动频率,即步进电动机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。

(8)四相混合式步进电机一般由两相驱动器来驱动,因此,连接时可以采用串联接法或并联接法将四相电机接成两相使用。串联接法一般在电机转速较低的场合使用,此时需要的驱动器输出电流为电机相电流的0.7倍,因而电机发热小;并联接法一般在电机转速较高的场合使用(又称高速接法),所需要的驱动器输出电流为电机相电流的1.4倍,因而电机发热较大。

(9)混合式步进电机驱动器的供电电源电压一般是一个较宽的范围(比如IM483的供电电压为12~48VDC),电源电压通常根据电机的工作转速和响应要求来选择。如果电机工作转速较高或响应要求较快,那么电压取值也高,但注意电源电压的纹波不能超过驱动器的最大输入电压,否则可能损坏驱动器。

(10)供电电源电流一般根据驱动器的输出相电流I来确定。如果采用线性电源,电源电流一般可取I 的1.1~1.3倍;如果采用开关电源,电源电流一般可取I 的1.5~2.0倍。(11)当脱机信号FREE为低电平时,驱动器输出到电机的电流被切断,电机转子处于自由状态

(脱机状态)。在有些自动化设备中,如果在驱动器不断电的情况下要求直接转动电机轴(手动方式),就可以将FREE信号置低,使电机脱机,进行手动操作或调节。手动完成后,再将FREE信号置高,以继续自动控制。

(12)用简单的方法调整两相步进电机通电后的转动方向,只需将电机与驱动器接线的A+和A-(或者B+和B-)对调即可。

10、步进电动机驱动器的一些特点:

(1)构成步进电动机驱动器系统的专用集成电路:

??? A?? 脉冲分配器集成电路:如三洋公司的PMM8713(三/四相)、PMM8723(四相)、PMM8714(五相)等。

B? 包含脉冲分配器和电流斩波的控制器集成电路:如SGS公司的L297(四相)、L6506(四相)等。

C? 只含功率驱动(或包含电流控制、保护电路)的驱动器集成电路:如日本新电元工业公司的MTD1110(四相斩波驱动)和MTD2001(两相、H桥、斩波驱动)。

D? 将脉冲分配器、功率驱动、电流控制和保护电路都包括在内的驱动控制器集成电路,如MOTOROLA公司的SAA1042(四相)和ALLEGRO公司的UCN5804(四相)等。

????

(2)“细分驱动”概述:

概念:将“电机固有步距角”细分成若干小步的驱动方法,称为细分驱动,细分是通过驱动器精确控制步进电动机的相电流实现的,与电机本身无关。其原理是,让定子通电相电流并不一次升到位,而断电相电流并不一次降为0(绕组电流波形不再是近似方波,而是N级近似阶梯波),则定子绕组电流所产生的磁场合力,会使转子有N个新的平衡位置(形成N个步距角)。

最新技术发展:国内外对细分驱动技术的研究十分活跃,高性能的细分驱动电路,可以细分到上千甚至任意细分。目前已经能够做到通过复杂的计算使细分后的步距角均匀一致,大大提高了步进电动机的脉冲分辨率,减小或消除了震荡、噪声和转矩波动,使步进电动机更具有“类伺服”特性。

对实际步距角的作用:在没有细分驱动器时,用户主要靠选择不同相数的步进电机来满足自己对步距角的要求。如果使用细分驱动器,则用户只需在驱动器上改变细分数,就可以大幅度改变实际步距角,步进电机的‘相数’对改变实际步距角的作用几乎可以忽略不计。

采用细分技术与步进电动机精度提高的关系:步进电动机的细分技术实质上是一种电子阻尼技术,其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。细分后电机运转时对每一个脉冲的分辨率提高了,但运转精度能否达到或接近脉冲分辨率还取决于细分驱动器的细分电流控制精度等其它因素。不同厂家的细分驱动器精度可能差别很大;细分数越大精度越难控制。

真正的细分对驱动器要有相当高的技术要求和工艺要求,成本亦会较高。国内有一些驱动器采用对电机相电流进行“平滑”处理来取代细分,属于“假细分”,“平滑”并不产生微步,会引起电机力矩的下降。真正的细分控制不但不会引起电机力矩的下降,相反,力矩会有所增加。

简单就说这么多吧!楼主也不给悬赏分,有需要步进电机驱动器芯片的可以找我,北京博远鼎盛电子我对步进电机驱动器的理解有两种:

一:仅仅只是把输入信号放大。我让电机转动,仍然需要在输入信号中包含控制A+,A-,B+,B- 4个端口高低电平的信息。

二:我仅仅只需要输入脉冲和方向,比如我输入一个脉冲,电机就相应步进一个步距角,至于如何改变A+,A-,B+,B-的高低电平我完全不必理会,而是由驱动器去完成的。

步进电动机的工作原理与特点

步进电动机的工作原理及特点随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 1 步进电机概述 步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、Pulse motor或Stepper servo,其应用发展已有约80年的历史。步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。每来一个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率围通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点[1]。 正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。 2国外的研究概况 步进电机是国外发明的。中国在文化大革命中已经生产和应用,例如、、、、都生产,而且都在各行业使用,驱动电路所有半导体器件都是完全国产化的,当时是全分立元器件构成的逻辑运算电路,还有电容耦合输入的计数器,触发器,环形分配器。国外在大功率的工业设备驱动上,目前基本不使用大扭矩步进电动机,因为从驱动电路的成本,效率,噪音,加速度,绝对速度,系统惯量与最大扭矩比来比较,比较不划算,还是用直流电动机,加电动机编码器整体技术和经济指标高。一些少数高级的应用,就用空心转杯电机,交流电机。国外在小功率的场合,还使用步进电机,例如一些工业器材,工业生产装备,打印机,复印件,速印机,银行自动柜员机。国外用许多现代的手段将步进电机排挤出驱动应用,除了前面提到的旋转编码器,打印机还使用光电编码带或感应编码带配合直流电动机,实现闭环直线位移控制。国过去是用大力矩步进电动机实现机床数控,有实力的公司现在也采用交流电动机驱动数控机床,在驱动设备的主要差距,是国外对交流电动机的控制理论与工程分析和应用能力强,先进的控制理论作为软件,写在控制器部。 总的来说,步进电机是一种简易的开环控制,对运用者的要求低,不适合在大功率的场合使用。 在卫星、雷达等应用场合,中国在文化大革命后期,就生产了力矩电机,就生产了环形

_单片机控制步进电机驱动原理___驱动图

单片机控制步进电机驱动器工作原理 步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。 有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。 本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示: a. 单四拍 b. 双四拍 c八拍 图2.步进电机工作时序波形图 2.AT89C2051 步进电机驱动器系统电路原理如图3:

步进电机的工作原理其原理图

一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给用户在产品选型、使用中造成许多麻烦。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转:

如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C 偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。如C相通电,A,B相不通电,齿3应与C 对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。如A相通电,B,C相 不通 电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电 顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A 这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移 1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 3、力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力F 与(dФ/dθ)成正比 S 其磁通量Ф=Br*S Br为磁密,S为导磁面积,F与L*D*Br成正比L为铁芯有效长度,D 为转子直径Br=N·I/R N·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径

2H42B步进电机驱动器说明书

2H42B 细分步进电机驱动器使用手册 V ersion 2.0 版权所有不得翻印 【使用前请仔细阅读本手册,以免损坏驱动器】 东莞市一能机电技术有限公司 DONGGUAN ICAN-TECH CO.,LTD 地址:东莞市万江区新和工业区瑞联振兴工业园B栋4楼 https://www.360docs.net/doc/862757891.html,/ Email:tech@https://www.360docs.net/doc/862757891.html,

2H42B 步进电机驱动器 一、 2H42B 步进电机驱动器产品简介 1.1概述 2H42B 步进电机驱动器是一款高性价比的细分两相步进电机驱动器。最大可提供2.0A 的电流输出。由于采用了双极性恒流斩波控制技术,与市面上同类型步进电机驱动器相比,其对步进电机噪声和发热均有明显改善。适用于尺寸为28,35,39,42等各类2相或4相混合式步进电机,具有体积小,使用简单方便等特点。 1.2特点 ◆低噪声,高速大转矩特性 ◆光电隔离差分信号输入,响应频率最高200K ◆供电电压12VDC-36VDC ◆细分精度1,2,4,8,16,32,64,128, ◆输出电流峰值可达2.0A 倍细分可选 ◆静止时电流自动减半 ◆外形尺寸小(96*60*24mm ) ◆可选择脉冲上升沿或下降沿触发 ◆电流设定方便,八档可选 ◆可驱动4、6、8线二相、四相步进电机 ◆具有过流,过温保护功能 1.3应用领域 适用于各类型自动化设备或仪器,如雕刻机、打标机、切割机、激光照排、绘图仪、数控 机床、机械手,包装机械,纺织机械等,极具性价比和竞争力。 二、 2H42B 步进电机驱动器 电气、机械和环境指标 1 网址:www https://www.360docs.net/doc/862757891.html, 2.2 2H42B 步进电机驱动器使用环境及参数 图1.安装尺寸图 2.4加强散热方式 1) 2H42B 步进电机驱动器的可靠工作温度通常在60℃以内,电机工作温度为80℃以内; 2) 建议使用时选择自动半流方式 (即电机停止时电流自动减至60% ),以减少电机和驱动器的发热; 3) 安装步进电机驱动器时请采用立式侧面安装,使散热面向易于空气对流的方向,必要时在机箱内靠近驱动器处应安装排气风扇,进行强制散热,从而保证驱动器在可靠工作温度范围内工作。 2 网址: www https://www.360docs.net/doc/862757891.html,

步进电机驱动器控制信号接口说明

. .. 步进电机驱动器控制信号接口说明 驱动器是把计算机控制系统提供的弱电信号放大为步进电机能够接受的强电流信号,控制系统提供给驱动器的信号主要有以下三路: 1.步进脉冲信号CP:这是最重要的一路信号,因为步进电机驱动器的原理就是要把控制系统发出的脉冲信号转化为步进电机的角位移, 或者说:驱动器每接受一个脉冲信号CP,就驱动步进电机旋转一步距角, CP的频率和步进电机的转速成正比, CP的脉冲个数决定了步进电机旋转的角度。这样,控制系统通过脉冲信号CP就可以达到电机调速和定位的目的。 2.方向电平信号 DIR:此信号决定电机的旋转方向。比如说,此信号为高电平时电机为顺时针旋转,此信号为低电平时电机则为反方 向逆时针旋转。此种换向方式,我们称之为单脉冲方式。另外,还有一种双脉冲换向方式:驱动器接受两路脉冲信号(标注为CW和CCW),当其中一路(如CW)有脉冲信号时,电机正向运行,当另一路(如CCW)有脉冲信号时,电机反向运行。用户使用何种方式,由拨位开关设定。 3.使能信号EN:此信号在不连接时默认为有效状态,这时驱动器正常工作。当此信号回路导通时,驱动器停止工作,这时电机处于无力矩状态(等同于本公司SH系列驱动器的FREE信号),此信号为选用信号。 为了使控制系统和驱动器能够正常的通信,避免相互干扰,我们在驱动器内部采用光耦器件对输入信号进行隔离,三路信号的内部接口电路相同,常用的连接方式为①共阳方式:把CP+、DIR+和EN+接在一起作为共阳端接外部系统的+5V,脉冲信号接入CP-端,方向信号接入DIR-端,使能信号接入EN-端;②共阴方式:把CP-、DIR-和EN-接在一起作为共阴端接外部系统的GND,脉冲信号接入CP+端,方向信号接入DIR+端,使能信号接入EN+端;③差动方式:直接连接。 驱动器输入信号内部接口示意图 如果驱动器输入信号为电压信号,要求:3.6V≤高电平≤5.5V; -5.5V≤低电平≤0.3V,最常用的为TTL电平。 如果驱动器输入信号为电流信号,要求:7mA≤高电流≤18mA; -18mA≤低电流≤0.2mA。 不管是电压信号还是电流信号,最终转化为光耦器件的输入电流以达到信号传输的目的(参考上图),如果电压信号的幅值超出以上要求的范围须在外部另加限流电阻R,保证给驱动器内部光耦提供7-18mA的驱动电流,参见下图和下表。 步进电机的运行是由脉冲信号控制的,步进电机在脉冲信号的有效沿到来的时刻移动一个步距角,本系列驱动器的有效沿是指:脉冲信号电流“由小到大”的时刻,或者说脉冲电平“由低到高”的时刻,或者说是驱动器内部光耦“由截止到打开”的时刻。 脉冲信号的频率要求不大于200KHz; 脉冲信号的宽度要求不小于2μS。 脉冲信号的驱动电流要求为7-18mA 电机换向时,一定要在电机降速停止后再换向。换向信号要求在前一个方向的最后一个脉冲有效沿结束至少5μS以上才能改变换向信号,且不滞后下一个脉冲信号的有效沿。 如果使用双脉冲CW/CCW方式,则要求下一个方向的第一个脉冲(如CCW)在前一个方向的最后一个脉冲(CW)有效沿后至少5μs才能有效。

步进电机驱动器工作原理

步进电机驱动器工作原理 步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。 有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、

B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示:

图2.步进电机工作时序波形图2.基于AT89C2051的步进电机驱动器系统电路原理

伺服电机工作原理及和步进电机的区别

伺服电机工作原理及和步进电机的区别 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降.。 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制滚珠丝杆,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。 永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。⑵定子绕组散热比较方便。⑶惯量小,易于提高系统的快速性波纹管联轴器。⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 伺服和步进电机 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳膜片联轴器,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 三、矩频特性不同

步进电机原理介绍

步进电机也叫步进器,它利用电磁学原理,将电能转换为机械能,人们早在20世纪20年代就开始使用这种电机。随着嵌入式系统(例如打印机、磁盘驱动器、玩具、雨刷、震动寻呼机、机械手臂和录像机等)的日益流行,步进电机的使用也开始暴增。不论在工业、军事、医疗、汽车还是娱乐业中,只要需要把某件物体从一个位置移动到另一个位置,步进电机就一定能派上用场。步进电机有许多种形状和尺寸,但不论形状和尺寸如何,它们都可以归为两类:可变磁阻步进电机和永磁步进电机。本文重点讨论更为简单也更常用的永磁步进电机。 步进电机的构造 如图1所示,步进电机是由一组缠绕在电机固定部件--定子齿槽上的线圈驱动的。通常情况下,一根绕成圈状的金属丝叫做螺线管,而在电机中,绕在齿上的金属丝则叫做绕组、线圈、或相。如果线圈中电流的流向如图1所示,并且我们从电机顶部向下看齿槽的顶部,那么电流在绕两个齿槽按逆时针流向流动。根据安培定律和右手准则,这样的电流会产生一个北极向上的磁场。

现在假设我们构造一个定子上缠绕有两个绕组的电机,内置一个能够绕中心任意转动的永久磁铁,这个可旋转部分叫做转子。图2给出了一种简单的电机,叫做双相双极电机,因为其定子上有两个绕组,而且其转子有两个磁极。如果我们按图2a所示方向给绕组1输送电流,而绕组2中没有电流流过,那么电机转子的南极就会自然地按图中所示,指向定子磁场的北极。 再假设我们切断绕组1中的电流,而按图2b所示方向给绕组2输送电流,那么定子的磁场就会指向左侧,而转子也会随之旋转,与定子磁场方向保持一致 接着,我们再将绕组2的电流切断,按照图2c的方向给绕组1输送电流,注意:这时绕组1中的电流流向与图2a所示方向相反。于是定子的磁场北极就会指向下,从而导致转子旋转,其南极也指向下方。 然后我们又切断绕组1中的电流,按照图2d所示方向给绕组2输送电流,于是定子磁场又会指向右侧,从而使得转子旋转,其南极也指向右侧。。 最后,我们再一次切断绕组2中的电流,并给绕组1输送如图2a所示的电流,

步进电机驱动器以及原理图

` 基于L297系列芯片的步进电机驱动器 设计说明书 一:概述 步进电动机是用脉冲信号进行控制,将点脉冲信号转换成相应的角位移和线位移的微电机,广泛地应用于打印机等办公知道设备以及各种控制装置。 步进电机和一般的电机不同,之接电源步进电机不能转动,而每加一个点脉冲仅转动一定的角度,另外,改变脉冲的频率时,步进电机的速率也跟着改变。 步进电机按电磁转距产生机理的不同可以分为反应式步进电机,永磁式步进电机和混合式步进电机,而按绕组的相数又可以分为单相,两相,三相。五相……… 二:步进电机的驱动方式 由于篇幅有限和设计的实际情况,在这我只介绍和设计方式相关的二相步进电机的励磁方式和驱动方式。 (一)驱动器结构简介 步进电机驱动器主要结构可以由下图表示 各部分的主要作用为 1:环行分配器:根据输入信号的要求产生电机在不同状态下的开关波形 2:信号处理:对环行分配器产生的开关信号波形进行PWM调制以及对相关的波形进行滤波整形处理 3:推动级:对开关信号的电压,电流进行放大提升 4:主开关电路:用功率元器件直接控制电机的各相绕组 5:保护电路:当绕组电流过大时产生关断信号对主回路进行关断,以保护电机驱动器和电机绕组 6:传感器:对电机的位置和角度进行实时监控,传回信号的产生装置。 (二):励磁方式

本设计对二相双极性电机进行的,所以介绍二相电机的励磁方式 1:一相励磁:通电的绕组只有一相,依次切换相电流产生旋转步距角为1。8度,对这种励磁方式,每个脉冲到来时的旋转角的响应有振动,若频率过高,有时会产生失步现象 2:两相励磁:两相同时流通电流,也采用依次切换相电流的方法,二相励磁的步距角为1.8度,二相历次的总电流增大2倍,则最高启动频率增大,能获得高的转速,另外,过度性能也好。 3:一,二相励磁:这是一种交替进行一相励磁,二相励磁的方法,启动电流每两个始终切换依次,因此步距角为0。9度,励磁电流变大,过度性能也好,最大启动频率也高。 (三):驱动方式 单极性和双极性是步进电机最常采用的两种驱动架构。单极性驱动电路使用四颗晶体管来驱动步进电机的两组相位,电机结构则如图1所示包含两组带有中间抽头的线圈,整个电机共有六条线与外界连接。这类电机有时又称为四相电机,但这种称呼容易令人混淆又不正确,因为它其实只有两个相位,精确的说法应是双相位六线式步进电机。六线式步进电机虽又称为单极性步进电机,实际上却能同时使用单极性或双极性驱动电路。 单极性步进电机驱动电路 双极性步进电机的驱动电路则如图2所示,它会使用八颗晶体管来驱动两组相位。双极性驱动电路可以同时驱动四线式或六线式步进电机,虽然四线式电机只能使用双极性驱动电路,它却能大幅降低量产型应用的成本。双极性步进电机驱动电路的晶体管数目是单极性驱动电路的两倍,其中四颗下端晶体管通常是由微控制器直接驱动,上端晶体管则需要成本较高的上端驱动电路。双极性驱动电路的晶体管只需承受电机电压,所以它不像单极性驱动电路一样需要箝位电路。

步进电动机的结构与工作原理

步进电动机的结构与工作原 理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

步进电动机的结构与工作原理 步进电机是利用电磁铁原理,将脉冲信号转换成线位移或角位移的电机。每来一个电脉冲,电机转动一个角度,带动机械移动一小段距离。 步进电动机 步进机将脉冲信号转换为角位移或线位移。主要要求:动作灵敏、准确、重量轻、体积小、运行可靠、耗电少等。 步进电动机的特点: (1)来一个脉冲,转一个步距角。 (2)控制脉冲频率,可控制电机转速。 (3)改变脉冲顺序,改变方向。 步进电动机的种类 根据励磁式方式的不同分为:反应式、永磁式和混合式(又叫感应子式)三种。反应式步进电机的应用较多。 下面以反应式步进电机为例说明步进电机的结构和工作原理。 图7-20 (a)三相反应式步进电动机工作原理图 A 相通电,A 方向的磁通经转子形成闭合回路。若转子和磁场轴线方向原有一定角度,则在磁场的作用下,转子被磁化,吸引转子,使转子的位置力图使通电相磁路的磁阻最小,使转、定子的齿对齐停止转动。 A 相通电使转子1、3齿和 AA' 对齐。

图7-20 (b)三相反应式步进电动机工作原理图 同理,B相通电,转子2、4齿和B相轴线对齐,相对A相通电位置转30; 图7-20 (c)三相反应式步进电动机工作原理图 最后,C相通电,转子1、3齿和C相轴线对齐,相对B相通电比较,转子再次转动30。 步进电动机的结构 步进机主要由两部分构成:定子和转子。它们均由磁性材料构成,以三相为例其定子和转子上分别有六个、四个磁极。

步进电动机结构简图 定子的六个磁极上有控制绕组,两个相对的磁极组成一相。 注意:这里的相和交流电中的“相”的概念不同。步进机通的是直流电脉冲,这主要是指线图的联接 和组数的区别。 图7-22 三相反应式步进电动机结构原理图 步进电动机工作方式 (以三相步进电机为例)步进电机的工作方式可分为:三相单三拍、三相六拍、三相双三拍等。

步进电机的原理,分类,细分原理

步进电机原理及使用说明 一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 步进电机是将电脉冲信号转变为角位移或线位移的一种开环线性执行元件,具有无累积误差、成本低、控制简单特点。产品从相数上分有二、三、四、五相,从步距角上分有0.9°/1.8°、0.36°/0.72°,从规格上分有口42~φ130,从静力矩上分有0.1N?M~40N?M。 签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A…与齿5相对齐,(A…就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。

步进电机驱动器说明书

TB6600升级版 两相步进驱动器 使用说明书 [使用前请仔细阅读本手册,以免损坏驱动器]

目录 一、产品简介 (3) 概述 (3) 特点 (3) 二、接口和接线介绍 (3) 信号输入端 (3) 电机绕组连接 (3) 电源电压连接 (4) 状态指示 (4) 接线方式 (4) 接线要求 (5) 三、电流、细分拨码开关设定 (5) 细分设定 (5) 工作(动态)电流设定 (6) 四、机械和环境指标 (6) 使用环境及参数 (6) 机械安装图 (7) 五、电机适配 (7) 电机适配 (7) 电机接线 (8) 供电电压和输出电流的选择 (8) 五、常见问题 (9) 应用中常见问题和处理方法 (9) 六、保修条款 (10)

一、产品简介 ◆概述 TB6600升级版驱动器是一款专业的两相混合式步进电机驱动器,可适配国内外各种品牌,电流在4.0A及以下,外径39,42,57mm的四线,六线,八线两相混合式步进电机。适合各种小中型自动化设备和仪器,例如:雕刻机、打标机、切割机、激光照排、绘图仪、数控机床、拿放装置等。在用户期望低成本、大电流运行的设备中效果特性。 ◆特点 ※信号输入:单端,脉冲/方向 ※细分可选:1/2/4/8/16/32细分 ※输出电流:0.5A-4.0A ※输入电压:9-42VDC ※静止时电流自动减半 ※可驱动4,6,8线两相、四相步进电机 ※光耦隔离信号输入,抗干扰能力强 ※具有过热、过流、欠压锁定、输入电压防反接保护等功能 ※体积小巧,方便安装 ※外部信号3.3-24V通用,无需串联电阻 二、接口和接线介绍 ◆信号输入端 PUL+ PUL-脉冲输入信号。默认脉冲上升沿有效。为了可靠响应脉冲信号,脉冲宽度应大于1.2us。 DIR+ DIR-方向输入信号,高/低电平信号,为保证电机可靠换向,方向信号应先于脉冲信号至少5us建立。电机的初始运行方向与电机绕组接线有关,互换任一相绕组(如A+、A-交换)可以改变电机初始运行方向。 ENA+ ENA-使能输入信号(脱机信号),用于使能或禁止驱动器输出。使能时,驱动器将切断电机各相的电流使电机处于自由状态,不响应步进脉冲。当不需用此功能时,使能信号端悬空即可。 ◆电机绕组连接 A+,A-电机A相绕组。 B+,B-电机B相绕组。

步进电机 驱动器 控制器三者的关系

电机行业专业求职平台 1.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况 下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机、交流电机在常规下使用。步进电机必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。它涉及到机械、电机、电子及计算机等许多专业知识。 提及此知识,希望能给予正在对电机选型的客户有所帮助。 2.力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度,则产生力 F与(dФ/dθ)成正比 S 其磁通量Ф=Br*S Br为磁密,S为导磁面积 F与L*D*Br成正比 L为铁芯有效长度,D为转子直径 Br=N·I/R N·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径 力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态) 因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。 一、混合式步进电机

电机行业专业求职平台1、特点: 混合式(又称感应子式步进电机)与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。 混合式步进电机某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运 行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C= A ,D=B . 一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相, 而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,更可以作二相电机绕组串联或并联使用。 2、分类 混合式步进电机可分二相、三相、四相、五相等,我公司混合式步进电机以相数可分为:二相电机、三相电机: TEB20H,TEB28H,TEB35H,TEB39H,TEB42H,TEB57H,TEB86H,TEB110 H,TEC57H,TEC86H,TEC110H,TEC130H. 3、步进电机的静态指标术语 相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。 拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半 步)。 定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)

步进电机工作原理及功能运用

步进电机工作原理及功能运用 双击自动滚屏发布者:admin 发布时间:2012-02-18 03:06:33 阅读:495次【字体:大中小】步进电机的概术: 步进电机是将电脉冲信号转变为角位移或线位移的开环控制组件,是目前行业设备的主要配件,如剥线机设备就需要用到此步进电机。 在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 单相步进电机有单路电脉冲驱动,输出功率一般很小,其用途为微小功率驱动。多相步进电机有多相方波脉冲驱动,用途很广。使用多相步进电机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲信号,在经功率放大后分别送入步进电机各项绕组。每输入一个脉冲到脉冲分配器,电机各相的通电状态就发生变化,转子会转过一定的角度(称为步距角)。正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转

过一个步距角。 步进电机按旋转结构分两大类:1是圆型旋转电机如下图A 2直线型电机,结构就象一个圆型旋转电机被展开一样,如下图B 步进电机的别称 步进电机(stepping motor),步进电机(step motor),或者是脉冲电机(pulse motor),其它的如(stepper motor)等……有着各式各样的称呼方式,这些用日本话来表示的时候,就成为阶动电动机,还有,阶动就是一步一步阶段动作的意思,这各用另外一种语言来表示时,就是成为步进驱动的意思,总之,就是输入一个脉冲就会有一定的转角,分配转轴变位的电动机。 一、步进电机的特点

两相步进电机驱动器工作原理

两相步进电机驱动器工作原理 1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示:图2.步进电机工作时序波形图 2.基于AT89C2051的步进电机驱动器系统电路原理 图3 步进电机驱动器系统电路原理图 A T89C2051将控制脉冲从P1口的P1.4~P1.7输出,经74LS14反相后进入9014,经9014放大后控制光电开关,光电隔离后,由功率管TIP122将脉冲信号进行电压和电流放大,驱动步进电机的各相绕组。使步进电机随着不同的脉冲信号分别作正转、反转、加速、减速和停止等动作。图中L1为步进电机的一相绕组。A T89C2051选用频率22MHz的晶振,选用较高晶振的目的是为了在方式2下尽量减小AT89C2051对上位机脉冲信号周期的影响。 图3中的RL1~RL4为绕组内阻,50Ω电阻是一外接电阻,起限流作用,也是一个改善回路时间常数的元件。D1~D4为续流二极管,使电机绕组产生的反电动势通过续流二极管(D1~D4)而衰减掉,从而保护了功率管TIP122不受损坏。 在50Ω外接电阻上并联一个200μF电容,可以改善注入步进电机绕组的电流脉冲前沿,提高了步进电机的高频性能。与续流二极管串联的200Ω电阻可减小回路的放电时间常数,使绕组中电流脉冲的后沿变陡,电流下降时间变小,也起到提高高频工作性能的作用。 3.软件设计 该驱动器根据拨码开关KX、KY的不同组合有三种工作方式供选择: 方式1为中断方式:P3.5(INT1)为步进脉冲输入端,P3.7为正反转脉冲输入端。上位机(PC机或单片机)与驱动器仅以2条线相连。 方式2为串行通讯方式:上位机(PC机或单片机)将控制命令发送给驱动器,驱动器根据控制命令自行完成有关控制过程。

(完整word版)步进电机控制工作原理

步进电机控制工作原理 步进电机的名称 步进电机(stepping motor),步进电机(step motor),或者是脉冲电机(pulse motor),其它的如(stepper motor)等……有着各式各样的称呼方式,这些用日本话来表示的时候,就成为阶动电动机,还有,阶动就是一步一步阶段动作的意思,这各用另外一种语言来表示时,就是成为步进驱动的意思,总之,就是输入一个脉冲就会有一定的转角,分配转轴变位的电动机。 步进电机简介: 步进电机是将电脉冲信号转变为角位移或线位移的开环控制组件。 在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 单相步进电机有单路电脉冲驱动,输出功率一般很小,其用途为微小功率驱动。多相步进电机有多相方波脉冲驱动,用途很广。使用多相步进电机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲信号,在经功率放大后分别送入步进电机各项绕组。每输入一个脉冲到脉冲分配器,电机各相的通电状态就发生变化,转子会转过一定的角度(称为步距角)。正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 步进电机按旋转结构分两大类:1是圆型旋转电机如下图A 2直线型电机,结构就象一个圆型旋转电机被展开一样,如下图B 一,步进电机的种类 现在,在市场上所出现的步进电机有很多种类,依照性能及使用目的等有各自不同的区分使用。

步进电机基本工作原理

步进电机基本原理 电机将电能转换成机械能,步进电机将电脉冲转换成特定的旋转运动。每个脉冲所产生的运动是精确的,并可重复,这就是步进电机为什么在定位应用中如此有效的原因。 永磁步进电机包括一个永磁转子、线圈绕组和导磁定子。激励一个线圈绕组将产生一个电磁场,分为北极和南极,见图1所示。定子产生的磁场使转子转动到与定子磁场对直。通过改变定子线圈的通电顺序可使电机转子产生连续的旋转运动。 图2显示了一个两相电机的典型的步进顺序。在第1步中,两相定子的A相通电,因异性相吸,其磁场将转子固定在图示位置。当A相关闭、B相通电时,转子顺时针旋转90°。在第3步中,B相关闭、A相通电,但极性与第1步相反,这促使转子再次旋转90°。在第4步中,A相关闭、B相通电,极性与第2步相反。重复该顺序促使转子按90°的步距角顺时针旋转。

图2中显示的步进顺序称为“单相激励”步进。更常用的步进方法是“双相激励”,其中电机的两相一直通电。但是,一次只能转换一相的极性,见图3所示。两相步进时,转子与定子两相之间的轴线处对直。由于两相一直通电,本方法比“单相通电”步进多提供了41.1%的力

矩,但输入功率却为2倍。 半步步进 电机也可在转换相位之间插入一个关闭状态而走“半步”。这将步进电机的整个步距角一分为二。例如,一个90°的步进电机将每半步移动45°,见图4。但是,与“两相通电”相比,半步进通常导致15%~30%的力矩损失(取决于步进速率)。在每交换半步的过程中,由于其中一个绕组没有通电,所以作用在转子上的电磁力要小,造成了力矩的

净损失。 双极性绕组 双相激励介绍了利用一种“双极性线圈绕组”的方法。每相用一个绕组,通过将绕组中电流反向,电磁极性被反向。典型的两相双极驱动的输出步骤在电气原理图和图5中的步进顺序中进一步阐述。按图所

相关文档
最新文档