高铬铸铁耐磨球热处理工艺

高铬铸铁耐磨球热处理工艺
高铬铸铁耐磨球热处理工艺

高铬铸铁热处理工艺

高铬铸铁热处理工艺 化学成分:C2.05,Si1.40,Mn0.78,Cr26.03,Ni0.81,Mo0.35 1、常用的高铬铸铁的热处理工艺是加热到950~1000℃,经保温空冷淬火后再进行 200~260℃的低温回火。 2、2、高温团球化处理1140~1180℃保温16h空冷却,可以明显提高冲击韧度和耐磨性能。 高温团球化处理可使碳化物全部呈团球状,可消除或减少大块状和连续网状碳化物对基体的隔裂作用,经团球化的碳化物受到更加均匀的基体支撑,特别受到一定数量的奥氏体的支撑。如果适当减少保温时间,对薄截面零件也可以取得效果。该工艺的不足是工艺消耗热能较多。 加热到1050℃,经保温空淬火后再进行550℃的回火,效果会怎么样? 要控制加热速度,最好在650? ?? ?750? ?? ?? ? 850? ?? ? 时保温一定时间。我以前做过,正火就可以了。硬度能做到61----65HRC 成熟工艺是:铸造后软化退火,便于加工,加工后空冷淬火加低温去应力回火。使用硬度一般要求为HRC58-62,多用于比如渣浆泵零部件等耐磨易损件。 我们这里是高铬生产基地,一般提供Cr24,Cr26,Cr28,Cr15Mo3等,价格是不便宜的。价格要包括中间的软化退火和精加后的淬火及回火。楼主的材料应该叫Cr26 做高铬磨球的,Cr%=10.2~10.5%,C%=2.2~2.7%,Si、S双零以下,要求硬度HRC>58 我们现在用的是淬火液淬火,淬火工艺参数是:650度保温2小时,升温到960度保温3.5小时淬火;回火温度380~400,保温4~6小时。磨球规格φ40-φ80。 工艺是1050淬火+250~350回火 金属耐磨材料在水泥企业的研究和应用 [摘要] 本文从金属耐磨材料的概述、水泥企业常用的耐磨材料以及根据磨损原理具体的选用金属耐磨材料,对金属耐磨材料进行了研究、分析,对其他选用金属耐磨材料给予一定的参考和借鉴。 [关键词] 金属耐磨材料水泥企业研究应用 一、金属耐磨材料的概述 材料的耐磨性不仅决定于材料的硬度Hm,而且更主要的是决定于材料硬度Hm和磨料硬度Ha的比值。当Hm/Ha比值超过一定值后,磨损量便会迅速降低。 当Hm/Ha≤0.5-0.8时为硬磨料磨损,此时增加材料的硬度对材料的耐磨性增加不大。 当Hm/Ha>0.5-0.8时为软磨料磨损,此时增加材料的硬度,便会迅速地提高材料的耐磨性。 金属耐磨材料一般都指的是耐磨钢,能抵抗磨料磨损的钢。这类钢还没有成为一个完全独立的钢种,其中公认的耐磨钢是高锰钢。 二、水泥企业主要使用的耐磨钢

球墨铸铁热处理方法之探讨

球墨铸铁热处理方法之探讨 陆卫倩:(上海电机学院机械工程学院,上海200240)中国铸造装备与技术4/2010 高级工程师,原任上海机床厂有限公司磨床研究所高级工程师,现任上海电机学院副教授,主要从事零件失效分析和金属材料热处理 本文详细介绍了球墨铸铁件的各种热处理工艺,并简单介绍了纳米技术在球墨铸铁件表面处理中的应用。从文献资料来看,经纳米技术表面处理后的球墨铸铁件具有良好的自润性、良好的耐磨性、良好的耐蚀性,因此是一种非常有前途的表面处理。 众所周知:热处理是一项改进金属材料品质的方法,借助热处理可以改变或影响铸铁的组织及性质,同时还可获得更高的强度、硬度和耐磨性等。铸铁热处理的种类繁多,但基本上可分成两大类:第一类是组织构造不会由热处理而发生变化或者也不应该发生改变的,第二类则是基本的组织结构发生变化者。第一种热处理主要是用于消除内应力,热处理后组织、强度及其它力学性质等没有因热处理而发生明显变化。第二种热处理能使基体组织发生明显的变化,这种热处理大致分为五类:①退火:其目的主要在于分解碳化物,降低铸铁的硬度,提高加工性能;②正火:其目的主要用于改进铸铁组织、获得均匀分布的力学性能;③淬火:其目的主要是为了获得比较高的硬度和表面耐磨性;④表面硬化处理:其目的主要是获得表面硬化层,同时得到较高的表面耐磨性;⑤析出硬化处理:其目的主要是为获得更高强度。 铸铁种类繁多,有灰口铸铁、白口铸铁、蠕墨铸铁、球墨铸铁等等,它们的组织结构也各不相同。一般根据凝固过程中的析出物———共晶石墨或共晶碳化物来分类:基体内主要含片状石墨者称之为灰铸铁,主要含碳化物者称之为白口铸铁。事实上白口铸铁由于具有很高的硬度与脆性用途较少;而灰铸铁的性质主要是由共晶石墨的形状与大小而定,这些析出的石墨无法经由热处理予以改进,因此具有非常低的强度及硬度。但若铁液添加镁及稀土金属能使石墨在凝固过程中以球状析出成为球墨铸铁,那么情况就有所不同。由于球墨铸铁其性质与基体相同的钢接近,故通过热处理可使强度、硬度明显提高,弹性模数、伸长率也有不同程度的提高。但是不同的热处理对球墨铸铁的作用完全不同,在工程上用的比较多的是退火、正火和析出硬化处理;事实上球墨铸铁同样可以通过调质、等温淬火处理以及渗氮、渗硼和低温气体碳氮共渗来改善其力学性能。下面就球墨铸铁的热处理方法予以探讨。 【1】球墨铸铁的常规热处理 1.1退火处理 若要提高球墨铸铁的韧性可采用退火处理。球墨铸铁在铸造过程中比普通灰口铸铁的白口倾向大,内应力也较大,球墨铸铁件很难得到纯粹的铁素体或珠光体基体。为提高球墨铸铁件的延性或韧性,可将球墨铸铁件重新加热到900~950℃并保温足够时间进行高温退火,再炉冷到600℃出炉变冷。在此过程中基体中的渗碳体会分解出石墨,奥氏体中会析出石墨,这些石墨集聚于原球状石墨周围,基体则全转换为铁素体,从而提高球墨铸铁的韧性。若铸态组织由(铁素体+珠光体)为基体+球状石墨组成,那么只需将球墨铸铁件重新加热到700~760℃的共析温度上下经保温后炉冷至600℃出炉变冷,就能将珠光体中渗碳体分解转换为铁素体及球状石墨来提高其韧性。 1.2正火处理

典型铸铁件铸造工艺设计与实例

典型铸铁件铸造工艺设计与实例叙述铸造生产中典型铸铁件——气缸类铸件、圆筒形铸件、环形铸件、球墨铸铁曲轴、盖类铸件、箱体及壳体类铸件、阀体及管件、轮形铸件、锅形铸件及平板类铸件的铸造实践。内容涉及材质选用、铸造工艺过程的主要设计、常见主要铸造缺陷及对策等。 第1章气缸类铸件 1.1 低速柴油机气缸体 1.1.1 一般结构及铸造工艺性分析1.1.2 主要技术要求 1.1.3 铸造工艺过程的主要设计1.1.4 常见主要铸造缺陷及对策1.1.5 铸造缺陷的修复 1.2 中速柴油机气缸体 1.2.1 一般结构及铸造工艺性分析1.2.2 主要技术要求 1.2.3 铸造工艺过程的主要设计1.3 空气压缩机气缸体 1.3.1 主要技术要求 1.3.2 铸造工艺过程的主要设计第2章圆筒形铸件 2.1 气缸套 2.1.1 一般结构及铸造工艺性分析2.1.2 工作条件 2.1.3 主要技术要求 2.1.4 铸造工艺过程的主要设计2.1.5 常见主要铸造缺陷及对策2.1.6 大型气缸套的低压铸造2.1.7 气缸套的离心铸造 2.2 冷却水套 2.2.1 一般结构及铸造工艺性分析2.2.2 主要技术要求 2.2.3 铸造工艺过程的主要设计2.2.4 常见主要铸造缺陷及对策2.3 烘缸 2.3.1 结构特点 2.3.2 主要技术要求 2.3.3 铸造工艺过程的主要设计2.4 活塞 2.4.1 结构特点 2.4.2 主要技术要求 2.4.3 铸造工艺过程的主要设计2.4.4 砂衬金属型铸造 第3章环形铸件 3.1 活塞环3.1.1 概述 3.1.2 材质 3.1.3 铸造工艺过程的主要设计 3.2 L形环 3.2.1 L形环的单体铸造 3.2.2 L形环的筒形铸造 第4章球墨铸铁曲轴 4.1 主要结构特点 4.1.1 曲臂与轴颈的连接结构 4.1.2 组合式曲轴 4.2 主要技术要求 4.2.1 材质 4.2.2 铸造缺陷 4.2.3 质量检验 4.2.4 热处理 4.3 铸造工艺过程的主要设计 4.3.1 浇注位置 4.3.2 模样 4.3.3 型砂及造型 4.3.4 浇冒口系统 4.3.5 冷却速度 4.3.6 熔炼、球化处理及浇注 4.4 热处理 4.4.1 退火处理 4.4.2 正火、回火处理 4.4.3 调质(淬火与回火)处理 4.4.4 等温淬火 4.5 常见主要铸造缺陷及对策 4.5.1 球化不良及球化衰退 4.5.2 缩孔及缩松 4.5.3 夹渣 4.5.4 石墨漂浮 4.5.5 皮下气孔 4.6 大型球墨铸铁曲轴的低压铸造 第5章盖类铸件 5.1 柴油机气缸盖 5.1.1 一般结构及铸造工艺性分析 5.1.2 主要技术要求 5.1.3 铸造工艺过程的主要设计 5.2 空气压缩机气缸盖 5.2.1 一般结构及铸造工艺性分析 5.2.2 主要技术要求 5.2.3 铸造工艺过程的主要设计 5.3 其他形式气缸盖 5.3.1 一般结构 5.3.2 主要技术要求 5.3.3 铸造工艺过程的主要设计 第6章箱体及壳体类铸件 6.1 大型链轮箱体 6.2 增压器进气涡壳体 6.3 排气阀壳体 6.4 球墨铸铁机端壳体 6.5 球墨铸铁水泵壳体 6.6 球墨铸铁分配器壳体 第7章阀体及管件 7.1 灰铸铁大型阀体 7.2 灰铸铁大型阀盖 7.3 球墨铸铁阀体 7.4 管件 7.5 球墨铸铁螺纹管件 7.6 球墨铸铁管卡箍 7.6.1 主要技术要求 7.6.2 铸造工艺过程的主要设计 7.6.3 常见主要铸造缺陷及对策 第8章轮形铸件 8.1 飞轮 8.2 调频轮 8.3 中小型轮形铸件 8.4 球墨铸铁轮盘 第9章锅形铸件 9.1 大型碱锅 9.2 中小型锅形铸件 第10章平板类铸件 10.1 大型龙门铣床落地工作台 10.2 大型立式车床工作台 10.3 大型床身中段 10.4 大型底座 中国机械工业出版社精装16开定价:299元

高铬热处理工艺

高铬铸热处理工艺 化学成分:C2.05,Si1.40,Mn0.78,Cr26.03,Ni0.81,Mo0.35 1、常用的高铬铸铁的热处理工艺是加热到950~1000℃,经保温空冷淬火后再进行 200~260℃的低温回火。 2、高温团球化处理1140~1180℃保温16h空冷却,可以明显提高冲击韧度和耐磨性能。 高温团球化处理可使碳化物全部呈团球状,可消除或减少大块状和连续网状碳化物对基体的隔裂作用,经团球化的碳化物受到更加均匀的基体支撑,特别受到一定数量的奥氏体的支撑。如果适当减少保温时间,对薄截面零件也可以取得效果。该工艺的不足是工艺消耗热能较多。 加热到1050℃,经保温空淬火后再进行550℃的回火,效果会怎么样? 要控制加热速度,最好在650 750 850 时保温一定时间。我以前做过,正火就可以了。硬度能做到61----65HRC 成熟工艺是:铸造后软化退火,便于加工,加工后空冷淬火加低温去应力回火。使用硬度一般要求为HRC58-62,多用于比如渣浆泵零部件等耐磨易损件。 我们这里是高铬生产基地,一般提供Cr24,Cr26,Cr28,Cr15Mo3等,价格是不便宜的。价格要包括中间的软化退火和精加后的淬火及回火。楼主的材料应该叫Cr26 做高铬磨球的,Cr%=10.2~10.5%,C%=2.2~2.7%,Si、S双零以下,要求硬度HRC>58 我们现在用的是淬火液淬火,淬火工艺参数是:650度保温2小时,升温到960度保温3.5小时淬火;回火温度380~400,保温4~6小时。磨球规格φ40-φ80。 工艺是1050淬火+250~350回火 金属耐磨材料在水泥企业的研究和应用 [摘要] 本文从金属耐磨材料的概述、水泥企业常用的耐磨材料以及根据磨损原理具体的选用金属耐磨材料,对金属耐磨材料进行了研究、分析,对其他选用金属耐磨材料给予一定的参考和借鉴。 [关键词] 金属耐磨材料水泥企业研究应用 一、金属耐磨材料的概述 材料的耐磨性不仅决定于材料的硬度Hm,而且更主要的是决定于材料硬度Hm和磨料硬度Ha的比值。当Hm/Ha比值超过一定值后,磨损量便会迅速降低。 当Hm/Ha≤0.5-0.8时为硬磨料磨损,此时增加材料的硬度对材料的耐磨性增加不大。 当Hm/Ha>0.5-0.8时为软磨料磨损,此时增加材料的硬度,便会迅速地提高材料的耐磨性。

球墨铸铁铸造工艺(1)

球墨铸铁铸造工艺 1、金属炉料的要求 各种入炉金属炉料必须明确成份,除回炉铁和废钢由炉前配料人员根据炉料状况确定外,螺纹钢不准加入球铁中。其余炉料必须具备化学成份化验单方可使用,同时应保证炉料、合金干燥。 防止有密闭容器混入炉料中。 所有炉料应按配料单过称。 球墨铸铁化学成分

球墨铸铁单铸试样力学性能( GB/T1348-1988)

3. 熔炼过程化学成分和机械性能控制范围:熔炼过程化学成分控制范围 3.1.2 球墨铸铁熔炼过程化学成分控制范围

机械性能控制范围符合、标准 配料:加料按(2200kg)根据材质和回炉料情况选择下表其中一种配比。(注 意:如果是其他增碳剂,则增碳剂加入量增加10%) 加料顺序: 200kg 新生铁或回炉料-1/3 增碳剂-废钢-1/3 增碳剂-废钢-1/3 增碳剂- 新生铁- 回炉料。 增碳剂不准一次加入. 防止棚料. 6 冶炼要求加料顺序:新生铁-废钢加满炉-增碳剂-废钢-回炉料。 熔化完毕,温度升到1380℃左右清除铁水表面的渣,取原铁水化学成分

根据成分标准加合金或其他原料调整化学成分。成份不合格不准出铁水 测温,根据铸件工艺要求要求确定出铁温度, 出铁水前扒渣干净。 小铸件要用吨包分包出铁或球化 7 球墨铸铁的孕育和球化处理 孕育剂选用75SiFe, 加入方法为随流加入。 球化处理材料的技术要求参见下表(有特殊要求的球化剂按专项规定). 球铁处理方法 7.3.1 球化处理采取冲入法 7.3.2 将球化处理材料按球化剂-孕育剂(1/3 的硅铁粒)%增碳剂-聚渣剂- 铁板的顺序层状加入铁水包底的一边,每加入一种材料需扒平, 椿实。 7.3.3 铁水冲入位置应是放置合金等材料的另一边,防止铁水直接冲击合 金。先出2/3 铁水球化 7.3.4 球化反应结束后,再出余下的铁水1/3 。剩余2/3 Si75 孕育剂硅铁粒随在出剩余铁水均匀加入。孕育后必须搅拌铁水。

简述高铬铸铁轧辊的铸造和应用

简述高铬铸铁轧辊的铸造和应用 摘要:高铬铸铁轧辊现已广泛应用于热轧中宽带钢精轧机组前架及部分小型棒线、型钢精轧机组,以其良好的耐磨性和抗“斑带”性能广受用户的青睐。本文对高铬铸铁轧辊的铸造、热处理过程进行简要阐述,对使用中易出现的问题加以分析。 关键词:高铬铸铁轧辊、耐磨、抗“斑带”、铸造、热处理 一、高铬铸铁轧辊的生产方式 当前,几乎所有的高铬铸铁轧辊均采用离心铸造方式,只是离心机有水平式、立式和倾斜式3中形式。相比较“溢流法”等以前的生产方式,离心铸造可以使少量的高铬铸铁外壳迅速冷却,以便获得更加细小分散的碳化物组织,且生产效率进一步提高。 轧辊的芯部通常采用高强度球墨铸铁,由于外层的铬含量较高,芯部成份中的硅含量和镍含量应较普通轧辊适当提高,以便减少芯部组织中碳化物含量、增强芯部强度。 通常情况下,为防止外层含量较高的铬成份在浇注芯部时向芯部扩散,要在外层浇注完毕时择机浇入过渡层,过渡层铁水可采用中铬铸铁、半钢、灰铸铁等材料。浇入的时间、温度和铁水量要进行严格控制。二、高铬铸铁轧辊的冶金性能 在Fe-Cr-C合金中,如果铬的含量超过15%,渗碳体就会变得不稳定,其将会被具有复杂结构的六边形碳化物M7C3代替,该种碳化物被称为铬碳化物,主要成分为铬和铁,可能含有少量的其它合金元素。高铬铸铁轧辊外层材质的基本特征是显微组织中共晶碳化物以(Cr,Fe)7C3型为主,其显微硬度为1500-1800HV,而渗碳体的显微硬度为1000-1200HV,这也是高铬铸铁轧辊有较强耐磨性能的原因。高铬铸铁轧辊的主要化学成分(%)为:C2.2~3.4,Cr10~25,Mo0.3~4,Ni0.3~3.0。铬碳比(Cr/C)决定了高铬铸铁外层组织中碳化物的类型,C、Cr、Mo等元素的含量决定了碳化物的数量。Ni和Mo的作用一方面是强化基体,另一方面是增加基体组织的淬透性。 对Fe-Cr-C合金系的研究大多基于以下Fe-Cr-C合金相图 生产工艺高铬铸铁一般采用感应电炉或电弧炉熔炼,常用的原料为生铁、废钢、回炉料、铬铁、钼铁,

改善高铬铸铁加工性能的热处理工艺

文章编号:C N23-1249(2004)04-0051-03  收稿日期:2004-03-10  作者简介:龚正春(1962-),男,江苏启东人,高级工程师,从事核电材料,铸造材料锅炉及压力容器材料的科研工作。 改善高铬铸铁加工性能的热处理工艺 龚正春 (哈尔滨锅炉厂有限责任公司,黑龙江哈尔滨150046) 摘 要:高铬铸铁在磨损工况下有优良的耐磨性,主要是由于其基体为马氏体组织,碳化物类型为6方晶系的 (Fe.Cr )7C 3,碳化物呈6角棒状、针状、条状分布,显著地改善了材质的力学性能。通过磨损试验证明高铬铸铁 耐磨性好,成本低。与稀土高铬镍氮相比,成本降低60%,与钨铬合金相比,成本降低70%。关键词:高铬铸铁;K mT Cr25;热处理中图分类号:TG 143.9 文献标识码:A H eat T reatment T echnique of Improving H igh Cr C ast Iron Process Property G ONG Zhengchun (Harbin Boiler C o.,Ltd.,Harbin 150046,China ) Abstract :The reas on why high Cr cast iron have excellent wear resistant properties under the wear w ork 2ing condition is that its matrix is martensite microstructure and carbide type is (Fe ,Cr )7C 3,the shape of which is six horny bar 、acicular and strip ,therefore the mechanical properties of material is im proved obvi 2ous.The wear resistant property of high Cr cast iron is proved to be g ood and cost is low through wear test.C om pared to rare earth high Cr -Ni -N ,cost falls 60%;C om pared to W -Cr alloy ,cost falls 70%. K eyw ords :high Cr cast iron ;K mTCr25;heat treatment 0 引 言 国外抗磨合金的发展大致可分为3代:第一代是普通白口铁和锰钢,第二代是镍—铬低合金马氏体白口铁,第三代则是高铬铸铁。 根据某由厂要求,我们决定选取含(Fe.Cr )7C 3的马氏体基体的高铬白口铸铁,通过本文的一系列热处理试验,解决了K mTCr25白口铸铁的加工问题,而加工问题目前在我国耐磨材料中还没有得到很好的解决。 1 试验材料及方法 使用400kg 可控硅中频电炉,用镁砂捣制炉衬,加石灰石进行保护、炉料采用铸造生铁(Z14)、废钢(A 3)、微碳铬铁(FeCr6、FeCr10)和高铬铸铁的回炉铁。渗碳剂采用碳精棒和电石,脱碳剂采用电石,脱硫剂采用苏打,去气剂采用冰晶石粉,集渣剂采用珍珠岩粉。出炉温度1550℃,浇注温度1450℃,线收缩为1.8%~1.9%,浇注系统采用压边浇口、底注法。试验用料化学成分如表1,其中P ≤0.050%。 第4期2004年11月 锅 炉 制 造BOI LER M ANUFACT URI NG N o.4 N ov.2004

可锻铸铁与球墨铸铁

湘西民族职业技术学院备课用纸 课题:可锻铸铁与球墨铸铁讲授节数2节 授课班级11-5高模具1 11-5高数控1 11-5高数控2 11-5高数控3 11-5高数控4 授课日期星期日/ 月星期日/ 月星期日/ 月星期日/ 月星期日/ 月教学目的要求:掌握可锻铸铁化学成分;了解可锻铸铁的性能及用途;掌握可锻铸铁的牌号表示方法;了解球墨铸铁的性能;了解球墨铸铁常用热处理工艺种类;掌握球墨铸铁的牌号表示方法。学会正确识别可锻铸铁与球墨铸铁;能正确选用球墨铸铁常用热处理方法。 教学重点:1、可锻铸铁化学成分; 2、可锻铸铁的性能及用途; 3、球墨铸铁的性能。 教学难点:1、可锻铸铁的牌号表示方法; 2、球墨铸铁常用热处理; 3、球墨铸铁的牌号。 作业布置:配套习题册一、5.6.7.8. 二、6.7.8.9.10. 三、4.5.6。 教具:三角板一只。 教学过程转下页课后小结:本次课重点在于学习可锻铸铁及球墨铸铁的组织、性能及牌号,难点在于可锻铸铁及球墨铸铁的热处理工艺。通过学习本节内容,再联系前面第六章学习过的钢的热处理工艺加于比较,看看铸铁的热处理于钢的热处理工艺有何异同。注意一点可锻铸铁是不可以锻造的哦,而球墨铸铁的性能是所有几种铸铁中力学性能最好的。

可锻铸铁,由一定化学成分的铁液浇注成白口坯件,再经退火而成的铸铁,有较高的强度、塑性和冲击韧度,可以部分代替碳钢。可锻铸铁白口铸铁通过石墨化退火处理得到的一种高强韧铸铁。有较高的强度、塑性和冲击韧度,可以部分代替碳钢。它与灰口铸铁相比,可锻铸铁有较好的强度和塑性,特别是低温冲击性能较好,耐磨性和减振性优于普通碳素钢。这种铸铁因具有-定的塑性和韧性,所以俗称玛钢、马铁,又叫展性铸铁或韧性铸铁。 8.2.1 可锻铸铁化学成分 首先浇注成白口铸铁件,然后经可锻化退火(可锻化退火使渗碳体分解为团絮状石墨)而获得可锻铸铁件。可锻铸铁的化学成分是: wC=2.2%~2.8%,wSi=1.0%~1.8%,wMn=0.3%~0.8%,wS≤0.2%,wP≤0.1%。可锻铸铁的组织有二种类型: (1)铁素体(F)+团絮状石墨(G); (2)珠光体(P)+团絮状石墨(G)。 8.2.2 可锻铸铁的性能及用途 1. 可锻铸铁的性能 白口铸铁的切削加工性能极差,但是经过高温回火后,有较高的强度和可塑性,可以切削加工。由于可锻铸铁中的石墨呈团絮状,对基体的割裂作用较小,因此它的力学性能比灰铸铁高,塑性和韧性好,但可锻铸铁并不能进行锻压加工。可锻铸铁的基体组织不同,其性能也不一样,其中黑心可锻铸铁具有较高的塑性和韧性,而珠光体可锻铸铁具有较高的强度,硬度和耐磨性。 2. 可锻铸铁的用途 黑心可锻铸铁的强度、硬度低,塑性、韧性好,用于载荷不大、承受较高冲击、振动的零件。 珠光体基体可锻铸铁因具有高的强度、硬度,用于载荷较高、耐磨损并有一定韧性要求的重要零件。 8.2.3 可锻铸铁的牌号表示方法 1. 牌号表示方法 可锻铸铁的牌号是由“KTH”(“可铁黑”三字汉语拼音字首)或“KTZ”

我国铸铁铸造业当前发展状况及趋势

我国铸铁铸造业当前发展状况及趋势 20世纪80年代初,铸铁材料发展进入了顶峰期,随后,世界的铸铁产量便出现急剧递减,然而铸铁仍是当今金属材料中应用最为广泛的基础材料,在铸造合金材料中占有重要地位。 由于受能源、劳动力价格和环境因素的影响,西方工业发达国家的铸件产量将会逐渐减少,转而向发展中国家采购一般铸件,但同时又会向发展中国家出口高附加值、高技术含量的优质铸件。当前,世界经济全球化进程的加速为我国铸造业的发展提供了机遇,国际和国内市场对我国铸件的需求呈持续增长的趋势。与此同时,铸铁作为一种传统的金属材料,在其质量、性能和价格等方面正面临着严酷的挑战。抓紧我国铸铁铸造业的结构调整和技术改造;努力提高铸件质量档次,提高和理环境污染的水平,实现铸铁材料的高附加值化是应付未来更加激烈的市场竞争,满足用户多样化需求的主要对策。 一、我国铸铁的生产水平及差距 1.铸造工艺材料及辅料 我国铸造工艺材料如原砂、粘土、煤粉、粘结剂和涂料在品种、性能、质量等方面与工业先进国家之间的差距极大,以致我国的铸件尺寸精度和表面粗糙度比国外差一到两个等级,铸件表面缺陷造成的废品率比国外高几倍。铸造用工艺原料的标准化、系列化和商品化仍是一个亟待解决的问题。 2.铸造工艺过程及铸件质量的检测与控制 我国在铸造工艺过程和铸件质量的检测与控制方面与工业先进国家还存在比较大的差距,主要反映在以下方面:

①铸造工艺过程的检测。 ②铸造工艺过程的优化和控制。 ③铸件质量的检测。而上述检测和控制手段的完善是提升我国铸铁铸造生产水平的一个主要内容。 3.铸造工艺装备 对于铸造生产,国外广泛采用流水线大量生产;高压造型、射压造型、静压造型和气冲造型;造芯全部用壳芯和冷、热芯盒工艺。国内除汽车等行业中少数厂家采用半自动、自动化流水线大量生产外,多数厂家仍采用较落后的铸造工艺装备。 二、铸铁熔炼技术 1.冲天炉技术 冲天炉居铸铁熔炼设备之首,至今仍担负着80%以上铸铁件的熔炼任务。70年代以后,符合我国特点的炉型和熔炼技术已逐渐完善和成熟,形成了独具特色的多排小风口和两排大间距冲天炉系列。在操作技术上,从一度追求低焦耗到重视铁液质量,进而讲求提高技术、经济、劳动卫个和环境保护的综合指标,逐步开发应用了从炉料处理、修炉、烘炉到配加料、鼓风。炉况控制、铁液检验等全过程的操作技术。在较短的历程中,我们在冲天炉理论研究、炉子结构、修炉材料、送风系统、热能利用、强化底作燃烧、炉内气氛调整控制、铁液炉前检验、消烟除尘、非焦炭化铁、配料及熔炼过程计算机优化控制等诸多方自都取得了可喜的成绩。 冲火炉的发展是围绕着提高性能和生产率,降低消耗,改善操作,减少污染进行的。冲天炉性能主要体现在炭的燃烧、炉料的加热和冶金过程三方面。随着铸铁生产批量的扩大和对铸造生

高铬铸铁的热处理

高铬铸铁的热处理 1. 退火 由于高铬制品其铸态硬度较高,为改善工件的机械加工性能,所有毛坯必须进行必要的软化退火处理。 具体工艺( 以壁厚不超过100mm且外形较复杂铸件为例) 如下。 首先将需处理工件在室温下装入热处理炉,然后随炉缓慢升温至400 ℃左右进行保温1 ~2h,随后将炉温升至600 ℃再进行保温1 ~2h,之后以不超过150 ℃/ h的温升速度,将炉温快速升至950 ℃后进行2 ~3h 的保温,而后停止加热,待炉温自然降至820 ℃左右,此后可控制电炉以10 ~15 ℃/ h 的温降速度将炉温降至700 ~720 ℃,并在此温度保温4 ~6h ( 工件越厚其保温时间应越长) 后停炉,工件可视情况随炉冷却或出炉置于静止的空气中冷却至室温( 以获得珠光体基体,满足性能要求,便于切削加工) 。 具体生产中,若所处理工件形状较为简单,也可采用较快速的退火工艺,即在温升至950 ℃并保温3h 后停炉,之后可随炉冷却至400 ℃左右,然后打开炉门,继续冷却至300 ℃以下,工件即可出炉空冷。 工件退火后可进行机械加工,由于高铬白口铸铁在淬火过程中尺寸变化比铸钢和灰铸铁小的多,一般无须矫正尺

寸,对于按工艺要求需磨削加工的工件所留磨削量也可很小。 2. 淬火 将机械加工后的工件室温装炉,以小于80 ℃/ h 的温升速度将炉温升至600 ℃( 若工件较厚或形状较复杂,可在温升至300 ℃、400 ℃、500 ℃、600 ℃时分别给予0. 5h 的保温) ,之后以不超过150 ℃/ h 的温升速度将炉温升至淬火温度950 ~980 ℃后进行保温,保温时间为2~4h ( 视工件厚薄不同保温时间有所差别,越厚保温时间越长) ,而后将工件快速出炉进行空冷,若遇环境气温较高,淬火时应辅以强风和水雾喷洒,以强化冷却,淬火工艺曲线如图2 所示。 3. 回火 为降低铸件残余应力和脆性,并保持其淬火得到的高硬度和耐磨性,同时也使马氏体得以回火,以及残余奥氏体有所减少,应对淬火后的工件再进行230 ~260 ℃的回火处理。具体工艺为: 将工件在室温状态下装炉,再升温至230 ~260 ℃,保温3 ~6h,之后出炉空冷。

球墨铸铁的热处理

球墨铸铁的热处理 目前球墨铸铁所采用的热出库工艺有:消除内应力的低温退火;高温石墨化退火;低温石墨化退火;正火与回火;淬火与回火;等温淬火等。球墨铸铁的表面淬火正在扩大应用。对球墨铸铁的化学热处理也在研究应用。 1 球墨铸铁消除内应力的低温退火 球墨铸铁与灰口铸铁比较,容易产生较高的内应力,一般高1-2倍,与白口铸铁的内应力差不多。 消除内应力低温退火的工艺过程是:将铸铁加热到Ac1以下某一温度,保温一段时间,然后随炉缓慢冷却使铸铁完全过渡到稳性温度范围,至200-250℃即出炉空冷。 球墨铸铁消除内应力的倾向性与金属基体有关,珠光体球墨铸铁比铁素体基体为小。例如当退火温度为600℃时,对于珠光体+铁素体和铁素体基体的球墨铸铁保温15小时后可完全消除内应力。而对于珠光体基体的球墨铸铁,要完全消除内应力保温时间长达63小时。但都比钢的消除倾向大。 在保温的前2-3小时内消除内应力的效果最为显著。退火温度愈高,则内应力消除的愈快,愈安全。 目前工厂一般按下述工艺进行:加热速度控制在60-120℃/小时的范围内。避免产生新的内应力。加热温度一般控制在550-650℃之间。对于珠光体基体的球墨铸铁,考虑到当加热温度超过600℃后,可能发生共析渗碳体的石墨化和粒化。所以加热温度适当降低为550-620℃为宜。保温时间为2-8小时。然后随炉缓冷(冷却速度为30-60℃/小时)至200-250℃出炉空冷。采用该工艺退火,可消除铸件中残余应力之90-95%。 2球墨铸铁的高温石墨化退火

球墨铸铁具有较大的向心倾向性。在生产过程中常常由于化学成分选择不当,球化剂加入量过多或孕育剂量不足而造成铸件中出项大量的奥氏体或自由渗碳体;有时由于球墨铸铁中磷量过高或磷的严重偏析倾向,甚至在含磷量为0.05%时就会出现磷共晶。当自由渗碳体和磷共晶总量超过3%时,就使铸件的机械性能变坏,加工困难。在这种情况下就必须采用高温石墨化的方法来予以消除。球墨铸铁高温石墨化退火的工艺是:将铸铁件加热至Ac3+(30-50℃),保温一段时间进行第一阶段石墨化,然后根据对球墨铸铁基体要求的不同采用不同的冷却方式。加热温度一般为900-960℃。保温时间一般为1-4小时。 高温石墨化以后的冷却,则是根据对球墨铸铁基体的组织要求而定。如果要求获得高韧性的铁素体基体,则在高温保温待第一阶段石墨化完成后,随炉冷却到720-760℃保温进行第二阶段石墨化,以后再炉冷至600℃出炉空冷;也可以直接从高温缓慢冷却通过共析转变温度范围至600℃时出炉空冷,使奥氏体在缓慢冷却过程中直接分解为铁素体及石墨。这时球墨铸铁组织为铁素体+球状石墨。如果要求基体为珠光体,则高温保温后即出炉进行空冷。这时铸铁组织为索氏体型珠光体+少量片状铁素体〔<10%〕+球状石墨。

灰铸铁的铸造工艺

灰铸铁的铸造工艺-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

灰铸铁的铸造工艺 铸造业就说“三好”即:好铁水、好型砂、好工艺。铸造工艺在铸件的制造上是和铁水、型砂并列的而做出铸件,铸造工艺是研究决定其流入的路径、方法的技术。 铸型分为: 浇口:把铁水从铁水包注入铸型的入口。往往为使浇注量均匀,除去铁水中的夹杂物,设有集渣浇 横浇道:指铁水从直浇道向型腔流道的水平部分。 内浇口:指铁水从横浇道进入型腔的部位。铸造俗语叫“堰”,是工艺上的重要部分。 出气孔:是随着铁水的充型把型腔内部的空气向外排放的孔道,如果型砂的透气性合适,一般是没 冒口:是把铁水中的夹杂物和铸型中的杂物向外排出口,但是由于铸件冷却收缩造成体积不足起补 铸造工艺的基本要点 铸造工艺是为了使浇注顺利进行,得到良好铸件的技术,平稳且快是加山延太郎博士的名言,即(1)关于铸型的上下:铸件的切削加工面尽量在下箱里,因下部产生缩孔少,材质致密。(2)浇注方式:有从铸件的上部浇入的顶注式和从下部、中部浇注的底注式。顶注式铸型容易(3)内浇口的位置:由于流入型腔内的铁水急速冷却成固体,如果在厚壁部分开内浇口铁水进浇口的数量、形状而决定其位置。 (4)内浇口的种类: 主要为三角内浇口和梯形内浇口。三角内浇口容易做,梯形内浇口能防止渣子混入铸型。(5)直浇口、横浇口、内浇口的断面积比。 按西德R·LEHMANN博士的意见,直浇口为A,横浇口为B,内浇口为C时,A ∶B ∶C=3.6 ∶4.0 ∶虽然关于这个比例是否妥当,有各种不同意见,但说明一下这个比例的思路是:首先铁水通过3间稍长,这期间比重轻的夹杂物可以上浮,就不能从内浇口进入铸件内部。这就是这种比例的要点 浇注系统的设计 浇注系统设计上的一个要点

高铬合金耐磨铸铁生产技术

高铬合金耐磨铸铁生产技术(转 一、高铬铸铁的熔炼 1. 高铬铸铁化学成分( 见下表) 2. 原料要求 另外,还需工业纯铜和废旧电极块( 用于调整碳含量) 等。 3. 熔炼工艺要求 ( 1) 出炉温度高铬铸铁的熔点比一般铸铁高,约为1200 ℃,出炉温度约为1500 ℃,熔炼选用中频感应电炉。 ( 2) 炉衬采用酸性或碱性炉衬均可,炉衬的配比、打结、烘干和烧结均按常规工艺进行。 ( 3) 装料一般按正常顺序加料,先将灰生铁、钼铁等难熔铁合金装入炉底,而后将废钢等按照下紧上松的原则装填( 有助于塌料) 。 ( 4) 送电熔化将电炉功率调至最大进行熔化,由于Cr 的熔炼损耗较大( 约5 % ~15 %) ,故铬铁应在最后加入,通常是待废钢全部熔化后加入烤红的铬铁。 ( 5) 脱氧待金属炉料全部熔化并提温至1480 ℃后,再加入锰铁、硅铁及铝进行脱氧。 ( 6) 浇注在中频感应炉中熔化,温度不必太高,温度达到1480 ℃时即可出炉,铁液在包内应停留一段时间进行镇静,视工件大小不同可在1380 ~1410 ℃之间进行浇注。 二、生产工艺要点

(1) 高铬铸铁铸造性能较差,其热导率低,塑性差,收缩量大,且有大的热裂和冷裂倾向,在铸造工艺上要将铸钢和铸铁的特点结合起来考虑,必须充分注意铸件的补缩问题,其原则与铸钢件相同( 采用冒口和冷铁,且遵循顺序凝固原理) 。由于合金中铬含量高,易在铁液表面结膜,所以看起来铁液流动性差,但实际上流动性较好。 ( 2) 造型宜采用水玻璃硅砂等强度高且透气性好的砂型,涂料应采用耐火度高的高铝粉或镁粉与酒精混合拌制。另外,为获得细晶粒组织和好的表面质量,在铸件外形不太复杂的情况下,金属型铸造也被广泛采用。 ( 3) 高铬铸铁的收缩量与铸钢相近,模样制作上其线收缩率可按1. 8 % ~2 % 进行计算。在砂型制作上,其冒口大小可按碳钢的规定进行计算,而浇注系统则按灰铸铁计算,但需把各截面积增加20 % ~30 % 。浇冒口的选择应注意两个方面: 一是要保证铸件工作带( 使用部位) 的质量; 二是要尽量提高铸件的成品率。 ( 4) 由于高铬铸件的冒口不易切除,因此造型时在冒口形式上宜采用侧冒口或易割冒口。 ( 5) 在具体零件的铸造工艺设计上,要注意不能让铸件出现受阻收缩,以免造成开裂。另外,浇注后开箱温度过高也极易造成铸件开裂,540 ℃以下的缓冷是十分必要的,应使铸件在铸型中充分冷却,然后再开箱清砂,或开箱后先勿清砂而堆在一起( 铸件、浇冒系统等) 围干砂缓冷。开箱周围环境必须保持干燥,不得潮湿有水,否则极易造成铸件裂纹。 ( 6) 浇注温度要低,有利于细化树枝晶和共晶组织,而且可避免出现因温度过高而造成的收缩过大及表面粘砂等缺陷。浇注温度一般比其液相线( 1290 ~1350 ℃) 高55 ℃左右,轻小件一般控制在1380 ~1420 ℃,壁厚100mm以上的厚重件控制在1350 ~1400 ℃。 三、高铬铸铁的热处理 1. 退火 由于高铬制品其铸态硬度较高,为改善工件的机械加工性能,所有毛坯必须进行必要的软化退火处理。 具体工艺( 工艺曲线见图1 ,以壁厚不超过100mm且外形较复杂铸件为例) 如下。 首先将需处理工件在室温下装入热处理炉,然后随炉缓慢升温至400 ℃左右进行保温1 ~2h,随后将炉温升至600 ℃再进行保温1 ~2h,之后以不超过150 ℃/ h的温升速度,将炉温

高铬铸铁铸造工艺

锤头高铬铸铁铸造工艺 高铬铸铁化学成分设计:(一般采用亚共晶高铬铸铁) 1、工艺上常常通过调整碳含量来达到改变碳化物数量。 2、不含其他合金元素的高铬铸铁,空淬能淬透的最大直径为20mm,要提高淬透性,必须加入合金元素。 3、锰剧烈降低Ms,会使高铬铸铁在淬火后有较多的残留奥氏体,因此,一般控制在1.0%以下。 4、铜降低Ms,会造成许多的残留奥氏体,因此,一般控制在1.5%以下。 5、由于V价格高,通常只适用于不易热处理的铸件。 6、硅提高Ms,会减少残留奥氏体,同时降低淬透性,因此,一般应控制。 7、高铬铸铁感应炉熔炼温度1480℃,已经足够,不必太高。 8、高铬铸铁浇注温度不希望太高,以免收缩过大和粘砂。浇注温度厚大件1350-1400℃,(一般件1380-1420℃)。高的浇注温度加重冒口下的缩孔,而且会造成浓密的显微缩松,同时使晶粒组织粗大。 9、高铬铸铁模型收缩率2%。 10、高铬铸铁冒口尺寸按碳钢设计,浇注系统按灰铸铁设计。采用气割法切割浇冒口,容易产生热裂纹,故设计时采用易割冒口或者侧冒口,采用敲击法去除。 11、高铬铸铁寿命短的原因,不是金相不合格,而是,铸件

内存在缩孔、气孔、夹杂等铸造缺陷,因此必须足够重视铸造工艺。 12、高铬铸铁容易开裂。在铸造工艺设计上注意不让铸件收缩受阻,以免造成开裂。 13、高铬铸铁铸件在铸型中应充分冷却,然后开箱。开箱过早,开箱温度过高,是铸件开裂的主要原因。 14、高铬铸铁采用金属型铸造时,浇注温度应保持在150℃以上,以免铸件冷却太快开裂。 15、高铬铸铁采用高温空淬,中低温回火的热处理,获得高硬度的马氏体基体。 16、高铬铸铁在热处理前的铸态基体组织取决于铸态冷却速度的高低。冷却速度高时通常为奥氏体基体:随冷却速度降低逐渐开始析出部分马氏体、珠光体和奥氏体的混合物。:冷却速度进一步降低,可能获得珠光体基体的组织。 17、高铬铸铁一般根据铬含量和零件壁厚选择最佳淬火温度。淬火温度越高,淬透性越高,但淬火后形成残留奥氏体数量有可能越多。Cr15高铬铸铁的淬火温度940-970℃,Cr20高铬铸铁的淬火温度960-1010℃。保温时间根据壁厚选择。一般2-4h,壁厚零件4-6h。 18空淬后的高铬铸铁存在较大的内应力,应尽快进行回火热处理。 19、对一些形状复杂、壁厚形成悬殊的高铬铸铁铸件应严格

可锻铸铁与球墨铸铁

湘西民族职业技术学院备课用纸

可锻铸铁,由一定化学成分的铁液浇注成白口坯件,再经退火而成的铸铁,有较高的强度、塑性和冲击韧度,可以部分代替碳钢。可锻铸铁白口铸铁通过石墨化退火处理得到的一种高强韧铸铁。有较高的强度、塑性和冲击韧度,可以部分代替碳钢。它与灰口铸铁相比,可锻铸铁有较好的强度和塑性,特别是低温冲击性能较好,耐磨性和减振性优于普通碳素钢。这种铸铁因具有-定的塑性和韧性,所以俗称玛钢、马铁,又叫展性铸铁或韧性铸铁。 8.2.1 可锻铸铁化学成分 首先浇注成白口铸铁件,然后经可锻化退火(可锻化退火使渗碳体分解为团絮状石墨)而获得可锻铸铁件。可锻铸铁的化学成分是: wC=2.2%~2.8%,wSi=1.0%~1.8%,wMn=0.3%~0.8%,wS≤0.2%,wP≤0.1%。可锻铸铁的组织有二种类型: (1)铁素体(F)+团絮状石墨(G); (2)珠光体(P)+团絮状石墨(G)。 8.2.2 可锻铸铁的性能及用途 1. 可锻铸铁的性能 白口铸铁的切削加工性能极差,但是经过高温回火后,有较高的强度和可塑性,可以切削加工。由于可锻铸铁中的石墨呈团絮状,对基体的割裂作用较小,因此它的力学性能比灰铸铁高,塑性和韧性好,但可锻铸铁并不能进行锻压加工。可锻铸铁的基体组织不同,其性能也不一样,其中黑心可锻铸铁具有较高的塑性和韧性,而珠光体可锻铸铁具有较高的强度,硬度和耐磨性。 2. 可锻铸铁的用途 黑心可锻铸铁的强度、硬度低,塑性、韧性好,用于载荷不大、承受较高冲击、振动的零件。 珠光体基体可锻铸铁因具有高的强度、硬度,用于载荷较高、耐磨损并有一定韧性要求的重要零件。 8.2.3 可锻铸铁的牌号表示方法 1. 牌号表示方法 可锻铸铁的牌号是由“KTH”(“可铁黑”三字汉语拼音字首)或“KTZ”

【CN109852773A】一种有效提高球墨铸铁硬度的热处理方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910217234.4 (22)申请日 2019.03.21 (71)申请人 长春工业大学 地址 130000 吉林省长春市延安大路17号 (72)发明人 王柏树 陈华 贾素秋 韩英  (74)专利代理机构 吉林省长春市新时代专利商 标代理有限公司 22204 代理人 石岱 (51)Int.Cl. C21D 5/00(2006.01) (54)发明名称一种有效提高球墨铸铁硬度的热处理方法(57)摘要本发明属于热处理技术或者球墨铸铁结构材料加工技术领域,采用低的双临界温度进行奥氏体化并淬火加低温回火。具体说是:第一个临界温度是共析转变点A 1,在其下临近温度保温,球墨铸铁基体由共析向亚共析成分过渡;第二个临界温度是亚共析钢的奥氏体化温度A 3点,在其下或临近温度保温,基体以亚共析钢不充分的奥氏体化为主要特征,淬火后,从球状石墨边缘到树枝晶间界面,得到树枝晶为单元的梯度化控制的组织,是少量未转变的铁素体增韧的亚温淬火组织,包括共析钢和近共析钢的细小马氏体和没有完全溶解的碳化物;低温回火降低淬火应力,使基体增韧。还有工艺成品率高、耐磨性优,降低能耗、环境友好、 简便易行等优点。权利要求书1页 说明书6页 附图4页CN 109852773 A 2019.06.07 C N 109852773 A

权 利 要 求 书1/1页CN 109852773 A 1.一种有效提高球墨铸铁硬度的热处理方法,其特征在于:该热处理方法是对等温淬火球墨铸铁或者针对高淬透性球墨铸铁进行双临界热处理,具体步骤如下:1)、原料选择,选择等温淬火球墨铸铁或含Ni、Mn、Mo的高淬透性和高的等温淬火淬透性球墨铸铁作为热处理原料; 2)、所述的双临界热处理又分为双临界淬回火法或双临界等温淬火法: a、当采用双临界淬回火法时其步骤如下: ①、第一段临界处理,对照球墨铸铁基体的化学成分,比较相应成分的共析钢的A1点,将步骤1中的原料在临界温度以下或附近进行低临界温度保温石墨化退火,这时在球状石墨周围的基体发生石墨化,即珠光体中的渗碳体分解和碳脱溶,扩散到临近石墨,降低基体碳含量,使亚共析化或铁素体化,与球状石墨界面处基体的碳浓度为梯度最低点;工艺温度为670~750℃,保温30~120分钟; ②、第二段临界处理,经过所述低临界温度石墨化退火后,材料基体的碳浓度发生变化,对照该基体的新的化学成分,比较相应成分的亚共析钢的A3点,在临界温度附近进行奥氏体化高临界温度淬火加热,为基体淬火做组织准备,保温进行不充分的奥氏体化,有少量未转变铁素体和未分解或溶解的渗碳体;选择A3以下临近的温度,处于G+α+γ三相共存区,工艺温度为760~820℃,保温20~60分钟; ③、冷水淬火处理,步骤②中不充分的奥氏体化保温后淬火,从球状石墨边缘到树枝晶间的界面,使基体获得马氏体为主体的多相结构,梯度化控制树枝晶内的组织分布;淬火介质选用冷水; ④、低温回火,步骤②、③后,及时进行低温回火,降低马氏体转变所带来的淬火组织应力,继续增韧前三段①、②、③工序处理后的球墨铸铁;选用热风循环式低温回火炉或者流态床式炉,进行低温回火,工艺温度为150~250℃,保温60~150分钟,出炉空冷; b、当采用双临界等温淬火法时其步骤如下: ①、第一段临界处理,对照球墨铸铁基体的化学成分,比较相应成分的共析钢的A1点,将步骤1中的原料在临界温度以下或附近进行低临界温度保温石墨化退火,这时在球状石墨周围的基体发生石墨化,即珠光体中的渗碳体分解和碳脱溶,扩散到临近石墨,降低基体碳含量,使亚共析化或铁素体化,与球状石墨界面处基体的碳浓度为梯度最低点;工艺温度为670~750℃,保温30~150分钟; ②、第二段临界处理,经过所述低临界温度石墨化退火后,材料基体的碳浓度发生变化,对照该基体的新的化学成分,比较相应成分的亚共析钢的A3点,在临界温度附近进行奥氏体化高临界温度淬火加热,为基体淬火做组织准备,保温进行不充分的奥氏体化,有未分解或溶解的渗碳体;推荐选择A3以上临近温度,工艺温度为780~870℃,短时保温15~60分钟,; ③、盐浴等温淬火处理,步骤②中奥氏体化保温后等温淬火,从球状石墨边缘到树枝晶间的界面,使基体获得含有马氏体的多相结构,梯度化控制树枝晶内的组织分布;盐浴温度特征:控制在200~270℃这一较低的等温淬火温度范围。 2

相关文档
最新文档