面向随机振动功率谱估计的小波变换去噪算法理论分析。

面向随机振动功率谱估计的小波变换去噪算法理论分析。
面向随机振动功率谱估计的小波变换去噪算法理论分析。

经典功率谱和Burg法的功率谱估计

现代信号处理作业 实验题目: 设信号)()8.0cos(25.0)47.0cos()35.0cos()(321n v n n n n x ++++++=θπθπθπ,其中321,,θθθ是[]ππ,-内的独立随机变量,v(n)是单位高斯白噪声。 1.利用周期图法对序列进行功率谱估计。数据窗采用汉明窗。 2.利用BT 法对序列进行功率谱估计,自相关函数的最大相关长度为M=64,128,256,512采用BARTLETT 窗。 3.利用Welch 法对序列进行功率谱估计,50%重叠,采用汉明窗,L=256,128,64。 4.利用Burg 法对序列进行AR 模型功率谱估计,阶数分别为10,13. 要求每个实验都取1024个点,fft 作为谱估计,取50个样本序列的算术平均,画出平均的功率谱图。 实验原理: 1)。周期图法: 又称间接法,它把随机信号的N 个观察值x N (n)直接进行傅里叶变换,得到X N (e jw ),然后取其幅值的平方,再除以N ,作为对x (n )真实功率谱的估计。 2^ )(1)(jw e X N w P N per = , 其中∑-=-=1 )()(N n jwn N jw N e n x e X 2)。BT 法: 对于N 个观察值x(0),x(1),。。。,x(N-1),令x N (n)=a(n)x(n)。计算r x (m )为

∑--=-≤+= m N n N N x N m m n x n x N m r 10 1),()(1 )(,计算其傅里叶变换 ∑-=--≤= M M m jwm x BT N M e m r m v w P 1 ,)()()(^ ^ ,作为观察值的功率谱的估计。 其中v(m)是平滑窗。 3)。Welch 法: 假定观察数据是x(n),n=0,1,2...,N-1,现将其分段,每段长度为M,段与段之间的重叠为M-K,第i 个数据段经加窗后可表示为 1,...,1,0 )()()(-=+=M i iK n x n a n x i M 其中K 为一整数,L 为分段数,该数据段的周期图为 2)(1)(^w X MU w P i M i per =,其中∑-=-=1 0)()(M n j w n i M i M e n x w X 。由此得到平均周期图为 ∑-==10 ^_ )(1)(L i i per w P L w P 。其中归一化U 取∑-== 10 2 )(1M n n a M U 。 4)。Burg 法: 在约束条件下,使得)(2 1^^^ b f ρρρ+=极小化,其中,约束条件是它所得到的 各阶模型解要求满足Levison 递归关系。 仿真结果: 1.周期图法

功率谱估计方法的比较

功率谱估计方法的比较 摘要: 本文归纳了信号处理中关键的一种分析方法, 即谱估计方法。概述了频谱估计中的周期图法、修正的协方差法和伯格递推法的原理,并且对此三种方法通过仿真做出了对比。 关键词:功率谱估计;AR 模型;参数 引言: 谱估计是指用已观测到的一定数量的样本数据估计一个平稳随机信号的谱。由于谱中包含了信号的很多频率信息,所以分析谱、对谱进行估计是信号处理的重要容。谱估计技术发展 渊源很长,它的应用领域十分广泛,遍及雷达、声纳、通信、地质勘探、天文、生物医学工程等众多领域,其容、方法都在不断更新,是一个具有强大生命力的研究领域。谱估计的理论和方法是伴随着随机信号统计量及其谱的发展而发展起来的,最早的谱估计方法是建 立在基于二阶统计量, 即自相关函数的功率谱估计的方法上。功率谱估计的方法经历了经典谱估计法和现代谱估计法两个研究历程,在过去及现在相当长一段时间里,功率谱估计一直占据着谱估计理论里的核心位置。经典谱估计也成为线性谱估计,包括BT 法、周期图法。现代谱估计法也称为非线性普估计,包括自相关法、修正的协方差法、伯格(Burg )递推法、特征分解法等等。 原理: 经典谱估计方法计算简单,其主要特点是谱估计与任何模型参数无关,是一类非参数化的方法。它的主要问题是:由于假定信号的自相关函数在数据的观测区间以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,经典法的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。现代谱估计方法使用参数化的模型,他们统称为参数化功率谱估计,由于这类方法能够给出比经典法高得多的频率分辨率,故又称为高分辨率方法。下面分别介绍周期图法、修正的协方差法和伯格递推法。修正的协方差法和伯格递推法采用的模型均为AR 模型。 (1)周期图法 周期图法是先估计自相关函数, 然后进行傅里叶变换得到功率谱。假设随机信号x(n)只观测到一段样本数据,n=0, 1, 2, …, N-1。根据这一段样本数据估计自相关函数,如公式(1) 对(1)式进行傅里叶变换得到(2)式。 ∑--=+=1||0 *) ()(1 )(?m N n xx m n x n x N m r

功率及功率谱计算

功率谱定义 从确定性信号功率计算开始 ()()221 11lim lim 222T T T T T P x t dt X d T T ωωπ∞--∞→∞→∞==?? ()()21lim 2T T S X T ωω→∞= S(w)为功率谱密度,简称功率谱 则 ()12P S d ωωπ+∞-∞= ? 随机信号的功率谱密度 (1)样本功率谱与功率谱密度 ()()21,lim ,2X T T S X T ωξωξ→∞= 针对一个具体的样本而言,其是一个确定性的信号 (2) 随机信号的平均功率及平均功率谱密度 ()X X P E P ξ=???? 需要对具体的样本取概率均值才能计算出功率 ()()()21,lim ,2X X T T S E S E X T ωωξωξ→∞??==?????? 故功率谱密度是对所有概率取期望的反应。 (3)自相关函数与功率谱密度 ()()R S τω? (4)信号的自相关函数计算 分为确定信号和随机信号 确定信号 02002*0 1()lim ()()T T x T R x t x t dt T ττ-→∞=-? 周期信号 0202*0 1()()()T T x R x t x t dt T ττ-=-? 随机信号 *()[()()]x R E x t x t ττ=- 2 功率计算 (1)根据定义来计算

(2)周期信号如何计算 0cos()A t ω的计算 200()()1()[]2 A A s d T πσωωπσωωωω+∞-∞-++==?不好算因此放弃,但是应该可以类推得出结论 (3)自相关函数计算 0cos()A t ω的计算 /2 200/2 /222000/2201()cos()cos(())cos()cos(2)1[]2 cos()2 T T T T r A t t d T A A t d T A τωωτωωτωωτωωτ+-+-=-+-==?? 所以其功率谱为 200()2 A πσωωσωω(-)+(+) 0j t Ae ω的计算 0000/2()2/2 /22/2 21()1T j t j t T T j T j r A e e dt T A e dt T A e ωωτωτωτ τ+---+-===?? 总结:因此周期函数,首先转换成傅里叶级数,然后再通过自相关函数的定义计算自相关函数,得到其功率谱密度。

matlab程序中功率谱分析的经典常用方法

一、直接法 clear;clc;close all; %清除变量;清屏;关闭当前图形窗口 Fs=1000; t=0:1/Fs:1; nfft=2048; %改变nfft的值可对比不同采样值时的谱估计效果 %****************生成信号、噪声**************% x1=cos(2*pi*40*t)+3*cos(2*pi*45*t);%信号 x2=randn(size(t)); %噪声 x3=x1+x2; %信号+噪声 [Pxx,f]=periodogram(x3,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); title('直接法 nfft=2048'); set(gca,'xlim',[1 120]); ylabel('Am/dB'); xlabel('Frequency/Hz'); 二、间接法 Fs=1000;% 采样频率 n=0:1/Fs:1;% 产生含有噪声的序列 x1=cos(2*pi*40*n)+3*cos(2*pi*45*n);%信号x2=randn(size(n)); %噪声x3=x1+x2; %信号+噪声 nfft=1024; cxn=xcorr(x3);% 计算序列的自相关函数 CXk=fft(cxn); Pxx=abs(CXk); index=0:round(nfft/2-1); f=index*Fs/nfft; plot_Pxx=10*log10(Pxx(index+1)); figure (1) plot(f,plot_Pxx); title('间接法 nfft=1024');ylabel('Am/dB'); set(gca,'xlim',[1 120]); xlabel('Frequency/Hz'); 三、Bartlett法 clear;clc;close all; %清除变量;清屏;关闭当前图形窗口 Fs=1000; t=0:1/Fs:1; nfft=1024; %****************生成信号、噪声**************% x1=cos(2*pi*40*t)+3*cos(2*pi*45*t);%信号 x2=randn(size(t)); %噪声 x3=x1+x2; %信号+噪声 window=hamming(512); %海明窗 noverlap=0; %数据无重叠 p=0.9; %置信概率 [Pxx,Pxxc]=psd(x3,nfft,Fs,window,noverlap,p); index=0:round(nfft/2-1); k=index*Fs/nfft; plot_Pxx=10*log10(Pxx(index+1)); plot_Pxxc=10*log10(Pxxc(index+1)); figure(1) plot(k,plot_Pxx);title('Bartlett法海明窗');; set(gca,'xlim',[1120]);ylabel('Am/dB'); xlabel('Frequency/Hz'); 四、Welch法

经典功率谱估计方法实现问题的研究

1 随机信号的经典谱估计方法 估计功率谱密度的平滑周期图是一种计算简单的经典方法。它的主要特点是与任 何模型参数无关,是一类非参数化方法[4]。它的主要问题是:由于假定信号的自相关函数在数据观测区以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,周期图的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。本章主要介绍了周期图法、相关法谱估计(BT )、巴特利特(Bartlett)平均周期图的方法和Welch 法这四种方法。 2.1 周期图法 周期图法又称直接法。它是从随机信号x(n)中截取N 长的一段,把它视为能量有限x(n)真实功率谱)(jw x e S 的估计)(jw x e S 的抽样. 周期图这一概念早在1899年就提出了,但由于点数N一般比较大,该方法的计算量过大而在当时无法使用。只是1965年FFT 出现后,此法才变成谱估计的一个常用方法。周期图法[5]包含了下列两条假设: 1.认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n)中的一段 )(n x N 来估计该随机序列的功率谱。这当然必然带来误差。 2.由于对)(n x N 采用DFT ,就默认)(n x N 在时域是周期的,以及)(k x N 在频域是周期的。这种方法把随机序列样本x(n)看成是截得一段)(n x N 的周期延拓,这也就是周期图法这个名字的来历。与相关法相比,相关法在求相关函数)(m R x 时将 )(n x N 以外是数据全都看成零,因此相关法认为除)(n x N 外 x(n)是全零序列,这种处 理方法显然与周期图法不一样。 但是,当相关法被引入基于FFT 的快速相关后,相关法和周期图法开始融合。通过比较我们发现:如果相关法中M=N ,不加延迟窗,那么就和补充(N-1)个零的周期图法一样了。简单地可以这样说:周期图法是M=N 时相关法的特例。因此相关法和周期图法可结合使用。 2.2 相关法谱估计(BT )法

功率谱密度

t=0:0.0001:0.1; %时间间隔为0.0001,说明采样频率为10000Hz x=square(2*pi*1000*t); %产生基频为1000Hz的方波信号 n=randn(size(t)); %白噪声 f=x+n; %在信号中加入白噪声 figure(1); subplot(2,1,1); plot(f); %画出原始信号的波形图 ylabel('幅值(V)'); xlabel('时间(s)'); title('原始信号'); y=fft(f,1000); %对原始信号进行离散傅里叶变换,参加DFT采样点的个数为1000 subplot(2,1,2); m=abs(y); f1=(0:length(y)/2-1)'*10000/length(y);%计算变换后不同点对应的幅值plot(f1,m(1:length(y)/2)); ylabel('幅值的模'); xlabel('时间(s)'); title('原始信号傅里叶变换'); %用周期图法估计功率谱密度 p=y.*conj(y)/1000; %计算功率谱密度 ff=10000*(0:499)/1000; %计算变换后不同点对应的频率值 figure(2); plot(ff,p(1:500)); ylabel('幅值'); xlabel('频率(Hz)'); title('功率谱密度(周期图法)'); 功率谱估计在现代信号处理中是一个很重要的课题,涉及的问题很多。在这里,结合matlab,我做一个粗略介绍。功率谱估计可以分为经典谱估计方法与现代谱估计方法。经典谱估计中最简单的就是周期图法,又分为直接法与间接法。直接法先取N点数据的傅里叶变换(即频谱),然后取频谱与其共轭的乘积,就得到功率谱的估计;间接法先计

功率谱估计

功率谱估计及其MATLAB仿真 詹红艳 (201121070630控制理论与控制工程) 摘要:从介绍功率谱的估计原理入手分析了经典谱估计和现代谱估计两类估计方法的原理、各自特点及在Matlab中的实现方法。 关键词:功率谱估计;周期图法;AR参数法;Matlab Power Spectrum Density Estimation and the simulation in Matlab Zhan Hongyan (201121070630Control theory and control engineering) Abstract:Mainly introduces the principles of classical PSD estimation and modern PSD estimation,discusses the characteristics of the methods of realization in Matlab.Moreover,It gives an example of each part in realization using Matlab functions. Keywords:PSDPstimation,Periodogram method,AR Parameter method,Matlab 1引言 现代信号分析中,对于常见的具有各态历经的平稳随机信号,不可能用清楚的数学关系式来描述,但可以利用给定的N个样本数据估计一个平稳随机信号的功率谱密度叫做功率谱估计(PSD)。它是数字信号处理的重要研究内容之一。功率谱估计可以分为经典功率谱估计(非参数估计)和现代功率谱估计(参数估计)。 功率谱估计在实际工程中有重要应用价值,如在语音信号识别、雷达杂波分析、波达方向估计、地震勘探信号处理、水声信号处理、系统辨识中非线性系统识别、物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周期研究等许多领域,发挥了重要作用。 Matlab是MathWorks公司于1982年推出的一套高性能的数值计算和可视化软件,人称矩 阵实验室,它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,成为目前极为流行的工程数学分析软件。也为数字信号处理进行理论学习、工程设计分析提供了相当便捷的途径。本文的仿真实验中,全部在Matlab6.5环境下调试通过;随机序列由频率不同的正弦信号加高斯白噪声组成。 2经典功率谱估计 经典功率谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗。经典功率谱估计方法分为:相关函数法(BT法)、周期图法以及两种改进的周期图估计法即平均周期图法和平滑平均周期图法,其中周期图法应用较多,具有代表性。 1.1相关函数法(BT法) 该方法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。当延迟与数据长度相比很小时,可以有良好的估计精度。 Matlab代码示例1: Fs=500;%采样频率 n=0:1/Fs:1;

随机振动(振动频谱)计算(Random Vibration)

Random Vibration 1. 定义 1.1 功率谱密度 当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)。 功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。 1.2 均方根 均方根(RMS)是指将N项的平方和除于N后,开平方的结果。均方根值也是有效值,如对于220交流电,示波器显示的有效值或均方根值为220V。 2. 加速度功率谱密度 2.1 单位 加速度单位:m/s^2或g 加速度功率谱密度单位:(m/s^2)^2/Hz或g^2/Hz Hz单位为:1/s, 所以加速度功率谱密度单位也可写为:m^2/s^3 2.2功率谱密度函数 功率谱密度函数曲线的纵坐标是(g2/Hz)。功率谱曲线下的面积就是随机加速度的总方差(g2): σ2= ∫Φ(f)df 其中:Φ(f)........功率谱密度函数 σ ............. 均方根加速度 3. 计算示例 随机振动100-2000HZ,功率谱密度为0.01g^2/Hz,则其加速度峰值计算如下: σ2=0.01*(2000-100)=19 σ=4.36g 峰值加速度不大于3倍均方根加速度:13.08g

4、SAE J 1455 随机振动要求 4.1功率谱图 4.1.1 Vertical axis 4.1.2 Transverse axis 4.1.3 Longitudinal axis

4.2 Vertical axis加速度计算 功率谱曲线下的面积:σ2=(40-5)0.016+0.5*(500-40)*0.016=4.24σ=2.06g 峰值加速度不大于3倍均方根加速度:6.18g 5. FGE随机振动要求 5.1功率谱图

利用经典谱估计法估计信号的功率谱(随机信号)

随机信号 利用经典谱估计法估计信号的功率谱

作业综述: 给出一段信号“asd.wav”,利用经典谱估计法的原理,通过不同的谱估计方法,求出信号的功率谱密度函数。采用MATLAB语言,利用MATLAB语言强大的数据处理和数据可视化能力,通过GUI的对话框模板,使操作更为简便!在一个GUI界面中,同时呈现出不同方法产生出的功率谱。 这里给出了几种不同的方法:BT法,周期图法,平均法以及Welch法。把几种不同方法所得到的功率谱都呈现在一个界面中,便于对几种不同方法得到的功率谱作对比。 一.题目要求 给出一段信号及采样率,利用经典谱估计法估计出信号的功率谱。 二.基本原理及方法 经典谱估计的方法,实质上依赖于传统的傅里叶变换法。它是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有BT法,周期图法,平均法以及Welch法。 1. BT法(Blackman-Tukey) ●理论基础: (1)随机序列的维纳-辛钦定理 由于随机序列{X(n)}的自相关函数Rx(m)=E[X(n)X(n+m)]定义在离散点m上,设取样间隔为,则可将随机序列的自相关函数用连续时间函数表示为 等式两边取傅里叶变换,则随机序列的功率谱密度 (2)谱估计 BT法是先估计自相关函数Rx(m)(|m|=0,1,2…,N-1),然后再经过离散傅里叶变换求的功率谱密度的估值。即 其中可有式得到。 2. 周期图法 ●理论基础: 周期图法是根据各态历经随机过程功率谱的定义来进行谱估计的。在前面我们已知,各态历经的连续随机过程的功率谱密度满足

式中 是连续随机过程第i 个样本的截取函数 的频谱。对应在随机序列中则有 由于随机序列中观测数据 仅在 的点上存在,则 的N 点离散傅里叶变换为: 因此有随机信号的观测数据 的功率谱估计值(称“周期图”)如下: 由于上式中的离散傅里叶变换可以用快速傅里叶变换计算,因此就可以估计出功率 谱。 3.平均法: 理论基础: 平均法可视为周期图法的改进。周期图经过平均后会使它的方差减少,达到一致估计的目的,有一个定理:如果 , , , 是不相关的随机变量,且都有个均值 及其方差 ,则可以证明它们的算术平均的均值为 ,方差为 。 由定理可见:具有 个独立同分布随机变量平均的方差,是单个随机变量方差的 , 当 时,方差 ,可以达到一致估计的目的。因此,将 个独立的估计量经过算术 平均后得到的估计量的方差也是原估计量方差的 。 平均图法即是将数据 , , 分段求周期图法后再平均。例如,给定N=1000个数据样本(平均法适用于数据量大的场合),则可以将它分成10个长度为100的小段,分别计算每一段的周期图 ()()2 1001100,100(1) 1 ,1,2,```,10100 l j l n l G w X e l ω-=-= =∑ 然后将这10个周期图加以平均得谱估计值: ()() 10 100100,1 110l l G w G w ==∑ 由于这10小段的周期图取决于同一个过程,因而其均值相同。若这10个小段的周期图是统计独立的,则这10个小段平均之后的方差却是单段方差的 。

matlab实现功率谱密度分析psd

matlab实现功率谱密度分析psd及详细解说 功率谱密度幅值的具体含义?? 求信号功率谱时候用下面的不同方法,功率谱密度的幅值大小相差很大! 我的问题是,计算具体信号时,到底应该以什么准则决定该选用什么方法啊? 功率谱密度的幅植的具体意义是什么??下面是一些不同方法计算同一信号的matlab 程序!欢迎大家给点建议! 直接法: 直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗 nfft=1024; [Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); 间接法: 间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024; cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数 CXk=fft(cxn,nfft); Pxx=abs(CXk);

(完整版)功率谱估计性能分析及Matlab仿真

功率谱估计性能分析及Matlab 仿真 1 引言 随机信号在时域上是无限长的,在测量样本上也是无穷多的,因此随机信号的能量是无限的,应该用功率信号来描述。然而,功率信号不满足傅里叶变换的狄里克雷绝对可积的条件,因此严格意义上随机信号的傅里叶变换是不存在的。因此,要实现随机信号的频域分析,不能简单从频谱的概念出发进行研究,而是功率谱[1]。 信号的功率谱密度描述随机信号的功率在频域随频率的分布。利用给定的 N 个样本数据估计一个平稳随机信号的功率谱密度叫做谱估计。谱估计方法分为两大类:经典谱估计和现代谱估计。经典功率谱估计如周期图法、自相关法等,其主要缺陷是描述功率谱波动的数字特征方差性能较差,频率分辨率低。方差性能差的原因是无法获得按功率谱密度定义中求均值和求极限的运算[2]。分辨率低的原因是在周期图法中,假定延迟窗以外的自相关函数全为0。这是不符合实际情况的,因而产生了较差的频率分辨率。而现代谱估计的目标都是旨在改善谱估计的分辨率,如自相关法和Burg 法等。 2 经典功率谱估计 经典功率谱估计是截取较长的数据链中的一段作为工作区,而工作区之外的数据假设为0,这样就相当将数据加一窗函数,根据截取的N 个样本数据估计出其功率谱[1]。 周期图法( Periodogram ) Schuster 首先提出周期图法。周期图法是根据各态历经的随机过程功率谱的定义进行的谱估计。 取平稳随机信号()x n 的有限个观察值(0),(1),...,(1)x x x n -,求出其傅里叶变换 1 ()()N j j n N n X e x n e ω ω---==∑ 然后进行谱估计

随机振动功率谱密度

701z 0102030 4050607080 0.002 0.0040.0060.0080.01 0.0120.014 0.016频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 10 20 30 4050 60 70 80 -65-60-55-50-45-40-35-30 -25-20 -15频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

经过matlab 频率加权法,利用功率谱密度函数计算得到加权加速度均方根值0.1378m/s2(70km/h,z 方向,第一次试验,前排) 0.1378 0102030 4050607080 0.5 1 1.5 2 2.5 -3 频率(Hz) 功率谱密度 频率加权后功率谱密度函数图(汉宁窗)

701y 0102030 4050607080 1 2 3 4 5 6 7 -3 频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 10 20 30 4050 60 70 80 -70-65-60-55-50-45-40-35 -30 -25-20频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

经过matlab 频率加权法,利用功率谱密度函数计算得到加权加速度均方根值0.0164m/s2(70km/h,y 方向,第一次试验,前排) 0102030 4050607080 0.5 1 1.5 2 2.5 3 -5 频率(Hz) 功率谱密度 频率加权后功率谱密度函数图(汉宁窗)

701x 0102030 4050607080 0.20.40.60.811.2 1.41.61.8 -3 频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 0102030 4050607080 -70 -65-60-55-50-45-40 -35-30 -25频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

功率谱图应用

1.基本方法 周期图法是直接将信号的采样数据x(n)进行Fourier变换求取功率谱密度估计的方法。假定有限长随机信号序列为x(n)。它的Fourier变换和功率谱密度估计存在下面的关系: 式中,N为随机信号序列x(n)的长度。在离散的频率点f=kΔf,有: 其中,FFT[x(n)]为对序列x(n)的Fourier变换,由于FFT[x(n)]的周期为N,求得的功率谱估计以N为周期,因此这种方法称为周期图法。下面用例子说明如何采用这种方法进行功率谱 用有限长样本序列的Fourier变换来表示随机序列的功率谱,只是一种估计或近似,不可避免存在误差。为了减少误差,使功率谱估计更加平滑,可采用分段平均周期图法(Bartlett法)、加窗平均周期图法(Welch 法)等方法加以改进。 2. 分段平均周期图法(Bartlett法) 将信号序列x(n),n=0,1,…,N-1,分成互不重叠的P个小段,每小段由m个采样值,则P*m=N。对每个小段信号序列进行功率谱估计,然后再取平均作为整个序列x(n)的功率谱估计。 平均周期图法还可以对信号x(n)进行重叠分段,如按2:1重叠分段,即前一段信号和后一段信号有一半是重叠的。对每一小段信号序列进行功率谱估计,然后再取平均值作为整个序列x(n)的功率谱估计。这两种方法都称为平均周期图法,一般后者比前者好。程序运行结果为图9-5,上图采用不重叠分段法的功率谱估计,下图为2:1重叠分段的功率谱估计,可见后者估计曲线较为平滑。与上例比较,平均周期图法功率谱估计具有明显效果(涨落曲线靠近0dB)。 3.加窗平均周期图法 加窗平均周期图法是对分段平均周期图法的改进。在信号序列x(n)分段后,用非矩形窗口对每一小段信号序列进行预处理,再采用前述分段平均周期图法进行整个信号序列x(n)的功率谱估计。由窗函数的基本知识(第7章)可知,采用合适的非矩形窗口对信号进行处理可减小“频谱泄露”,同时可增加频峰的宽度,从而提高频谱分辨率。 其中上图采用无重叠数据分段的加窗平均周期图法进行功率谱估计,而下图采用重叠数据分段的加窗平均周期图法进行功率谱估计,显然后者是更佳的,信号谱峰加宽,而噪声谱均在0dB附近,更为平坦(注意采用无重叠数据分段噪声的最大的下降分贝数大于5dB,而重叠数据分段周期图法噪声的最大下降分贝数小于5dB)。 4. Welch法估计及其MATLAB函数 Welch功率谱密度就是用改进的平均周期图法来求取随机信号的功率谱密度估计的。Welch 法采用信号重叠分段、加窗函数和FFT算法等计算一个信号序列的自功率谱估计(PSD如上例中的下半部分的求法)和两个信号序列的互功率谱估计(CSD)。 MATLAB信号处理工具箱函数提供了专门的函数PSD和CSD自动实现Welch法估计,而不需要自己编程。 (1)函数psd利用Welch法估计一个信号自功率谱密度,函数调用格式为: [Pxx[,f]]=psd(x[,Nfft,Fs,window,Noverlap,’dflag’]) 式中,x为信号序列;Nfft为采用的FFT长度。这一值决定了功率谱估计速度,当Nfft采用2的幂时,程序采用快速算法;Fs为采样频率;Window定义窗函数和x分段序列的长度。窗函数长度必须小于或等于Nfft,否则会给出错误信息;Noverlap为分段序列重叠的采样

功率谱估计仿真实验

功率谱估计仿真实验 选题条件:对于给定的一个信号()()()t t f t f t x ?ππ++=212sin 2)2sin(,其中1f =50Hz , 2f =100Hz ,()t ?为白噪声,采样频率Fs 为1000Hz ,对其进行功率谱估 计。 仿真目标:采用多种方法对该指定信号进行功率谱估计,计算其功率谱密度,比较 各种估计方法的优劣。 设计思路:本仿真实验采用经典谱估计中的周期图法对给定信号进行谱估计。但是 由于其自身的缺陷,使得频率分辨率较低。为了不断满足需要,找到恰 当的估计法,实验使依次使用了周期图法的改进型方法如分段周期图法、 窗函数法以及修正的周期图法进行功率谱估计,对四种方法得出的谱估 计波形进行比较分析,得出估计效果最好的基于周期图法的谱估计方法。 仿真指标:频率分辨率、估计量的方差、频谱光滑度 平台说明:本实验采用MATLAB7.0仿真软件,基于WINDOWS-XP 系统。Matlab 是 一个集数值分析、矩阵运算、信号处理和图形显示于一体的工程分析处理软件。它提供的部分算法函数为功率谱估计提供了一条可行的方便途径,如PSD 和CSD 可以自动实现Welch 法估计,而不需要自己编程。但是较为有限,大部分需要自己编写相应的M 文件来实现。 实现方法: 一、周期图法 周期图法是直接将信号的采样数据()n x 进行傅立叶变换求功率谱密度估计。假设有限长随机信号序列()n x ,将它的功率谱按定义写出如下: ()()??? ?????+=∑-=-∞→2121lim N N n n j N j xx e n x N E e P ωω 如果忽略上式中求统计平均的运算,观测数据为:()n x 10-≤≤N n ,便得到了周期图法的定义: ()()2 10 ^ 1n j N n j xx e n x N e P ωω--=∑=, 式中的绝对值符号内的部分可以用FFT 计算,这样就可得到周期图法的计算框图如下所示: () ω j xx e ^ 图1 周期图法计算功率谱框图 采用周期图法时,可以分取不同的信号长度256、512和1024,分别进行功率谱

功率谱估计浅谈汇总

功率谱估计浅谈 摘要:介绍了几种常用的经典功率谱估计与现代功率谱估计的方法原理,并利用Matlab对随机信号进行功率谱估计,对两种方法做出比较,分别给出其优缺点。关键词:功率谱;功率谱估计;经典功率谱估计;现代功率谱估计 前言 功率谱估计是从频率分析随机信号的一种方法,一般分成两大类:一类是经典谱估计;另一类是现代谱估计。由于经典谱估计中将数据工作区以外的未知数据假设为零,这相当于数据加窗,导致分辨率降低和谱估计不稳定。现代谱估计则不再简单地将观察区外的未知数据假设为零,而是先将信号的观测数据估计模型参数,按照求模型输出功率的方法估计信号功率谱,回避了数据观测区以外的数据假设问题。 周期图、自相关法及其改进方法(Welch)为经典(非参数)谱估计方法, 其以相关和傅里叶变换为基础,对于长数据记录较适用,但无法根本解决频率分辨率低和谱估计稳定性的问题,特别是在数据记录很短的情况下,这一问题尤其突出。以随机过程的参数模型为基础的现代参数法功率谱估计具有更高的频率分辨率和更好的适应性,可实现信号检测或信噪分离,对语音、声纳雷达、电磁波及地震波等信号处理具有重要意义,并广泛应用于通信、自动控制、地球物理等领域。在现代参数法功率谱估计方法中,比较有效且实用的是AR模型法,Burg谱估计法,现代谱估计避免了计算相关,对短数据具有更强的适应性,从而弥补了经典谱估计法的不足,但其也有一些自身的缺陷。 下面就给出这两类谱估计的简单原理介绍与方法实现。 经典谱估计法 经典法是基于传统的傅里叶变换。本文主要介绍一种方法:周期图法。 周期图法 由于对信号做功率谱估计,需要用计算机实现,如果是连续信号,则需要变换为离散信号。下面讨论离散随机信号序列的功率谱问题。 连续时间随机信号的功率谱密度与自相关函数是一对傅里叶变换对,即:

(完整word版)随机振动分析报告

Alex-dreamer制作PSD:(可以相互传阅学习,但是鄙视那些拿着别人成果随意买卖!)PSD随机振动应用领域很广,比如雷达天线,飞机,桥梁,天平,地面,等等行业。虽然现在对这方面公开资料很少,但是我相信以后会越来越多,发展的越来越成熟。学术的浪潮总体是向前的,不会因为几个大牛保密自己的成果就会阻止我们对PSD研究,因此结合我的经验和爱好,我研究了一下两种PSD加载分析。我标价的原则是含金量大小和花费我的时间以及我的经验值,如果你觉得值,就买;不值就不要下了。因为我始终认为:士为知己者死,女为悦己者容。算是互相尊重。如果你得到这份资料,那就祝你好运! Good luck!-Alex-dreamer(南理工) 一:目的:根据abaqus爱好者提出的PSD随机振动分析,提出功率谱如何定义及如何加载?如果功率谱是加速度的平方,如何加载?如果在输入点施加载荷功率谱如何定义?本文将给出详细的分析过程。 二:随机振动基本概念 1. 随机振动的输入量和输出量都是概率统计值,因此存在不确定性。输入量为PSD (功率谱密度)曲线,分为加速度、速度、位移或者力的PSD曲线;最常见的是加速度PSD,常用语BASE MOTION基础约束加载。 2. 随机振动的响应符合正态分布,PSD实际上是随机变量的能量分布,也就是在不同频率上的方差值,反映不同频率处的振动能量,PSD曲线所围成的面积是随机变量总响应的方差值; 3. RMS为随机变量的标准方差,将PSD曲线包络面积开平方即为RMS。 4. 随机振动输出的位移、应力、应变等值都是对应不同频率的方差值(即PSD值),量纲为x^2,当然也可以输出这些变量的均方根值(即RMS值);abaqus6.10以上版本可以直接在场变量里面输出设置。见下文。 5. 如果是单个激励源,定义为非相关性分析,如是多个激励源,则需要定义相关性参数。因此出现type=uncorrelated。 三:模型简介: 1)该模型很简单,是hypermesh中一个双孔模型。 2)网格划分在hypermesh中完成,保证了雅克比>0.7以及网格其它质量的要求。网格与几何具有较高的吻合度。 3)方案1(对应connect模型):在上方两个孔采用全约束方式,且加载的功率谱PSD密度是加速度功率谱,也就是说基于BASE基础约束,进行随机振动 PSD分析。结果分析底部孔处某节点的结果响应。 4)方案2(对应connect模型):在底部圆孔施加载荷force类型的功率谱PSD,与前者不同的是,这个不是基础施加PSD,而上某输入位置施加PSD。

经典功率谱估计

Classical Power Spectrum Estimation Abstract With the increasing need of spectrum, various computational methods and algorithms have been proposed in the literature. Keeping these views and facts of spectrum shaping capability by FRFT based windows we have proposed a closed form solution for Bartlett window in fractional domain. This may be useful for analysis of different upcoming generations of mobile communication in a better way which are based on OFDM technique. Moreover, it is useful for real-time processing of non-stationary signals. As per our best knowledge the closed form solution mentioned in this paper have not been reported in the literature till date.This paper focuses on classical period spectral estimation and moderu spectral estimation based on Burg algorithm. By comparing various algorithms in computational complexity and resolution, Burg algorithm was used to signal processing finally. Experimental and simulation results indicated that digital signal processing system would meet system requirements for measurement accuracy. Keywords periodogram spectral estimation ; Burg algorithm I. INTRODUCTION When we expand the frequency response of any digital filter by means of Fourier series, we get impulse response of the digital filter in the form of coefficients of the Fourier series. But the resultant filter is unrealizable and also its impulse response in infinite in duration. If we directly truncate this series to a finite number of points we have to face with well known Gibbs phenomenon, so we modify the Fourier coefficients by

功率谱

A.信号与谱的分类 注:功率谱计算的方法之一是由FFT后的谱线平方来得到。 由于时域信号有不同的分类, 变换后对应的频域也有不同的谱 信号可分为模拟(连续)信号和数字(离散)信号, 连续信号变换后称为谱密度, 离散信号变换 后称为谱. 连续信号又可分为绝对可积,平方可积(能量有限),均方可积(功率有限) 绝对可积信号有傅里叶谱(线性谱)和傅里叶谱密度(线性谱密度),如时域信号单位为电压V, 则前者单位为V,后者单位为V/Hz. 均方可积信号有功率谱PS(单位为V2)和功率谱密度PSD(单位为V2/ Hz.). 平方可积信号有能量谱密度ESD(单位为V2 s / Hz.). 注1平方量称为功率,平方量乘秒称为能量,谱分量除以频率称为谱密度. 注2功率谱密度另一定义(离散信号的功率谱密度)见下述, 连续信号的功率谱密度. 为连续(光滑)曲线, 离散信号的功率谱密度为不连续的阶梯形.. 注3随机信号求功率谱密度时为减少方差,可采用平均,重叠和加窗处理(Welch法). 数字信号又可分为绝对可和,平方可和,均方可和.

B.各种谱计算 1. 线性谱Linear Spectrum:对时域离散信号作DFT(离散傅里叶变换)得到, 采用方法为FFT(快速傅里叶变换)法.X(f)=FFT(x(t)) 2. 自功率谱APS=Auto Power Spectrum:离散信号的线性谱乘其共轭线性谱APS(f)=X(f)*conj(X(f)), conj=conjugate共轭(实部不变,虚部变符号). 3. 互功率谱CPS=Cross Power Spectrum::x(t)的线性谱乘y(t)的共轭线性谱互功率谱是复数,可表示为幅值和相位或实部和虚部等. CPS(f)=X(f) *conj(Y(f)) Y(f)=FFT(y(t)) 4. (自)功率谱密度PSD(=Power Spectrum Density):

相关文档
最新文档