蛮力法、分治法和动态规划法设计最大子段和问题的算法

蛮力法、分治法和动态规划法设计最大子段和问题的算法
蛮力法、分治法和动态规划法设计最大子段和问题的算法

算法设计与分析实验报告

实验题目

给定由n个整数组成的序列(a1, a2, …, a n),求该序列形如的子段和的最大值,当所有整数均为负整数时,其最大子段和为0。

实验目的

(1)深刻掌握动态规划法的设计思想并能熟练运用;

(2)理解这样一个观点:同样的问题可以用不同的方法解决,一个好的算法是反复努力和重新修正的结果。

实验要求

(1)分别用蛮力法、分治法和动态规划法设计最大子段和问题的算法;

(2)比较不同算法的时间性能;

(3)给出测试数据,写出程序文档。

实验内容(包括代码和对应的执行结果截图)

#include

int x,y,z;

int ml(int d[])//蛮力法

{

int a=0,i,j,f;

for(j=0;j<5;j++)

{

f=0;

for(i=j;i<5;i++)

{

f=f+d[i];

if(a

x++;

}

}

return a;

}

int MaxSum(int a[ ], int left, int right)

{

int lefts,rights,s1,s2,i,j;

int sum=0,center,leftsum,rightsum;

if (left==right) { //如果序列长度为1,直接求解

if (a[left]>0) sum=a[left];

else sum=0;

y++;

}

else {

center=(left+right)/2; //划分

leftsum=MaxSum(a, left, center);

//对应情况①,递归求解rightsum=MaxSum(a, center+1, right);

//对应情况②,递归求解s1=0; lefts=0; //以下对应情况③,先求解s1

for (i=center; i>=left; i--)

{

lefts+=a[i];

if (lefts>s1) s1=lefts;

y++;

}

s2=0; rights=0; //再求解s2

for (j=center+1; j<=right; j++)

{

rights+=a[j];

if (rights>s2) s2=rights;

y++;

}

sum=s1+s2; //计算情况③的最大子段和

if (sum

//合并,在sum、leftsum和rightsum中取较大者if (sum

y++;

}

return sum;

}

int max(int a[],int n)

{

int sum=0,b=0;

for(int i=0;i<=n;i++)

{

if(b>0)

b+=a[i];

else b=a[i];

if(b>sum)

sum=b;

z++;

}

return sum;

}

void main()

{

int c;

int s[5]={1,9,-5,7,-1};

c=ml(s);

cout<<"蛮力法计算最大子段和为:"<

cout<<"蛮力法时间性为:"<

c=MaxSum(s, 0, 4);

cout<<"分治法计算最大子段和为:"<

cout<<"分治法时间性为:"<

c=max(s, 4);

cout<<"动态规划法计算最大子段和为:"<

cout<<"动态规划法时间性为:"<

}

程序运行结果:

实验结果分析

程序测试序列为1 ,9 , -5 , 7, -1

最大子段和为12。

由上述程序结果分析动态规划法较其他算法而言较优。

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

《计算机算法设计与分析》习题及答案

《计算机算法设计与分析》习题及答案 一.选择题 1、二分搜索算法是利用( A )实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是( A )。 A、找出最优解的性质 B、构造最优解 C、算出最优解 D、定义最优解 3、最大效益优先是(A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4. 回溯法解旅行售货员问题时的解空间树是( A )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树 5.下列算法中通常以自底向上的方式求解最优解的是(B )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 6、衡量一个算法好坏的标准是( C )。 A 运行速度快 B 占用空间少 C 时间复杂度低 D 代码短 7、以下不可以使用分治法求解的是( D )。 A 棋盘覆盖问题 B 选择问题 C 归并排序 D 0/1背包问题 8. 实现循环赛日程表利用的算法是(A )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 9.下面不是分支界限法搜索方式的是(D )。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先 10.下列算法中通常以深度优先方式系统搜索问题解的是(D )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法

11.备忘录方法是那种算法的变形。( B ) A、分治法 B、动态规划法 C、贪心法 D、回溯法 12.哈夫曼编码的贪心算法所需的计算时间为(B )。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) 13.分支限界法解最大团问题时,活结点表的组织形式是(B )。 A、最小堆 B、最大堆 C、栈 D、数组 14.最长公共子序列算法利用的算法是(B)。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 15.实现棋盘覆盖算法利用的算法是(A )。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 16.下面是贪心算法的基本要素的是(C )。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解 17.回溯法的效率不依赖于下列哪些因素( D ) A.满足显约束的值的个数 B. 计算约束函数的时间 C.计算限界函数的时间 D. 确定解空间的时间 18.下面哪种函数是回溯法中为避免无效搜索采取的策略(B ) A.递归函数 B.剪枝函数 C。随机数函数 D.搜索函数 19. (D)是贪心算法与动态规划算法的共同点。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、最优子结构性质 20. 矩阵连乘问题的算法可由( B )设计实现。 A、分支界限算法 B、动态规划算法 C、贪心算法 D、回溯算法 21. 分支限界法解旅行售货员问题时,活结点表的组织形式是( A )。

分治、贪心、动态规划算法要点复习

分治法 1 分割成独立的子问题 2 递归解决子问题 3 合并求得初始问题的解 动态规划算法 1.描述最优解的结构特征 2.定义最优解决方案的递归形式 3.以自底向上的方式计算最优解决方案的值 4.从计算信息构造出最优解决方案 贪婪算法步骤 1.确定问题的优化结构 2.得到递归解 3.证明某个最优选择是贪婪选择 4.贪婪选择将产生唯一一个非空子问题 5.用递归算法实现贪婪策略 6.将递归算法转换为迭代算法 贪婪算法设计 1. 通过作出某种贪婪选择,将初始优化问题转换为唯一的一个子问题来求解 2. GREEDY CHOICE(证明贪婪选择) 作出该贪婪选择后,可以保证初始优化问题存在最优解3.OPTIMAL SUBSTRUCTURE(证明优化基础) 贪婪选择+唯一子问题=最优解 贪婪算法正确性 1. 贪婪选择特性(局部最优导致全局最优) 2. 优化基础的特性(贪婪选择+唯一子问题的最优解?初始问题的最优解) 作业选择 ?贪婪选择特性 存在最优解包含贪婪选择,即Sij在选择最先完成的作业am ?优化基础 If an optimal solution to subproblem Sij includes activity ak ? it must contain optimal solutions to Sik and Skj Solution to Sij=(Solution to Sik)∪{ak}∪(Solution to Skj)动态规划解) Similarly, am + optimal solution to Smj ? optimal sol. Solution to Sij = {am} ∪(Solution to Smj) (贪婪选择解) 动态规划与贪婪算法比较 ?Dynamic programming –每步选择–选择与子问题解相关 –自底向上,即从规模下的子问题逐步求解规模大的子问题?Greedy algorithm –首先作出贪婪选择–求解贪婪选择后产生的唯一子问题–后续贪婪选择与前面的选择有关,但与子问题的解无关 –自顶向下,问题规模逐步缩小 动态规划和分治法 ?子问题非独立 –子问题求解依赖其子问题的解 –分治法通过递归方式解决性质相同的子问题 –动态规划每次解决一个子问题,并将结果存储在表格中4 ?适合优化问题 –通过适当的选择来获得问题的最优解 –找到具有最优解决方案及其最优值:装配线排程方案以及该方案的生产时间 –导致最优的解决方案可能不止一个 ? (允许负权值边) –如果从源顶点s没有可抵达的负权值回路,返回‘真’)(其余的返回‘假’,无解 –遍历所有的边|V–1|次,每次对每条边执行一次缩短运算–对图进行拓扑排序)(依据拓扑排序对边进行缩短操作 于每一个顶点, 对始于该顶点的每条边进行缩短操作) (DGA中没有负权值回路, 因此存在最短路径) – (不存在负权值边界) – (S: 集合中顶点的最短路径已经确定) (Q: V – S, 极小优先队列) ? (d[v]) (Q中的值是最短路径的估计) ?重复的从Q中选择具有最短估计距离的顶点进行处理 The Ford-Fulkerson Method(不断的增大流, 直到达到流的极大值)(通过剩余流和剩余流图实现) 增量算法(An Incremental Algorithm) Alg.: GREEDY-ACTIVITY-SELECTOR(s, f, n) 1. A ← {a1} 2. i ← 1 3. for m ← 2 to n 4. do if sm ≥ fi ? activity am is compatible with ai 5. then A ← A ∪ {am} 6. i ← m ? ai is most recent addition to A 7. return A 动态规划: 装配线排程 e1 + a1,1 if j = 1 f1[j] = min(f1[j - 1] + a1,j ,f2[j -1] + t2,j-1 + a1,j) if j ≥ 2 矩阵链相乘 m[i,j]=0 if i = j min{m[i,k]+m[k+1,j]+pi-1pkpj} if i < j Matrix-Chain-Order(p) 1. n ←length[p]-1; 2. for i ←1 to n 3. m[i, i] ←0; 4. for l ←2 to n 5. for i ←1 to n –l +1 6. j ←i + l -1; 7. m[i, j] ←∞; 8. for k ←i to j -1 9. q ←m[i, k] + m[k+1, j] + pI-1pkpj; 10. if q < m[i, j] 11. m[i, j] ←q; 12. s[i, j] ←k; 13. return m and s 最长共同子序列 LCS-Length(X,Y) 1. m ←length[X]; 2. n ←length[Y]; 3. for i ←1 to m 4. c[i, 0] ←0; 5. for j ←0 to n 6. c[0, j] ←0;

算法设计与分析:递归与分治法-实验报告

应用数学学院信息安全专业班学号姓名 实验题目递归与分治法 综合实验评分表

实验报告 一、实验目的与要求 1.掌握递归算法的设计思想 2.掌握分治法设计算法的一般过程 3.理解并掌握算法渐近时间复杂度的分析方法 二、实验内容 1、折半查找的递归算法 (1)源程序代码 #include #include using namespace std; int bin_search(int key[],int low, int high,int k) { int mid; if(low>high) return -1; else{ mid = (low+high) / 2; if(key[mid]==k) return mid; if(k>key[mid]) return bin_search(key,mid+1,high,k); else return bin_search(key,low,mid-1,k); } } int main() { int n , i , addr; int A[10] = {2,3,5,7,8,10,12,15,19,21}; cout << "在下面的10个整数中进行查找" << endl; for(i=0;i<10;i++){ cout << A[i] << " " ; } cout << endl << endl << "请输入一个要查找的整数" << endl; cin >> n; addr = bin_search(A,0,9,n);

if(-1 != addr) cout << endl << n << "是上述整数中的第" << addr << "个数" << endl; else cout << endl << n << "不在上述的整数中" << endl << endl; getchar(); return 0; } (2)运行界面 ①查找成功 ②查找失败

算法设计与分析课后部分习题答案

算法实现题3-7 数字三角形问题 问题描述: 给定一个由n行数字组成的数字三角形,如图所示。试设计一个算法,计算出从三角形的顶至底的一条路径,使该路径经过的数字总和最大。编程任务: 对于给定的由n行数字组成的数字三角形,编程计算从三角形的顶至底的路径经过的数字和的最大值。数据输入: 有文件input.txt提供输入数据。文件的第1行是数字三角形的行数n,1<=n<=100。接下来的n行是数字三角形各行的数字。所有数字在0-99之间。结果输出: 程序运行结束时,将计算结果输出到文件output.txt中。文件第1行中的数是计算出的最大值。 输入文件示例输出文件示 例 input.txt output.txt 5 30 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 源程序: #include "stdio.h" voidmain() { intn,triangle[100][100],i,j;//triangle数组用来存储金字塔数值,n表示行数 FILE *in,*out;//定义in,out两个文件指针变量 in=fopen("input.txt","r"); fscanf(in,"%d",&n);//将行数n读入到变量n中

for(i=0;i=0;row--)//从上往下递归计算 for(int col=0;col<=row;col++) if(triangle[row+1][col]>triangle[row+1][col+1]) triangle[row][col]+=triangle[row+1][col]; else triangle[row][col]+=triangle[row+1][col+1]; out=fopen("output.txt","w"); fprintf(out,"%d",triangle[0][0]);//将最终结果输出到output.txt中 } 算法实现题4-9 汽车加油问题 问题描述: 一辆汽车加满油后可行驶nkm。旅途中有若干加油站。设计一个有效算法,指出应在哪些加油站停靠加油,使沿途加油次数最少。并证明算法能产出一个最优解。编程任务: 对于给定的n和k个加油站位置,编程计算最少加油次数。数据输入: 由文件input.txt给出输入数据。第1行有2个正整数n和k ,表示汽车加满油后可行驶nkm,且旅途中有k个加油站。接下来的1行中,有k+1个整数,表示第k个加油站与第k-1个加油站之间的距离。第

贪心算法与动态规划的比较

贪心算法与动态规划的比较 【摘要】介绍了计算机算法设计的两种常用算法思想:贪心算法与动态规划算法。通过介绍两种算法思想的基本原理,比较两种算法的联系和区别。通过背包问题对比了两种算法的使用特点和使用范围。 【关键字】动态规划;贪心算法;背包问题 1、引言 为了满足人们对大数据量信息处理的渴望,为解决各种实际问题,计算机算法学得到了飞速的发展,线性规划、动态规划、贪心策略等一系列运筹学模型纷纷运用到计算机算法学中,产生了解决各种现实问题的有效算法。虽然设计一个好的求解算法更像是一门艺术而不像是技术,但仍然存在一些行之有效的、能够用于解决许多问题的算法设计方法,你可以使用这些方法来设计算法,并观察这些算法是如何工作的。一般情况下,为了获得较好的性能,必须对算法进行细致的调整。但是在某些情况下,算法经过调整之后性能仍无法达到要求,这时就必须寻求另外的方法来求解该问题。本文针对部分背包问题和0/ 1 背包问题进行分析,介绍贪心算法和动态规划算法的区别。 2、背包问题的提出 给定n种物品( 每种物品仅有一件) 和一个背包。物品i的重量是w i,其价值为p i,背包的容量为M。问应如何选择物品装入背包,使得装入背包中的物品的总价值最大,每件物品i的装入情况为x i,得到的效益是p i*x i。 ⑴部分背包问题。在选择物品时,可以将物品分割为部分装入背包,即0≤x i≤1 ( 贪心算法)。 ⑵0/ 1背包问题。和部分背包问题相似,但是在选择物品装入时要么不装,要么全装入,即x i = 1或0。( 动态规划算法) 。 3、贪心算法 3.1 贪心算法的基本要素 能够使用贪心算法的许多例子都是最优化问题,每个最优化问题都包含一组限制条件和一个优化函数,符合限制条件的问题求解方案称为可行解;使优化函数取得最佳值的可行解称为最优解。此类所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到(这是贪心算法与动态规划的主要区别) 。 3.2贪心策略的定义 贪心策略是指从问题的初始状态出发,通过若干次的贪心选择而得出最优值( 或较优解) 的一种解题方法。贪心策略总是做出在当前看来是最优的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解,而许多问题自身的特性决定了该问题运用贪心策略可以得到最优解或较优解。(注:贪心算法不是对所有问题都能

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

算法设计与分析第2版 王红梅 胡明 习题答案

精品文档习题胡明-版)-王红梅-算法设计与分析(第2答案 1 习题)—1783Leonhard Euler,17071.图论诞生于七桥问题。出生于瑞士的伟大数学家欧拉(提 出并解决了该问题。七桥问题是这样描述的:北区一个人是否能在一次步行中穿越哥尼斯堡(现东区在叫加里宁格勒,在波罗的海南岸)城中全部岛区的七座桥后回到起点,且每座桥只经过一次,南区是这条河以及河上的两个岛和七座桥的图1.7 1.7 七桥问题图草图。请将该问题的数据模型抽象出来,并判断此问题是否有解。 七桥问题属于一笔画问题。 输入:一个起点 输出:相同的点一次步行1,经过七座桥,且每次只经历过一次2,回到起点3,该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。另一类是只有二个奇点的图形。)用的不是除法而是减最初的欧几里德算法2.在欧几里德提出的欧几里德算法中(即法。请用伪代码描述这个版本的欧几里德算法 1.r=m-n r=0 循环直到2.m=n 2.1 n=r 2.2 r=m-n 2.3 m 输出3 .设计算法求数组中相差最小的两个元素(称为最接近数)的差。要求分别给出伪代3++描述。C码和 采用分治法// //对数组先进行快速排序在依次比较相邻的差//精品文档. 精品文档 #include using namespace std; int partions(int b[],int low,int high) { int prvotkey=b[low]; b[0]=b[low]; while (low=prvotkey)

动态规划算法和贪心算法的比较与分析

动态规划算法和贪心算法的比较与分析 1、最优化原理 根据一类多阶段问题的特点,把多阶段决策问题变换为一系列互相联系的单阶段问题,然后逐个加以解决。解决这类问题的最优化原理:一个过程的最优决策具有这样的性质,即无论其初始状态和初始决策如何,其今后诸策略对以第一个决策所形成的状态作为初始状态的过程而言,必须构成最优策略。简而言之,一个最优策略的子策略,对于它的初态和终态而言也必是最优的。 2、动态规划 2.1 动态规划算法 动态规划是运筹学的一个分支,与其说它是一种算法,不如说它是一种思维方法更贴切。因为动态规划没有固定的框架,即便是应用到同一道题上,也可以建立多种形式的求解算法。许多隐式图上的算法,例如求单源最短路径的Dijkstra算法、广度优先搜索算法,都渗透着动态规划的思想。还有许多数学问题,表面上看起来与动态规划风马牛不相及,但是其求解思想与动态规划是完全一致的。因此,动态规划不像深度或广度优先那样可以提供一套模式,需要的时候,取来就可以使用。它必须对具体问题进行具体分析、处理,需要丰富的想象力去建立模型,需要创造性的思想去求解。 动态规划算法的基本思想是将待求解问题分解成若干子问题,先求解子问题,然后从这些子问题的解得到原问题的解。值得注意的是,用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的。 最优化原理是动态规划的基础。任何一个问题,如果失去了这个最优化原理的支持,就不可能用动态规划方法计算。能采用动态规划求解的问题都要满足两个条件:①问题中的状态必须满足最优化原理;②问题中的状态必须满足无后效性。 所谓无后效性是指下一时刻的状态只与当前状态有关,而和当前状态之前的状态无关,当前的状态是对以往决策的总结。 2.2 动态规划算法的基本要素

算法设计动态规划(编辑距离)

《算法设计与分析》课程报告 课题名称:动态规划——编辑距离问题 课题负责人名(学号): 同组成员名单(角色):无 指导教师:左劼 评阅成绩: 评阅意见: 提交报告时间:2010年 6 月 23 日

动态规划——编辑距离问题 计算机科学与技术专业 学生指导老师左劼 [摘要]动态规划的基本思想与分治法类似,也是将待求解的问题分解成若干份的子问题,先分别解决好子问题,然后从子问题中得到最终解。但动态规划中的子问题往往不是相互独立的,而是彼此之间有影响,因为有些子问题可能要重复计算多次,所以利用动态规划使这些子问题只计算一次。将字符串A变换为字符串所用的最少字符操作数称为字符串A到B的编辑距离。 关键词:动态规划矩阵字符串操作数编辑距离

一、问题描述 1、基本概念:设A和B是2个字符串。要用最少的字符操作将字符串A转换为字符串B。字符串操作包括: (1) 删除一个字符; (2) 插入一个字符; (3) 将一个字符改为另一个字符。 将字符串A变换为字符串B所用的最少字符操作数称为字符串A 到B的编辑距离,记为d(A,B)。 2、算法设计:设计一个有效算法,对于给定的任意两个字符串A 和B,计算其编辑距离d(A,B)。 3、数据输入:输入数据由文件名为input.txt的文本文件提供。文件的第1行为字符串A,第二行为字符串B。 4、结果输出:将编辑距离d(A,B)输出到文件ouput.txt的第一行。 输入文件示例输出文件示例 input.txt output.txt fxpimu 5 xwrs 二、分析 对于本问题,大体思路为:把求解编辑距离分为字符串A从0个字符逐渐增加到全部字符分别想要变为字符串B该如何变化以及变化的最短距离。 具体来说,首先选用数组a1存储字符串A(设长度为n),a2存储字符串B(设长度为m),d矩阵来进行具体的运算;这里有两个特殊情况比较简单可以单独考虑,即A的长度为0而B不为0还有A不为0B为0,这两种情况最后的编辑距离分别为m和n;讨论一般情况,d矩阵为d[n][m],假定我们从d[0][0]开始一直进行以下操作到了d[i][j]的位置,其中删除操作肯定是A比B长,同理,插入字符操作一定是A比B短,更改字符操作说明一样长,我们所要做的是对d[i][j-1]

算法设计与分析考试题及答案

1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。 2.算法的复杂性有_____________和___________之分,衡量一个算法 好坏的标准是______________________。 3.某一问题可用动态规划算法求解的显著特征是 ____________________________________。 4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。 6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。 7.以深度优先方式系统搜索问题解的算法称为_____________。 8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。 9.动态规划算法的两个基本要素是___________和___________。 10.二分搜索算法是利用_______________实现的算法。 二、综合题(50分) 1.写出设计动态规划算法的主要步骤。 2.流水作业调度问题的johnson算法的思想。

背包问题-贪心法和动态规划法求解

实验四“0-1”背包问题 一、实验目的与要求 熟悉C/C++语言的集成开发环境; 通过本实验加深对贪心算法、动态规划算法的理解。 二、实验内容: 掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。 三、实验题 1.“0-1”背包问题的贪心算法 2.“0-1”背包问题的动态规划算法 说明:背包实例采用教材P132习题六的6-1中的描述。要求每种的算法都给出最大收益和最优解。 设有背包问题实例n=7,M=15,,(w0,w1,。。。w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。。。,p6)=(10,5,15,7,6,18,3)。求这一实例的最优解和最大收益。 四、实验步骤 理解算法思想和问题要求; 编程实现题目要求; 上机输入和调试自己所编的程序; 验证分析实验结果; 整理出实验报告。 五、实验程序

// 贪心法求解 #include #include"iomanip" using namespace std; //按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序 void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量 float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u); int main(){ float w[7]={2,3,5,7,1,4,1}; //物品重量数组 float p[7]={10,5,15,7,6,18,3}; //物品收益数组 float avgp[7]={0}; //单位毒品的收益数组 float x[7]={0}; //最后装载物品的最优解数组 const float M=15; //背包所能的载重 float ben=0; //最后的收益 AvgBenefitsSort(avgp,p,w); ben=GetBestBenifit(p,w,x,M); cout<

算法设计与分析试卷及答案

湖南科技学院二○ 年 学期期末考试 信息与计算科学专业 年级《算法设计与分析》 试题 考试类型:开卷 试卷类型:C 卷 考试时量:120 分钟 1. 用O 、Ω和θ表示函数f 与g 之间的关系______________________________。 ()()log log f n n n g n n == 2. 算法的时间复杂性为1, 1()8(3/7), 2 n f n f n n n =?=? +≥?,则算法的时间复杂性的阶 为__________________________。 3. 快速排序算法的性能取决于______________________________。 4. 算法是_______________________________________________________。 5. 在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是_________________________。 6. 在算法的三种情况下的复杂性中,可操作性最好且最有实际价值的是_____情况下的时间复杂性。 7. 大Ω符号用来描述增长率的下限,这个下限的阶越___________,结果就越有价值。。 8. ____________________________是问题能用动态规划算法求解的前提。 9. 贪心选择性质是指________________________________________________________ ____________________________________________________________。 题 号 一 二 三 四 五 总分 统分人 得 分 阅卷人

实验项目三 用蛮力法、动态规划法和贪心法求解背包问题

实验项目三 用蛮力法、动态规划法和贪心法求解0/1 背包问题 实验目的 1、学会背包的数据结构的设计,针对不同的问题涉及到的对象的数据结构的设计也不同; 2、对0-1背包问题的算法设计策略对比与分析。 实验内容: 0/1背包问题是给定n 个重量为{w 1, w 2, … ,wn }、价值为{v 1, v 2, … ,vn }的物品和一个容量为C 的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中。 在0/1背包问题中,物品i 或者被装入背包,或者不被装入背包,设xi 表示物品i 装入背包的情况,则当xi =0时,表示物品i 没有被装入背包,xi =1时,表示物品i 被装入背包。根据问题的要求,有如下约束条件和目标函数: 于是,问题归结为寻找一个满足约束条件式1,并使目标函数式2达到最大的解向量X =(x 1, x 2, …, xn )。 背包的数据结构的设计: typedef struct object { int n;//物品的编号 int w;//物品的重量 int v;//物品的价值 }wup; wup wp[N];//物品的数组,N 为物品的个数 int c;//背包的总重量 1、蛮力法 蛮力法是一种简单直接的解决问题的方法,常常直接基于问题的描述和所涉及的概念定义。蛮力法的关键是依次处理所有的元素。 用蛮力法解决0/1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。 所以蛮力法解0/1背包问题的关键是如何求n 个物品集合的所有子集,n 个物品的子集有2的n 次方个,用一个2的n 次方行n 列的数组保存生成的子集,以下是生成子集的算法: ?????≤≤∈≤∑=)1(}1,0{1n i x C x w i n i i i (式1) ∑=n i i i x v 1max (式2)

算法设计与分析习题解答

第一章作业 1.证明下列Ο、Ω和Θ的性质 1)f=Ο(g)当且仅当g=Ω(f) 证明:充分性。若f=Ο(g),则必然存在常数c1>0和n0,使得?n≥n0,有f≤c1*g(n)。由于c1≠0,故g(n) ≥ 1/ c1 *f(n),故g=Ω(f)。 必要性。同理,若g=Ω(f),则必然存在c2>0和n0,使得?n≥n0,有g(n) ≥ c2 *f(n).由于c2≠0,故f(n) ≤ 1/ c2*f(n),故f=Ο(g)。 2)若f=Θ(g)则g=Θ(f) 证明:若f=Θ(g),则必然存在常数c1>0,c2>0和n0,使得?n≥n0,有c1*g(n) ≤f(n) ≤ c2*g(n)。由于c1≠0,c2≠0,f(n) ≥c1*g(n)可得g(n) ≤ 1/c1*f(n),同时,f(n) ≤c2*g(n),有g(n) ≥ 1/c2*f(n),即1/c2*f(n) ≤g(n) ≤ 1/c1*f(n),故g=Θ(f)。 3)Ο(f+g)= Ο(max(f,g)),对于Ω和Θ同样成立。 证明:设F(n)= Ο(f+g),则存在c1>0,和n1,使得?n≥n1,有 F(n) ≤ c1 (f(n)+g(n)) = c1 f(n) + c1g(n) ≤ c1*max{f,g}+ c1*max{f,g} =2 c1*max{f,g} 所以,F(n)=Ο(max(f,g)),即Ο(f+g)= Ο(max(f,g)) 对于Ω和Θ同理证明可以成立。 4)log(n!)= Θ(nlogn)

证明: ?由于log(n!)=∑=n i i 1 log ≤∑=n i n 1 log =nlogn ,所以可得log(n!)= Ο(nlogn)。 ?由于对所有的偶数n 有, log(n!)= ∑=n i i 1 log ≥∑=n n i i 2 /log ≥∑=n n i n 2 /2/log ≥(n/2)log(n/2)=(nlogn)/2-n/2。 当n ≥4,(nlogn)/2-n/2≥(nlogn)/4,故可得?n ≥4,log(n!) ≥(nlogn)/4,即log(n!)= Ω(nlogn)。 综合以上两点可得log(n!)= Θ(nlogn) 2. 设计一个算法,求给定n 个元素的第二大元素,并给出算法在最坏情况下使用的比较次数。(复杂度至多为2n-3) 算法: V oid findsecond(ElemType A[]) { for (i=2; i<=n;i++) if (A[1]

动态规划和贪心的区别

动态规划和贪心算法的区别 动态规划法的基本思路: 动态规划是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推的方式去解决。此算法常用于求解某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案,消除递归过程中产生的大量重叠子问题。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。 贪心算法的基本思想: 在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,贪心算法所得出的解是一系列局部最优的选择。 把求解的问题分成若干个子问题,对每一子问题求解,得到子问题的局部最优解,把子问题的解局部最优解合成原来解问题的一个解。为了解决问题,需要寻找一个构成解的候选对象集合,起初,算法选出的候选对象的集合为空。接下来的每一步中,根据选择函数,算法从剩余候选对象中选出最有希望构成解的对象。如果集合中加上该对象后不可行,那么该对象就被丢弃并不再考虑;否则就加到集合里。每一次都扩充集合,并检查该集合是否构成解。 由以上可知:在贪心算法中,作出的每步贪心决策都无法改变,因为贪心策略是由上一步的最优解推导下一步的最优解,而上一部之前的最优解则不作保留。并且,每一步的最优解一定包含上一步的最优解。 而在动态规划算法中,全局最优解中一定包含某个局部最优解,但不一定包含前一个局部最优解,因此需要记录之前的所有最优解。动态规划的关键是状态

动态规划算法的应用

动态规划算法的应用 一、实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 二、实验内容 题目一:数塔问题 给定一个数塔,其存储形式为如下所示的下三角矩阵。在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。请找出一条路径,使路径上的数值和最大。 输入样例(数塔): 9 15 10 6 8 2 18 9 5 19 7 10 4 16 输出样例(最大路径和): 59 三、实验步骤 (1)需求分析 通过动态规划法解决数塔问题。从顶部出发,在每一节点可以选择向下或者向右走,一直走到底层,以找出一条数值最大的路径。 (2)概要设计 本次实验程序主要用到二维数组,以及通过动态规划法进行比较每个数的大小。主要运用两个for循环语句实现动态规划。

(3)详细设计 第一步,输入给定的二维数组并打印出相应的数组: int array[5][5]={{9}, /* */{12,15}, /* */{10,6,8}, /* */{2,18,9,5}, /* */{19,7,10,4,6}}; int i,j; for(i=0;i<5;i++) { for(j=0;j<5;j++) cout<0;j--) { for(i=0;i<=4;i++) { if(array[j][i]>array[j][i+1]) array[j-1][i]=array[j][i]+array[j-1][i]; else array[j-1][i]=array[j][i+1]+array[j-1][i]; } } 第三步,输出最大路径的值。 cout<

相关文档
最新文档