我国光电分析仪器行业研究

我国光电分析仪器行业研究
我国光电分析仪器行业研究

我国光电分析仪器行业研究

(一)行业概述

仪器仪表制造业包含的领域非常广泛,根据《国民经济行业分类》标准,仪

器仪表行业包括光学仪器制造业、实验分析仪器制造业、环境监测专用仪器仪表制造等十几个子行业。

光机电一体化技术是基于光与物质的相互作用对物质具体化学进行定性和

定量检测的一种高科技技术。光机电一体化技术将电控、传感、软件等现代技术有机地结合到传统光学仪器中形成的整机仪器设备,电子技术、计算机及其软件成为光电分析仪器不可分割的重要组成部分。与光学元件类似,光学仪器历史悠久,但光机电一体化技术最近几十年才开始兴起。随着CCD/CMOS探测器技术、计算机技术、大规模集成电路技术的出现和发展,传统光学仪器逐步演变为现代光电仪器并实现了跨越式发展。在各类探测器、驱动器和智能化软件的支持下,

现代光电仪器可以实现的功能越来越丰富,并呈现出小型化、智能化的特点,极大地提高了各领域的工业水平。光机电一体化技术将光学技术与现代电子技术相

结合,大大拓展了分析仪器的应用范围。光电分析技术和分析仪器已经从过往以

服务工农业生产监控、产品质量检测为主发展为具备服务科研、生物、环保、医

学和空间科学技术等应用领域能力的高科技行业,是科技研究中不可缺少的观察、测试、分析、控制、记录和传递的工具,其功能已成为人脑神经功能的延伸和拓展。

仪器仪表制造业的技术水平反映了一个国家科学技术和工业化的发展水平,

是一国产业发达程度的重要体现,仪器仪表制造业的光电分析检测技术的应用领

域十分广泛。当今最为前沿的科技领域如电子制造、环境科学、生命工程、医药

制造、新材料、国防科技等领域的基础研究与工业应用都离不开光电分析检测技术。具体来说,在基础科学研究方面,光电分析检测技术可以用于基础物理和基

础化学研究、新能源新材料研究、生命科学应用研究。在工业生产方面,光电分

析检测技术可以用于工业生产过程检测、制药原辅料检测、光通讯器件及设备研发检测、超高真空检测、发动机研发检测、LED和平板显示器光电检测、光伏器件的各项物理性能检测等。在其他应用领域,光电分析检测技术可以用于环保监测及分析;毒品、危化品、爆炸物等管制品快速现场筛查;食品添加剂、农药残留、抗生素检测;刑侦鉴定;考古与艺术品鉴定;地质勘探选矿等,其在国民经

济建设各行各业的运行过程中承担着把关者和指导者的任务。

(二)行业发展现状

1、仪器仪表行业市场规模及发展数据来源:仪器仪表行业协会

根据仪器仪表行业协会统计数据,2018年,仪器仪表全行业实现营业收入8,977.20亿元,同比增长8.88%;实现利润927.20亿元,同比增长9.71%。其中,实验分析仪器制造子行业实现营业收入318.30亿元,同比增长8.20%,实现利润45.40亿元,同比增长20.21%;环境监测专用仪器仪表制造子行业实现营业收入164.40亿元,同比增长10.13%,实现利润20.80亿元,同比增长15.79%;光学仪器制造子行业实现营业收入531.40亿元,同比增长14.87%,实现利润60.40亿元,同比增长23.21%。

从以上数据可以看出,本公司主要产品所属的光学仪器制造子行业是仪器仪

表行业中最大且增速最快的子行业之一,其他少部分产品所属的实验分析仪器制造子行业和环境监测专用仪器仪表制造子行业实现利润保持着高于行业平均水

平的增长速度。

2、目标市场的整体需求容量情况

作为基础科学研究与企业科技研发的重要基础设备,本公司的产品在国民经济和科技发展中有着不可替代的重要作用。本公司产品的目标市场主要为科研市场和工业应用市场。

(1)科研市场的整体需求容量情况

科研市场的需求主体包括科研院所和高等院校,其市场容量主要受基础研究投入规模的影响。随着我国国民经济快速发展,财政在科学技术研究方面的支出不断增加。2018年,我国财政科学技术支出8,322亿元,同比增长14.22%。近五年财政科学技术支出增长速度呈逐年增加趋势,反映了我国政府对基础科研的支出重视程度不断提高。预计未来本公司主要产品的科研市场需求容量将保持

快速增长。

数据来源:Wind,国家统计局

光电直读光谱仪原理与结构图

光电直读光谱仪为发射光谱仪,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。 一、原理简介: 直读光谱仪采用原子发射光谱学的分析原理,样品经过电弧或火花放电激发成原子蒸汽,蒸汽中原子或离子被激发后产生发射光谱,发射光谱经光导纤维进入光谱仪分光室色散成各光谱波段,根据每个元素发射波长范围,通过光电管测量每个元素的最佳谱线,每种元素发射光谱谱线强度正比于样品中该元素含量,通过内部预制校正曲线可以测定含量,直接以百分比浓度显示。 主要领域几乎涵盖所有金属行业。 目前无论国内还是国外的光电直读光谱仪,基本可按照功能分为4个模块,即: 1、激发系统:任务是通过各种方式使固态样品充分原子化,并放出各元素的发射光谱光。 2、光学系统:对激发系统产生出的复杂光信号进行处理(整理、分离、筛选、捕捉)。 3、测控系统:测量代表各元素的特征谱线强度,通过各种手段,将谱线的光强信号转化为电脑能够识别的数字电信号。控制整个仪器正常运作

4、计算机中的软件数据处理系统:对电脑接收到的各通道的光强数据,进行各种算法运算,得到稳定,准确的样品含量。 二、光电直读光谱仪4个模块的种类和特点: 1、激发系统: (1)高能预燃低压火花激发光源+高纯氩气激发气氛:采用高能预燃,大幅降低了样品组织结构对原子化结果的影响 (2)高压火花激发光源+高纯氩气激发气氛:采集光强不稳定 (3)低压火花激发光源+高纯氩气激发气氛:对同一样品光强稳定,但是对于样品组织结构对原子化的影响无能为力 (4)直流电弧激发光源+高纯氩气激发气氛:对样品中的痕量元素光谱分辨率和检出限有好效果。 5)数控激发光源+高纯氩气激发气氛:按照样品中各元素的光谱特性,把激发过程分为灵活可调的几个时间段,每段时间只针对某几个情况相近的元素给出最佳的激发状态进行激发,并仅采集这几个元素。把各元素的激发状态按照试验情况进行分类讨论) 2、光学系统: (1)帕邢-龙格光学系统(固定光路,凹面光栅及排列在罗兰轨道上的固定出射狭缝阵列):光学系统结构稳定,笨重,体积大。 (2)中阶梯光栅交叉色散光学系统(采用双单色器交叉色散技术,达到了高级次同级的高分辨率,同时又用二次色散解决了光谱的级次重叠问题):体积小,分辨率高,一般采集接固体成像系统。 3、测控系统: (一)测量系统:

光电直读光谱仪项目审查申请书参考模板

光电直读光谱仪项目审查申请书 一、项目概况 (一)项目名称 光电直读光谱仪项目 (二)项目背景 坚持外延发展与内涵提升并举,优化城市功能配置和空间布局, 形成中心、次中心、卫星城以及重点镇、一般镇梯次分布、互相衔接、功能完善的一体化发展布局。 打造城市中心。集聚资源、增强活力、提升能级,形成城市发展 新中心,推动城市发展品质化、业态高端化,强化对全市发展的引领 带动作用,打造全市发展的主引擎。加大棚改旧改工作力度,着力破 解拆迁难题,统筹推进以泉城特色标志区、百年商埠区等为重点的老 城区优化升级,疏解人口、完善功能、凸显特色。 建设城市次中心。依据现有基础与发展潜力,规划布局济南西客站、东客站和黄河北、长清、章丘等城市次中心,推动城市组团式发展。推进产城融合、职住一体,优化教育、医疗、文化等资源配置, 吸引老城区产业及人口转移集聚,分担城市功能。建立中心、次中心 之间的大运量交通联系,加强城市快速交通体系衔接,强化城市边界

设定和生态隔离,着力解决“大城市病”问题。济南西客站次中心, 强化区域综合交通枢纽功能,加快济南知识产业园、非遗园等片区建设,打造以高端商务、文化旅游等为主导的现代化城市新区。济南东 客站次中心,加快济南东客站规划建设,推进东部老工业区工业企业 搬迁改造,打造以交通集散、商务办公、商业服务等功能为主的城市 综合功能区。黄河北次中心,以新材料产业园、鹊山龙湖片区为核心,加快发展休闲旅游、新材料、现代物流等产业,以产兴城、以城促产,建设黄河北产业新城。长清次中心,结合城市轨道交通R1线建设,以 济南创新谷为核心,带动大学科技园、长清城区等片区,建设成为以 科研孵化、高技术服务、文化创意为主导产业的现代化科技产业新城。章丘次中心,推进章丘市撤市设区,以城区为核心,带动明水经济技 术开发区、绣源河等片区,推动交通、能源、市政等重大基础设施与 老城区高效对接,形成东西互动发展格局。 培育省会卫星城。支持济阳、平阴、商河三县加快产城融合发展 步伐,以县城驻地及工业园区为主要载体,突出优势产业培育,加强 基础设施建设,提高公共服务水平,建设功能完善、富有特色、繁荣 宜居的现代化卫星城,增强对城乡一体发展的重要纽带作用。加强济 阳与中心城区的对接,推动撤县设区,支持平阴、商河壮大经济实力,

直读光谱分析准确度和精密度

光电直读发射光谱分析精密度和准确度的简要阐述 在化学成分分析检测中,精密度和准确度是评价和表述分析检测方法与结果的两个最重要的术语。这两个术语有着不同的概念,也有着十分密切的关系。下面将结合光电直读发射光谱分析和实际工作的应用,对精密度和准确度的定义、关系、影响因素和应用做简要的阐述。 一、几个术语的解释 在阐述之前,首先对几个术语的定义和关系做一下必要的解释。 1、(测量)误差、偏差、公差、超差 误差——测量值与被测量真值之差。 偏差——测量值与多次测量值的平均值间的差。 公差——生产部门对允许误差的一种表示方法,公差范围的大小是根据生产需要和实际可能确定的。 (1)误差和偏差是两个不同的概念,误差是以真实值作标准,偏差是以多次测量值的平均值为标准。 (2)真实值是无法准确知道的,故通常以多次测量值的平均值代替真实值进行计算。显然,这样算出来的还是偏差。正因为如此,在生产部门就不再强调误差与偏差这两个概念的区别,一般笼统地称为误差,并且用公差范围来表示允许误差的大小。 (3)对于每一类物质的具体分析工作,各主管部门都规定了具体的公差范围。如果测试结果超出允许的公差范围,就叫做超差。 2、系统误差、随机误差 测量误差分为系统误差和随机误差: 系统误差——在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量真值之差称为系统误差。 随机误差——测量结果与在重复性条件下对同一被测量进行无限多次测量

所得结果的平均值之差称为随机误差。 (1)测量误差的主要来源有对测量理论认识不足引起的误差、测量方法误差、测量器具误差、环境条件影响引起的误差和操作人员引起的误差等。 (2)由于无限多次是不可能实现的,所以在实际工作中人们认为系统误差是对同一被测量的多次测量过程中,保持恒定或以可以预知的方式变化的测量误差。系统误差确定后可以进行修正。系统误差与测量次数无关,不能通过增加测量次数的方法加以消除或减小。 (3)同样的,在实际工作中,由于无限多次是不可能实现的,一般认为,在对同一被测量的多次测量过程中,以不可预知的方式变化的测量误差称为随机误差。随机误差是由未被认识和掌握的规律或因素导致的,无法修正或消除,但可以根据其自身的规律用增加测量次数的方法加以限制和减小。 随机误差最常用表示方法是标准差。标准差用贝塞尔公式来计算。 对同一量(X )进行有限(n )次测量,其测得值(x i )间的离散性可用标准差(s )来表示: ∑=--= n i i x x n x s 1 2 1 1 ) ()( 式中:n —独立重复测量次数; x i —测量值(i =1,2,…n ); x —n 次测量的算术平均值。 一组测量结果平均值x 的标准差:n s s x = 若测量次数足够大,则该组测量的总体标准差σ为:∑=-= N i i x x N σ1 2 1 ) ( 标准差是每个测得值的函数,对一系列测得值中大小误差的反映都很灵敏,是表示测量随机误差的较好方式。 3、(测量方法与结果的)准确度、精密度、灵敏度 比较明确和常用的提法是:测量方法与结果的准确度、测量方法或一组重复测量数据的精密度、测量方法或测量仪器的灵敏度。 教科书和学习资料中常使用的定义:

直读光谱仪常见问题

电直读光谱仪用氩气净化机使用总结与故障处理 一、氩气净化机的再生总结 1、电源电压为220V,电压要稳,可通过单独供电或加稳压电源即可,但稳压电源也必须是稳压效果较好的,电压波动在规定的范围内 2、送电前一定要确保电流调节旋钮处于零位置,并将温度设定旋钮旋到设定的350度, 3、准备一瓶高纯氩气,减压阀,2个再生阀,熟料管等,并将减压阀与氩气瓶连接好,再将管子与减压阀接好,根据需要选择1#或2#再生端口,此时,应打开气瓶将管子内部的空气排尽,注意:此时不要关掉气瓶,应保持气瓶微开。将再生排气堵头快速拆下,并快速按上再生阀,此时应对气瓶到再生阀处进行检漏操作,同时将再生进气堵头快速拆下,快速按上再生阀,最后,将再生排气阀调到微开状态。 4、送电,将再生万能转换开关打到要再生的塔上,对于塔的红灯亮,温度表的绿灯亮。 5、手动缓慢调节电流调节旋钮至5-6A,再生开始,当温度升到150度时,开始放气,每隔15分钟瞬时将阀门旋到最大放气大约30秒后再调到原来的状态。 6、当温度升到350度时,自动保持恒温4小时后,手动将电流调节旋钮旋到最小,此时将氩气钢瓶阀门关掉,将再生进气阀关掉,开启工作进气阀,将再生出气阀的流量控制的低一点,直到降到100度时,此时停止放气,但根据经验应继续放气最好,且降到室温再停止放气效果最佳,关闭再生出气阀,2分钟后,关闭工作出气阀以保证再生设备充以正压留作备用。同时关掉电源,将再生转换开关旋至零位。 7、再生完毕后,光谱仪要进行打点试验,如发现点不圆较大有毛刺时,应对仪器进行放气操作。之后,仪器要进行标准化。 一般氩气净化机的进气压力为,计为3公斤压力。 二、氩气净化机的故障处理 故障1:电炉丝烧断故障 处理:更换炉丝 故障2:热电偶烧坏 处理:用万用表量,一般热电偶在欧姆左右时为正常,当远大于欧姆时,热电偶烧坏。

冶金光电直读光谱分析的进展

冶金光电直读光谱分析的进展 九十年代以来,移动式光谱仪分析技术发展迅速.现在碳、磷、硫均可在移动式光谱仪上得到正确分析.它是通过两种不同技术实现的.早期的光导纤维对低于200nm的谱线有明显的吸收,因此不能分析碳、磷、硫.现代的特殊光导纤维已可以将碳(193.09nm)谱线吸收率大大降低,碳含量在0.02%以上浓度均可正常鉴别和区分.但这种方法仍不能分析磷、硫.另一种方法是专门为碳、磷、硫制作一个小光室,将其固定到激发枪上,光室为氢气气氛,这样激发枪激发的光通过两路传播:一路通过光纤传至5m外的主光学系统,另一路直接传给激发枪上的小光室,小光室有氮气保护不吸收紫外光,因此,可以测定碳、磷、硫.这样就大大拓展了移动式光谱仪的使用领域.目前,在我国移动式光谱仪的应用技术发展很快,各行业使用的移动式光谱仪估计在100台以上.为适应生产的需要,市场上又推出了全自动光谱检测车.我国宝钢就有两套全自动光谱检测车应用在钢管生产线上并实现了在线分析.它的工作流程是:钢管在生产线上经过光谱检测车的指定测量区域时,磨样装置自动从下而上打磨钢管表面,激发枪从下而上顶住钢管激发测量,两次测定取平均值,合格的钢管通过,不合格的便用吊臂将其吊至生产线外指定地点. 6小试样分析 光电直读光谱分析对试样有基本要求,试样与激发台的接触面应为大于激发孔的平面(激发孔直径10一15mm).因此许多小尺寸的试样不能直接在光电直读光谱仪上测定.为解决小试样的测量,国内外已经积累了丰富的经验,并广泛地应用于实际分析中。 (l)氮化硼片法:这是一项成熟技术,已应用多年.基本方法是用氮化硼作成一圆环,一般厚度为1mm刁外径与光电光谱仪激发孔相同,内径为5mm刀。或8mm,将氮化翻片放在激发孔上,由于有效的激发孔径减小,有些小试样可以进行测量. (2)夹具法:国内外开发出各种夹具解决了线、棒试样的分析问题.夹具可分为两类,一类是竖直夹具,可分析直径大于3mm的棒材.具体方法是用夹具夹住试样并置于与电极相对位置(用定位器定位)进行激发测量.另一类是卧式夹具,可分析0.5~3mm的线材.

光电直读光谱仪原理

光电直读光谱仪原理、简介分类、维护及故障排除: 一、原理简介: 光电直读光谱仪为发射光谱仪,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。 目前无论国内还是国外的光电直读光谱仪,基本可按照功能分为4个模块,即: 1、激发系统:任务是通过各种方式使固态样品充分原子化,并放出各元素的发射光谱光。 2、光学系统:对激发系统产生出的复杂光信号进行处理(整理、分离、筛选、捕捉)。 3、测控系统:测量代表各元素的特征谱线强度,通过各种手段,将谱线的光强信号转化为电脑能够识别的数字电信号。控制整个仪器正常运作 4、计算机中的软件数据处理系统:对电脑接收到的各通道的光强数据,进行各种算法运算,得到稳定,准确的样品含量。 二、光电直读光谱仪4个模块的种类和特点: 1、激发系统: (1)高能预燃低压火花激发光源+高纯氩气激发气氛:采用高能预燃,大幅降低了样品组织结构对原子化结果的影响 (2)高压火花激发光源+高纯氩气激发气氛:采集光强不稳定 (3)低压火花激发光源+高纯氩气激发气氛:对同一样品光强稳定,但是对于样品组织结构对原子化的影响无能为力 (4)直流电弧激发光源+高纯氩气激发气氛:对样品中的痕量元素光谱分辨率和检出限有好效果。 (5)数控激发光源+高纯氩气激发气氛:按照样品中各元素的光谱特性,把激发过程分为灵活可调的几个时间段,每段时间只针对某几个情况相近的元素给出最佳的激发状态进行激发,并仅采集这几个元素。把各元素的激发状态按照试验情况进行分类讨论) 2、光学系统: (1)帕邢-龙格光学系统(固定光路,凹面光栅及排列在罗兰轨道上的固定出射狭缝阵列):光学系统结构稳定,笨重,体积大。 (2)中阶梯光栅交叉色散光学系统(采用双单色器交叉色散技术,达到了高级次同级的高

光电直读光谱仪的优点

光电直读光谱仪的优点 火花直读光谱仪用于对金属材料化学成分的定量检测,目的在于对自身的材料有一个直接的了解,以便判断是否合格。钢铁元素含量的测试是钢铁行业研发、生产控制、质量检验的传统测试项目。 经典的化学分析方法操作复杂、分析元素单一、分析过程时间长、消耗对环境潜在危害的化学试剂。钢铁冶炼炉前同步分析的快速分析需求,直接促使直读光谱仪的发明。直读光谱仪的发明和改进的几十年来,完美地实现了现代钢铁工业对钢铁的元素含量分析速度快、元素种类丰富、成本低、环境友好等多方面需求,其他元素分析方法从未如此同时恰好满足以上需求。目前,直读光谱仪已是追求产品技术和质量水平的钢铁冶炼、加工、整机企业的必选设备。 火花直读光谱仪,适合压铸、熔铸,钢铁或有色金属行业的炉前金属分析的要求,及金属成分的快速定量分析,进、出厂材料检验以及汽车、机械制造等行业的金属材料分析。进行炼炉前的快速分析以及中心实验室的产品检验,可以用于多种基体分析:Al,Pb,Mg,Zn,Sn,Fe,Co,Ni,Ti,Cu等。 光电直读光谱仪具有以下优点: 1、炉中取的样品只要打磨掉表面氧化皮,固体样品即可放在样品台上激发,免去了化学分析钻取试样的麻烦。对于铝及铜、锌等有色金属样品而言,可用小车床车去表面氧化皮即可。 2、从样品激发到计算机报出元素分析含量只需20-30秒钟,速度非常快,有利于缩短冶炼时间,降低成本。特别是对那些容易烧损的元素,更便于控制其的成份。 3、样品中所有要分析的元素(几个甚至十几个)可以一次同时分析出来,对于牌号复杂的产品,要求分析元素愈多愈合算,经济效益好。

4、分析精度非常高,可以有效控制产品的化学成份,保证它能符合国家标准的规格,甚至可将合金成份控制到规格的中下限,以节省中间合金或铁合金的消耗。 5、分析数据可以从计算机打印出来或存入软盘中,作为性记录。 从技术角度来看光电光谱分析,可以说至今还没有比它能更有效的用于炉前快速分析的仪器。所以世界上冶炼、铸造以及其他金属加工企业均竞相采用这类仪器成为一种常规分析手段,从保证产品质量,及经济效益等方面,它是十分有利的分析工具。 标签: 光电直读光谱仪

直读光谱仪讲义 第一章 直读光谱仪的概况

第一章直读光谱仪的概况 国内外光电直读光谱仪的发展 光谱起源于17世纪,1666年物理学家牛顿第一次进行了光的色散实验。他在暗室中引入一束太阳光,让它通过棱镜,在棱镜后面的自屏上,看到了红、橙、黄、绿、兰、靛、紫七种颜色的光分散在不同位置上——即形成一道彩虹。这种现象叫作光谱.这个实验就是光谱的起源,自牛顿以后,一直没有引起人们的注意。到1802年英国化学家沃拉斯顿发现太阳光谱不是一道完美无缺的彩虹,而是被一些黑线所割裂。 1814年德国光学仪器专家夫琅和费研究太阳光谱中的黑斑的相对位置时.把那些主要黑线绘出光谱图。 1826年泰尔博特研究钠盐、钾盐在酒精灯上光谱时指出,发射光谱是化学分析的基础、钾盐的红色光谱和钠盐的黄色光谱都是这个元素的特性。 到1859年克希霍夫和本生为了研究金属的光谱自己设计和制造了一种完善的分光装置,这个装置就是世界上第一台实用的光谱仪器,研究火焰、电火花中各种金属的谱线,从而建立了光谱分析的初步基础。 从1860年到1907年之间、用火焰和电火花放电发现碱金属元素铯Cs、1861年又发现铷Rb和铊Tl,1868年又发现铟In和氦He。1869年又发现氮N。1875~1907年又相继发现镓Ga,钾K,铥Tm,镨Pr,钋Pe,钐Sm,钇y,镥Lu等。 1882年,罗兰发明了凹面光栅,即是把划痕直接刻在凹球面上。凹面光栅实际上是光学仪器成象系统元件的合为一体的高效元件,它解决了当时棱镜光谱仪所遇到的不可克服的困难。凹面光栅的问世不仅简化了光谱仪器的结构,而且还提高了它的性能。 波耳的理论在光谱分析中起了作用,其对光谱的激发过程、光谱线强度等提出比较满意的解释。 从测定光谱线的绝对强度转到测量谱线的相对强度的应用,使光谱分析方法从定性分析发展到定量分析创造基础。从而使光谱分析方法逐渐走出实验室,在工业部门中应用了。 1928年以后,由于光谱分析成了工业的分析方法,光谱仪器得到迅速的发展,一方面改善激发光源的稳定性,另一方面提高光谱仪器本身性能。 最早的光源是火焰激发光谱;后来又发展应用简单的电弧和电火花为激发光源,在上世纪的三十、四十年代改进采用控制的电弧和电火花为激发光源,提高了光谱分析的稳定性。工业生产的发晨,光谱学的进步,促使光学仪器进一步得到改善,而后者又反作用于前者,促进了光谱学的发展和工业生产的发展。 六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展。由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。 解放后,我国的光谱仪器工业从无到有,由小到大,得到飞跃的发展,且具有一定的规模,与世界先进技术竞争中求生存,社会商品竞赛中得到发展。 1958年开始试制光谱仪器,生产了我国第一台中型石英摄谱仪,大型摄谱仪,单色仪等。中科院光机所开始研究刻制光栅,59年上海光学仪器厂,63年北京光学仪器厂开始研究刻制光栅,63年研制光刻成功。1966—1968年北京光学仪器厂和上海光学仪器厂先后研制成功中型平面光栅摄谱仪和一米平面光栅摄谱仪及光电直读头。1971—1972年由北京第二光学仪器厂研究成功国内第一台WZG—200平面光栅光量计,结束了我国不能生产光电直读光谱仪的历史。 八十年代以来,我国铸造行业开始引进光电直读光谱仪作为熔炼过程中化学成份控制的分析手段,并逐步取代了我国传统的湿法化学分析法,至今已发展到中小企业也逐步采用光谱法配合作炉前分析。

直读光谱仪常见问题

每种元素的发射光谱谱线强度正比于样品中该元素的含量,通过内部预先存储的校正曲线可测定其含量,并直接以百分比浓度显示出来。斯派克公司的固定式金属分析仪是采用了原子发射光谱学的分析原理。火花台上的样品通过电弧或火花放电激发生成原子蒸气,该蒸气中的原子与离子被激发后产生发射光谱。发射光谱通过光导纤维进入到光谱仪的分光室中,色散成各光谱波段。根据每个元素发射的波长范围,通过光电倍增管可以测量出每个元素的最佳谱线。 电直读光谱仪用氩气净化机使用总结与故障处理 一、氩气净化机的再生总结 1、电源电压为220V,电压要稳,可通过单独供电或加稳压电源即可,但稳压电源也必须是稳压效果较好的,电压波动在规定的范围内 2、送电前一定要确保电流调节旋钮处于零位置,并将温度设定旋钮旋到设定的350度, 3、准备一瓶高纯氩气,减压阀,2个再生阀,熟料管等,并将减压阀与氩气瓶连接好,再将管子与减压阀接好,根据需要选择1#或2#再生端口,此时,应打开气瓶将管子内部的空气排尽,注意:此时不要关掉气瓶,应保持气瓶微开。将再生排气堵头快速拆下,并快速按上再生阀,此时应对气瓶到再生阀处进行检漏操作,同时将再生进气堵头快速拆下,快速按上再生阀,最后,将再生排气阀调到微开状态。 4、送电,将再生万能转换开关打到要再生的塔上,对于塔的红灯亮,温度表的绿灯亮。 5、手动缓慢调节电流调节旋钮至5-6A,再生开始,当温度升到150度时,开始放气,每隔15分钟瞬时将阀门旋到最大放气大约30秒后再调到原来的状态。 6、当温度升到350度时,自动保持恒温4小时后,手动将电流调节旋钮旋到最小,此时将氩气钢瓶阀门关掉,将再生进气阀关掉,开启工作进气阀,将再生出气阀的流量控制的低一点,直到降到100度时,此时停止放气,但根据经验应继续放气最好,且降到室温再停止放气效果最佳,关闭再生出气阀,2分钟后,关闭工作出气阀以保证再生设备充以正压留作备用。同时关掉电源,将再生转换开关旋至零位。 7、再生完毕后,光谱仪要进行打点试验,如发现点不圆较大有毛刺时,应对仪器进行放气操作。之后,仪器要进行标准化。 一般氩气净化机的进气压力为0.3MPa,计为3公斤压力。 二、氩气净化机的故障处理 故障1:电炉丝烧断故障 处理:更换炉丝 故障2:热电偶烧坏 处理:用万用表量,一般热电偶在4.7欧姆左右时为正常,当远大于4.7欧姆时,热电偶烧坏。 故障3:温度控制仪的指针到最大,且其红灯亮 处理步骤: 1、将再生万能转换开关打到另一个塔上,看绿灯是否变亮, 2、如红灯仍亮,停电后,用万用表量2个塔的电炉丝是否断,否则,可判断为可控硅损坏 3、如电炉丝没有断,看热电偶是否接线正确或未接线 4、如接线正确但红灯仍亮,停电后,将热电偶直接接到温度控制仪的“正”“负”端子上, 5、如红灯仍亮,停电后,将热电偶拆下,用万用表测量看其阻值大小,是否在4.7欧姆附近, 6、如在4.7欧姆附近,则断定为温度表损坏 7、加热时,要注意观察电流表指针的波动,如波动太大则说明电压不稳,对于电压不稳的

光电直读光谱仪在铸造行业的发展应用

光电直读光谱仪在铸造行业的发展应用 一、仪器分析在铸造行业的发展应用 铸造是获得机械产品毛坯的主要方法之一,是机械工业重要的基础工艺,在国民经济中占有重要的位置。当前世界上工业发达国家铸造技术的发展归纳起来大致有四个目标,即:①保护环境,减少以至消除污染;②提高铸件质量和可靠性,生产优质近终形铸件;③降低生产成本;④缩短交货期。传统的铸铁分析检测过程,是以手工化学分析也就是人们常说的"湿法分析"方法为主的。这种分析方法过程长、强度高、功能单一、稳定性差、人为误差大,已经不能满足时代的要求,也很难帮助企业达到以上四大目标。仪器科学技术的发展,大大缩短了分析时间,减少了人为误差及废品率,很好的促进了以上四个生产目标的形成与发展。近年来,仪器分析法在铸造行业化学成分分析中得到广泛应用。 国内大多数铸造及大型钢铁企业通过引进国外先进仪器迅速提高了分析检测装备水平。在企业铸件主体生产体系,通常采用光电直读光谱仪(OES),X荧光光谱仪(XRF)这两类仪器,实施所谓的仪器化分析改进。这类仪器是一种利用物理电能激发,使试样中不同化学元素原子发生能级跃迁而产生不同光谱,并使其转换为电信号进行定量检测的大型精密仪器。 目前,光电直读光谱仪已成为铸件化学成分分析的首选仪器,X荧光光谱分析仪则是生铁和其它矿类样化学成分分析的首选仪器。由于这类仪器集光、机、电、算(计算机)等方面的最新技术于一体,配备相当精密的物理与几何光学系统,精密机械系统,电子传感测量系统,计算机控制与数据处理及人机界面系统。使其具有的选择性好、灵敏度、准确性、稳定性高的性能,又具快速化、自动化、智能化、多功能的特点。 二、光电直读光谱仪的原理及特点 由于各种元素的原子结构不同,在光源的激发作用下,试样中每种元素都发射自己的特征光谱。光电直读光谱仪就是通过对导电样品施加能量而激发元素的外层电子,电子跃迁产生元素固有的特征光谱,利用特征光谱进行定性、定量的分析仪器。在铸造行业的应用中,具有以下优点: 1)多通道多元素同时分析检测的快速化特点 光电直读光谱仪可同时进行多元素分析。直读光谱法进行炉前分析时,在数分钟内可同时得出铸件中二、三十个元素的分析结果,有利于铸造生产过程进行中间控制,加速生产、提高了生产效率。 2)直接以固态分析,不需要复杂的前处理 光电直读光谱仪分析样品的处理比化学分析法简单,从而大大地提高了分析速度。在对铸件进行分析检测中,简化了试样前处理过程,只需简单的将样品表面磨平。取消了手工分析方法过程中的试样粉碎、酸溶加热分解、化学反应、比色分析、人工读数等繁杂流程。 3)节约添加元素,降低生产成本 光电直读光谱仪能够快速准确的定量分析出样品的化学成分,对于铸造企业生产铸件时,如不锈钢的生产企业,能够很好的将Cr、Ni的化学成分控制在客户要求下限内,达到节约添加元素,降低生产成本。同时,由于具备快速的进行炉前定量分析,提高生产效率,为企业节约电费,降低生产成本。 4)多功能、自动化和智能化特点 分析仪器正向智能化方向发展,发展趋势主要表现是:基于微电子技术和计算机技术的应用实现分析仪器的自动化,通过计算机控制器和数字模型进行数据采集、运算、统计、处理,提高分析仪器数据处理能力,数字图像处理系统实现了分析仪器数字图像处理功能的发展。 光电直读光谱仪已从传统的经典化学精密机械电子学结构、实验室内人工操作应用模式,转化为光、机、电、

火花直读光谱

一、原理简介: 光电直读光谱仪为发射光谱仪,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。 目前无论国内还是国外的光电直读光谱仪,基本可按照功能分为4个模块,即: 1、激发系统:任务是通过各种方式使固态样品充分原子化,并放出各元素的发射光谱光。 2、光学系统:对激发系统产生出的复杂光信号进行处理(整理、分离、筛选、捕捉)。 3、测控系统:测量代表各元素的特征谱线强度,通过各种手段,将谱线的光强信号转化为电脑能够识别的数字电信号。控制整个仪器正常运作 4、计算机中的软件数据处理系统:对电脑接收到的各通道的光强数据,进行各种算法运算,得到稳定,准确的样品含量。 二、光电直读光谱仪4个模块的种类和特点: 1、激发系统: (1)高能预燃低压火花激发光源+高纯氩气激发气氛:采用高能预燃,大幅降低了样品组织结构对原子化结果的影响 (2)高压火花激发光源+高纯氩气激发气氛:采集光强不稳定 (3)低压火花激发光源+高纯氩气激发气氛:对同一样品光强稳定,但是对于样品组织结构对原子化的影响无能为力 (4)直流电弧激发光源+高纯氩气激发气氛:对样品中的痕量元素光谱分辨率和检出限有好效果。 (5)数控激发光源+高纯氩气激发气氛:按照样品中各元素的光谱特性,把激发过程分为灵活可调的几个时间段,每段时间只针对某几个情况相近的元素给出最佳的激发状态进行激发,并仅采集这几个元素。把各元素的激发状态按照试验情况进行分类讨论) 2、光学系统: (1)帕邢-龙格光学系统(固定光路,凹面光栅及排列在罗兰轨道上的固定出射狭缝阵列):光学系统结构稳定,笨重,体积大。 (2)中阶梯光栅交叉色散光学系统(采用双单色器交叉色散技术,达到了高级次同级的高分辨率,同时又用二次色散解决了光谱的级次重叠问题):体积小,分辨率高,一般采集接固体成像系统。

直读光谱仪

直读光谱仪 原子发射光谱仪器正不断向全谱直读功能发展,并向智能化、小型化、实用化、低分析成本方向发展。新型的台式及便携式手提直读光谱仪,采用光栅分光—CCD 检测器系统,光谱焦距仅在15~17cm,具有全谱直读的分析功能,其性能不亚于传统的实验室直读光谱仪。具有小型、轻便,可以对多种金属进行近似定理分析,直接显示分析结果;可以进行金属类型,对/错鉴别,快速分类和等级鉴别,适于现场分析,可以带到任何需要进行金属分类的现场。是一类具有全新概念的金属分析器。 关于CCD全谱直读光谱仪 直读光谱仪是目前最为成熟的材料检测仪器,具有分析速 度快、准确、检测下限低等特点。而且还可以对C、P、S、N等非金属元素的检测。因此在金属材料检测领域中具有不可替代的作用。 引用中国工程院院士王海舟教授在《直读光谱仪技术》一书中写到:“经过近半个世纪的发展,火花源原子发射光谱仪的技术日臻完善,已从“贵重仪器”蜕化为“常规仪器”,成为金属成分分析主要手段之一,数以万计火花源原子发射光谱仪广泛应用于生产过程及产品的质量控制。” 全谱直读光谱仪采用CCD作为检测器,因为是面状检测器,所以检测可以覆盖全谱,可根据需求来选择分析谱线;特别是可以利用一个元素有多条特征谱线的原理,针对某个元素选用多个分析谱线来做分析;由于使用了全谱技术,能够将全部的谱线接收,所以设计结构紧凑,可移动且便于使用,适用于实验室及现场分析;

全谱直读光谱仪由于接收了全部的谱线,所以为以后增加元素和基体打下了完善的硬件基础。客户以后要增加元素或者基体,不需要改动硬件,只需使用标准样品建立工作曲线即可。为客户的以后发展提供了方便。 全谱直读光谱仪能够显示所有的谱图,所以能够实现高端用户的需求。 全谱直读光谱仪在分析精度方面,可以达到甚至优于国标:《GB-T 7999-2007 铝合金光电直读光谱分析法》;《GB11170-2008 不锈钢光谱分析方法》;《GB-T 4336-2002碳钢和中低合金钢光谱分析方法》。甚至可以根据用户的技术要求,协商技术协议中的分析精度要求和验收标准。 产品概述 高性能、灵活性台式全谱直读光谱仪 TY9000型台式全谱直读光谱仪流线型全新设计的桌面光谱仪,满足冶炼、金属制造和机械加工的用户要求,采用全电脑控制全数字火花光源,运用CCD检测技术及独特的真空光室可精确测定非金属元素中C、P、S以及各种合金元素含量,实现全谱分析。测定结果精准,重现性及长期稳定性极佳; 产品配置及特点 1、采用独特设计的真空光室可精确测定非金属元素中C、P、S以及各种合金元素含量,测定结果精准,重现性及长期稳定性极佳。 2、独特的真空光学室结构设计,使真空室容积更小,抽真空速度不到普通光谱仪的一半。将入射窗与真空室分离使入射窗日常清洗维护方便快捷。 3、光学系统自动进行谱线扫描,自动光路校准,确保谱线接收的正确性,免除繁琐的波峰扫描工作。 4、独特的激发台及氩气气路设计,大大降低了氩气使用量。灵活的样品夹设计,以满足客户现场的各种形状大小的样品分析。 5、不增加硬件设施的情况下,即可实现多基体分析。相比光电倍增管光谱仪可大大降低客户使用成本及使用范围。 6、采用国际最先进的喷射电极技术。在激发状态下,电极周围会形成氩气喷射气流,这样在激发过程中激发点周围不会与外界空气接触,提高激发精度;配上

浅谈光栅摄谱仪和光电直读光谱仪的优缺点

浅谈光栅摄谱仪和光电直读光谱仪的优缺点 【摘要】科学技术的进步带动着社会的发展,工业领域中应用着许多先进的技术。这些技术借助于仪器得以准确的体现物质的成分以及含量,便于人们进行深入的认识和研究。许多金属在工业中都有重要的作用,现代工农业对金属的需求量加大,对矿区的开采同时增加,通过科学的方法检测物质的成分及含量显得十分的必要。科学的测量可以定性定量的分析物质的特性,是我们判断物质的价值,做出正确的决策的重要依据。现代科学发展迅速有许多仪器被利用到了实际工作中,光栅摄谱仪就是检测物质成分含量的仪器,随着科学的进步,该仪器得到完善演变为光电直读光谱仪。下面我们就来详细地论述光栅摄谱仪和光电直读光谱仪各自的原理、特点,并比较他们的优缺点,为实际工作提供一些借鉴和参考。 【关键词】光栅摄谱仪;光电直读光谱仪;优缺点 0.引言 分析物质的成分有助于我们理解自然界,更有助于我们日常的生产活动,只有清楚分析物质的成分,才能对物质进行合理的使用,并对物质进行必要的提炼和结合。地质学、机械工业、化工产业等更多的涉及到物质成分以及含量,地质学中对物质的含量做出准确的分析可以帮助我们认识到矿区的价值,为我们决定各种金属的提炼方法做出重要的依据;机械工业中对物质成分的分析可以建造生产生活所需的物品,并检测物质的质量;化工产业中对物质的正确认识才可以正确配比,产生期待的物质。 现代的科学技术水平不断的提高,科学理论不断的深入,各个领域中引进多种先进的技术的同时创造出许多辅助使用的仪器。这些仪器根据物质的物理特性或者化学特性进行设计,通过可观测的现象的变化或者具体数据的显示来得出研究结论,有助于我们正确认识事物,做出适当的决策。检测物质成分中光栅摄谱仪就是一种很重要的仪器,曾被使用在众多领域,带动了经济的发展,但随着社会的发展,其缺点越来越明显,这种仪器不能适应时代的要求而逐渐的被光电直读光谱仪所取代,虽然后者也有一些缺点但是目前最为准确可靠方便的仪器,下面我们就来详细的论述这两种仪器的具体情况: 1.光栅摄谱仪 光栅摄谱仪仪器利用平面反射式光栅分光研究物质的成份和含量,主要用于金属合金(包括矿物井石)的日常定性定量分析,纯金属和材料的杂赞同鉴定,与各种附件配合,用作激光微区分析、记录闪光和弱光现象。 主要特点:仪器采用三透镜消色差照明方法,狭缝得到均匀照明,使同一条谱线黑度均匀。仪器狭缝前的哈特曼光栏盘上设置哈特曼光栏及三阶,九阶减光板。使用控制箱控制摄谱过程。仪器配备直流电弧,交流电弧光源,以适应不同

光电直读光谱仪的工作原理分析如下

光电直读光谱仪的工作原理分析如下 光电直读光谱仪又被称为火花源原子发射光谱仪,所采用的原理是用火花的高温使样品中各元素从固态直接气化并被激发而发射出各元素的特征波长,用光栅分光后,成为按波长排列的“光谱”,这些元素的特征光谱线通过出射狭缝,照射在对应的光电倍增管光阴极上,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模/数转换,然后由计算机处理,计算出各元素的百分含量。其核心部件主要包括光源、分光系统、检测器等。 如今,光电直读光谱分析已成为一项成熟的分析技术,具有样品处理简单、分析速度快、分析精度高、多元素同时分析等特点,几乎所有的钢铁企业、有色金属企业、铸造及机械加工企业,以及其他采用金属及其合金进行加工利用的行业都采用光电直读光谱仪进行生产过程及产品质量控制。 光电直读光谱仪在铸造行业的应用中,具有以下优点: 1)定量范围广、准确性及稳定性高等特点光电直读光谱仪定量分析范围可从ppm—几十%,非常适于微量、痕量分析。当元素含量在0.1-1%或更低时,光电直读光谱分析法其准确度更优于化学分析。另外,光电直读光谱仪器分析,不存在人为误差,稳定性方面得到很大提高。 2)多功能、自动化和智能化特点分析仪器正向智能化方向发展,发展趋势主要表现是:基于微电子技术和计算机技术的应用实现分析仪器的自动化,通过计算机控制器和数字模型进行数据采集、运算、统计、处理,提高分析仪器数据处理能力,数字图像处理系统实现了分析仪器数字图像处理功能的发展。光电直读光谱仪已从传统的经典化学精密机械电子学结构、实验室内人工操作应用模式,转化为光、机、电、算(计算机)一体化、自动化的结构,并正向更名副其实的智能系统发展(带有自诊断、自控、

直读光谱仪原理及结构简介

直读光谱仪 光电直读光谱仪为发射光谱仪,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。 目前无论国内还是国外的光电直读光谱仪,基本可按照功能分为4个模块,即: 1、激发系统:任务是通过各种方式使固态样品充分原子化,并放出各元素的发射光谱光。 2、光学系统:对激发系统产生出的复杂光信号进行处理(整理、分离、筛选、捕捉)。 3、测控系统:测量代表各元素的特征谱线强度,通过各种手段,将谱线的光强信号转化为电脑能够识别的数字电信号。控制整个仪器正常运作 4、计算机中的软件数据处理系统:对电脑接收到的各通道的光强数据,进行各种算法运算,得到稳定,准确的样品含量。 二、光电直读光谱仪4个模块的种类和特点: 1、激发系统: (1)高能预燃低压火花激发光源+高纯氩气激发气氛:采用高能预燃,大幅降低了样品组织结构对原子化结果的影响 (2)高压火花激发光源+高纯氩气激发气氛:采集光强不稳定 (3)低压火花激发光源+高纯氩气激发气氛:对同一样品光强稳定,但是对于样品组织结构对原子化的影响无能为力 (4)直流电弧激发光源+高纯氩气激发气氛:对样品中的痕量元素光谱分辨率和检出限有好效果。

(5)数控激发光源+高纯氩气激发气氛:按照样品中各元素的光谱特性,把激发过程分为灵活可调的几个时间段,每段时间只针对某几个情况相近的元素给出最佳的激发状态进行激发,并仅采集这几个元素。把各元素的激发状态按照试验情况进行分类讨论) 2、光学系统: (1)帕邢-龙格光学系统(固定光路,凹面光栅及排列在罗兰轨道上的固定出射狭缝阵列):光学系统结构稳定,笨重,体积大。 (2)中阶梯光栅交叉色散光学系统(采用双单色器交叉色散技术,达到了高级次同级的高分辨率,同时又用二次色散解决了光谱的级次重叠问题):体积小,分辨率高,一般采集接固体成像系统。 3、测控系统: (一)测量系统: (1)光电倍增管+积分电路+模数转化电路:一般作为帕邢-龙格光学系统或C-T 光学系统的光谱采集器,一个光电倍增管加上之后的电路只能采集一根谱线的强度。 (2)CCD/CID检测器+DSP:一般作为中阶梯光栅交叉色散光学系统的采集器,灵敏度略低于光电倍增管,但是可做全谱采集。 (二)控制: (1)多层光电隔离的激发控制+光路控制+采集控制 (2)采用高抗干扰的通讯协议进行可又数据反馈的高效率控制。 4、计算机软件及数据处理系统: (1)内标法 (2)通过标准物质绘制曲线。 (3)通过PDA技术筛选数据。 (4)通过软件通道的测量数据进行背景、以及第三元素干扰的去干扰运算。 (5)通过控制样品找回仪器的漂移量。

光电直读光谱仪的工作原理原理及误差分析

光电直读光谱仪的工作原理原理及误差分析 由于我国材料技术的发展,工业企业对材料化学成分的控制要求越来越高,而传统化学分析方法速度慢, 分析范围小,极大地制约了材料技术的发展,而光电直读光谱仪具有速度快、准确度高、操作简单、分析 范围广等优点,是化学分析方法无法比拟的。因此,逐渐受到广大用户的欢迎。 光电直读光谱仪的测量误差受很多因素的影响,下面简单介绍其工作原理,再对测量误差进行详细 分析,以使广大使用者更好、更准确地使用光电直读光谱仪。 一、工作原理 光电直读光谱仪采用的是原子发射光谱分析法,工作原理是用电火花的高温使样品中各元素从固态直接气 化并被激发而发射出各元素的特征谱线,每种元素的发射光谱谱线强度正比于样品中该元素的含量,用光 栅分光后,成为按波长排列的光谱,这些元素的特征光谱线通过出射狭缝,射入各自的光电倍增管,光信 号变成电信号,经仪器的控制测量系统将电信号积分并进行模数转换,然后由计算机处理,并打印出各元 素的百分含量。工作原理图如图1所示。 二、误差分析 光电直读光谱仪虽然本身测量准确度很高,但测定试样中元素含量时,所得结果与真实含量通常不 一致,存在一定误差,并且受诸多因素的影响,有的材料本身含量就很低。下面就误差的种类、来源及 如何避免误差进行分析。 根据误差的性质及产生原因,误差可分为系统误差、偶然误差、过失误差及其他误差等。 1.系统误差的来源 (1)标样和试样中的含量和化学组成不完全相同时,可能引起基体线和分析线的强度改变,从而引入误

差。 (2)标样和试样的物理性能不完全相同时,激发的特征谱线会有差别从而产生系统误差。 (3)浇注状态的钢样与经过退火、淬火、回火、热轧、锻压状态的钢样金属组织结构不相同时,测出的 数据会有所差别。 (4)未知元素谱线的重叠干扰。如熔炼过程中加入脱氧剂、除硫磷剂时,混入未知合金元素而引入系统 误差 (5)要消除系统误差,必须严格按照标准样品制备规定要求。为了检查系统误差,就需要采用化学分析 方分析多次校对结果。 2.偶然误差的来源 与样品成分不均匀有关的误差。因为光电光谱分析所消耗的样品很少,样品中元素分布的不均匀性、组织 结构的不均匀性,导致不同部位的分析结果不同而产生。 3.其他因素误差及如何避免 (1)氩气不纯。当氩气中含有氧和水蒸气时,会使激发斑点变坏。如果氩气管道与电极如果氩气管道与 电极架有污染物排不出,分析结果会变差。 (2)试样表面要平整,当试样放在电极架上时,不能有漏气现象。如有漏气,激发时声音不正常。(3)样品与控制标样的磨纹粗细要一致,不能有交叉纹,磨样用力不要过大,而且用力要均匀,用力过 大,容易造成试样表面氧化。 (4)对高镍铬钢磨样时,要使用新砂轮片磨样,磨纹操作要求更严格。 (5)试样不能有偏析、裂纹、气孔等缺陷,试样要有一定的代表性。 (6)电极的顶尖应具有一定角度,使光轴不偏离中心,放电间隙应保持不变,否则聚焦在分光仪的谱线强度会改变。多次重复放电以后,电极会长尖,改变了放电间隙。激发产生的金属蒸气也会污染电极。所 以必须激发一次后就用刷子清理电极。 (7)透镜内表面常常受到来自真空泵油蒸气的污染,外表面受到分析时产生金属蒸气的附着,使透过率 明显降低,对波长小于200nm的碳、硫、磷谱线的透过率影响更显著,所以聚光镜要进行定期清理。 8)真空度不够高会降低分析灵敏度,特别是波长小于200nm的元素更明显,为此要求真空度达到0. 05mmHg。 (9)出射狭缝的位置变化受温度的影响最大,因此保持分光室内恒温30℃很重要,还要求室内温度保持 一致,使出射狭缝不偏离正常。 (10)室内温度的升高会增加光电倍增管的暗电流,降低信噪比。湿度大容易导致高压元件发生漏电、放电,使分析结果不稳定。

BrukerQ8光电直读光谱仪操作规程

BrukerQ8光电直读光谱仪操作规程 1、适用范围 适用于使用BrukerQ8光电直读光谱仪检测不锈钢、碳素钢、中低合金钢和铸铁中C、Si、Mn、P、S、Cr、Ni、W、Mo、V、Al、Ti、Cu、Nb、Co、B、Zr、As、Sn十九个元素的测定。同时规定了BrukerQ8光电直读光谱仪维护方法。2、编制依据 《BrukerQ8操作步骤》(利曼.中国) 《BrukerQ8直读描迹步骤》(利曼.中国) 《BrukerQ8入射窗口镜片清扫或替换》(利曼.中国) 《BrukerQ8/Q6直读光谱仪日常维护保养操作规程》(利曼.中国) 操作方法 仪器准备 检查主机和计算机与UPS连接是否正常,环境是否满足仪器要求:室温25±5℃,湿度≤80%,确认满足后进行下一步操作。 为保证仪器随时可以使用,仪器并不关闭,氩气也不关闭,遇三天以上假期时,关闭设备,重新启动时需较长时间抽真空。如重新启动仪器,按照以下步骤开启:A 打开配电箱的空气开关。 B 打开稳压电源的开关,确定电压稳定到220V。 C 等待1分钟后打开真空泵的开关。

D 打开真空泵阀门 E 打开光谱仪后面的红色Main(O是关,1是开)开关。 F 打开氩气,保证气瓶内氩气压力不低于1MPa,减压阀的输出压力为。 G 打开氩气净化器。 H 打开计算机、打印机。 样品准备 样品较大时,采用切割机对样品进行切割,切割时需佩戴护目镜。 检查光谱磨样机运行是否正常。 检查样品高度,不得低于3mm,样品需无裂缝、气孔。 对样品进行磨样,磨样时需佩戴护目镜,不得佩戴手套,不得用手直接触摸已磨好表面。

检查磨好的样品,样品表面平整、光滑,纹路一致,无过热现象,无缩孔、夹杂、裂纹,无表面污染。 试样检测 填写原始记录首页,并打印。 双击桌面的QMatrix图标。 进入登陆界面。 用鼠标点击“登录”,进入分析程序,等到下图中右下角的图标变为绿色。 打开光谱仪后面的黑色Service(O是关,1是开)开关。

相关文档
最新文档