预应力钢筋混凝土轨枕的冲击试验

预应力钢筋混凝土轨枕的冲击试验
预应力钢筋混凝土轨枕的冲击试验

预应力钢筋混凝土轨枕的冲击试验

摘要:伍伦贡大学采用了大功率重锤冲击试验机以评估预应力钢筋混凝土轨枕在冲击荷载下的脉冲应变影响。本文不仅详细介绍了大功率重锤冲击试验机,试验的仪表化和标准化,还包括故障模型分析、裂纹扩展、弯曲刚度和能量吸收机制。测试用的预应力轨枕由澳大利亚制造,现场的轨道基床已由实验室模型获得的频率响应函数进行了模拟和校准。试验主要利用大功率重锤冲击试验机研究了预应力轨枕的能量转移机制。

关键字:预应力钢筋混凝土轨枕,冲击试验,有砟铁轨

Abstract:

The wollongong university high power hammer impact test enginery prestressed concrete sleeper to assess the impact of the load in pulse strain effects. This paper not only introduces detailed high-power hammer impact test enginery, test instrument, and standardization, including failure model analysis, crack propagation, bending stiffness and energy absorption mechanism. Test of prestressed sleeper by Australia manufacturing, the scene of rail and the bed had been obtained by laboratory model frequency response function and calibration of the simulation. Test the main use high power hammer impact test enginery studied energy transfer mechanism of prestressed sleeper.

Key word: prestressed concrete sleeper, impact test track a frantic jumble

1.引言

本文通过对轨道环境的模拟,使用冲击试验方法研究了预应力钢筋混凝土轨枕的能量转移机制,并重点用试验验证了轨枕的极限抗冲击性和破坏模型。试验所用的预应力钢筋混凝土轨枕基于澳大利亚标准AS1085.14[2]设计制造,轨道的支撑环境由弹性材料模拟,该材料已被现场和实验室震动测定所验证[3]。本次试验采用的是大功率冲击试验机,以评估柔性支撑环境下预应力钢筋混凝土轨枕的冲击响应,测试结果可用于验证设计的数值模型,和预测其他不同轨道环境下的应力转移机制。

2.试验综述

2.1试样

试验所用的钢筋混凝土轨枕由澳大利亚的一家生产商供应,这也是“澳大利

新Ⅱ型预应力混凝土枕技术条件(参考)

QB 中铁丰桥桥梁有限公司临河制枕场 QB/FQ丰临枕JS—08—2007 新Ⅱ型预应力混凝土枕 技术条件 2007-9-30 批准 2007-10-1实施中铁丰桥桥梁有限公司临河制枕场发布

前言 内容:本技术条件规定了新II型预应力混凝土枕(以下简称轨枕)的技术要求、试验方法、检验规则、标记、码放和运输。 本技术条件由工程技术部提出并编制。 本技术条件由工程技术部归口管理。 起草人: 审核人: 批准人: 日期:年月日

中铁丰桥桥梁有限公司临河制枕场 新Ⅱ型预应力混凝土枕技术条件 QB/FQ丰临枕JS—08—2007 1 主题内容及适用范围 本技术条件规定了新II型预应力混凝土枕(以下简称轨枕)的技术要求、试验方法、检验规则、标记、堆放和运输。 2 规范性引用标准 下列标准所包含的条文,通过在本技术条件中引用而构成为本技术条件的条文。本技术条件出版时,所示标准版本均为有效。所有标准都会被修订,使用本技术条件的各方应探讨使用下列标准最新版本的可能性。 GBl75—1999 硅酸盐水泥、普通硅酸盐水泥 GB/T343—1994 一般用途低碳钢丝 GB/T701—1997 低碳钢热轧圆盘条 GB/T5223—2002 预应力混凝土用钢丝 GB50204—2002 混凝土结构工程施工及验收规范 TBl0210—2001 铁路混凝土与砌体工程施工及验收规范 GB/T50081—2002 普通混凝土力学性能试验方法 TB2181—1990 混凝土拌合物稠度试验方法跳桌增实法 TBl0425—1994 铁路混凝土强度检验评定标准 TBl878—2002 预应力混凝土枕疲劳试验方法

混凝土轨枕

我国混凝土轨枕使用分析 1. 前言 自1956年我国研制出预应力混凝土枕以来截止到2002年底,铺设混凝土枕总数已达1.625亿根,占各类轨枕总数的76%,其中Ⅲ型枕837万根,占混凝土枕总数的5.2%,Ⅱ型混凝土枕9618万根,占混凝土枕总数的59.2%,Ⅰ型和69型枕仍有4360万根,占混凝 土枕总数的32.2%,桥岔枕约有452.3万根。但由于历史的原因,各型号轨枕的承载能力与在使用中铺设的线路条件并不完全匹配,产品质量不尽人意,致使一些轨枕提前出现伤损,有些伤损甚至比较严重,增加了养护维修工作量,对行车安全不利。2002年秋检资料 统计:Ⅲ型枕伤损率为0.1%,老Ⅱ型枕伤损率为0.7%,Ⅰ型和69型枕伤损率为4.9%。 2.Ⅰ型混凝土轨枕 早在1953年铁道部有关部门就开始进行了混凝土轨枕代替木枕的研究工作,于1954年开始进行轨枕试制和试铺,铁道部于1957年起开始建立预应力混凝土轨枕制造工厂。1961年铁道部有关单位总结现场使用经验,编制了“弦Ⅱ-61A”型预应力钢弦混凝土轨枕的设计图,并开始了批量生产。 总的说来,到1984年Ⅱ型混凝土轨枕鉴定前主要生产和使用的混凝土轨枕有两大类: (1)69型混凝土枕 69型是按建设型机车,轴重21t、85km/h、1840根/km进行设计的。该枕1995年约占铺设总数的50.0%,以后基本不生产。 (2) I型混凝土枕 1979年在69型枕配筋不变的情况下,将轨枕外型尺寸统到与Ⅱ型枕一样,强度与69型等强,最后统一为I型混凝土枕(弦79型和筋79型)。 与69型枕比较,I型枕中间断面高度由155mm增至165mm,提高了中间断面正弯距的承载能力,端头由原斜坡改为平坡;在螺栓孔围增设了螺旋筋,在轨枕端头增设了箍筋。 结构设计计算结果表明:轨枕截面疲劳承载能力:轨下断面11.1kN·m,中间断面负弯矩8.03kN·m;而按照给定的线路条件,轨枕截面承受的荷载弯矩为:轨下断面11.8kN·m,中间断面负弯矩10.1kN·m。显然,轨枕承载能力不足,特别是中间断面负弯矩承载能力相差更远。 轨枕截面静载抗裂弯矩为:轨下断面15.7kN·m,中间断面负弯矩11.3kN·m。 由于69型枕与I型枕设计承载能力等强,一般也统称为I型混凝土枕。 根据各方面的调查发现I型混凝土枕主要问题为: ①轨下截面强度不足,调查发现:接头轨枕轨下截面正弯矩裂纹占调查总数的84%,非接头轨枕轨下截面正弯矩裂纹占调查总数的42%。 ②中间截面设计承载力偏低。由于截面强度不足,要求中间道碴掏空,这种要求掏

预应力混凝土轨枕生产工艺分析

预应力混凝土轨枕生产工艺分析 发表时间:2019-01-02T16:17:29.530Z 来源:《防护工程》2018年第29期作者:冯园园 [导读] 轨枕生产工艺随着现代化科学技术的不断发展也日渐成熟,但实际生产工艺领域仍存在一定的不足 中铁长安重工有限公司陕西省西安市 710032 摘要:轨枕生产工艺随着现代化科学技术的不断发展也日渐成熟,但实际生产工艺领域仍存在一定的不足,需要继续研究,还应积极学习、借鉴外国的优秀完善经验以此提升生产效率。不断利用电子技术提升生产技艺与相关工作人员的综合素质,做到利益最大化,有效的降低生产成本消耗,迅速走向国际化。 关键词:预应力;混凝土;轨枕;生产工艺 1 原料准备 1.1 砂、石、粉煤灰、水泥上料 1)根据砂、石储料仓储情况安排上料,砂、石上料交替时应有一段时间间隔,以保证砂、石不互相混杂。 2)防止木块、砖头、废钢铁等杂物混入料仓,发现砂、石料质量有问题,应立即停止上料并通知试验人员。 3)水泥,粉煤灰仓上料时,注意观测水泥,粉煤灰仓料位。 1.2 减水剂配制 减水剂使用过程中应充分搅拌,保证溶液均匀。每班开工前对减水剂浓度进行检测,填写“减水剂浓度测试记录”。 1.3 混凝土制备 1)混凝土搅拌司机须经专门培训并持证上岗。 2)根据试验室下达的“混凝土施工配合比通知单”,每盘拌制混凝土量控制在1.15~1.40方,调整好砂、石、水泥、水、减水剂的配料计量值,确认无误后再开始配料,配料过程及控制参数:称量砂→称量石→上砂石→称量上水泥→称量上粉煤灰→称量上水→称量上减水剂→搅拌120~150s→出料。 配料计量允许误差: a)砂、石±2% b)水泥、水、减水剂、粉煤灰±1% 3)水泥、粉煤灰、水、减水剂、砂、石的电子秤,由试验室负责组织每半月进行一次自校,按照相关规定请计量监督局进行校定。 4)启动搅拌机达到正常运转后,才能向搅拌机内投料。 5)混凝土净搅时间控制在120~150s,混凝土稠度采用跳桌增实法测定,每班测定次数不少于5次,在开工前5盘测定3次,稠度稳定后,每班的中期和后期各抽查1次,并作记录。混凝土稠度增实因数1.305~1.400,填写“混凝土稠度测试记录”。 6)搅拌过程中如发生停电事故,应立即开卸料门,把搅拌机内混凝土清理出来,以免再起动时起动负荷过大,损坏电机。 7)人员进入搅拌机内清理混凝土渣或检修时,应先将搅拌机电源切断,悬挂警示牌,并由专人看管,保证安全。 8)发现配料计量不准,应立即校检计量系统。 9)每班收工后要及时清洗搅拌机、贮料斗等设备。 1.4 混凝土输送 1)保证及时向生产线供应混凝土,生产线应将混凝土质量情况及时反馈给搅拌司机。 2)做好收工时最后一盘混凝土料的估量,并通知搅拌司机。 3)及时清理各贮料斗。 2 预应力筋下料、穿丝、镦头 下料应采用钢筋定长切断机。目前的切断机已能达到电脑控制、变频送丝、液压切断、定长精度高等高标准要求,更好的保证了下料精度的要求。穿丝是将钢丝穿入在挡板、挂板中。钢丝墩头主要使用墩头机,随后在进行相应的分板、入模作业。目前,多数企业已经取消了人工分板,采用机械分板,降低了工人的劳动强度,提高了工作效率。 3 预应力钢筋进行张拉 利用自动化张拉机实施此步骤环节,张拉机根据设定的张拉程序能自动控制并自动记录,采用荷载传感器控制张拉力值。通过人工作业的方式进行橡胶隔板、螺旋筋、箍筋等环节的安装。混凝土的灌注,须做到多次布料,应使模型各部位下料均匀适量,不出“驼峰”,不露钢丝,模型两端处不得落入混凝土,控制好每套模混凝土用料量。采用二次振动成型工艺,在能确保混凝土振动密实的振动台上进行,一振要控制好混凝土的断面高度;二振采用加压盖板加压振捣,要保证加压盖板重量,确保混凝土上表面的受力要求,以便更好的排出气泡,注意轨底的压花质量要求。人工拆除橡胶隔板并清边,清除模型外多余的混凝土。轨枕养护应采用混凝土温度控制系统进行蒸汽养护,自动系统监测养护全过程并记录、养护过程温度监测能覆盖同池轨枕。混凝土轨枕放张采用缓慢放张根据设定的放张程序能自动控制并自动记录,采用荷载传感器控制放张力值。脱膜是指轨枕成品脱离模型,采用主要设备机械是翻转脱模机。需要对传送辊道轨枕成品中成品进行逐根检验,对轨枕间的钢丝用无齿锯切断。由码垛机将成品装车后,卸下轨枕分丝板,吊装运送至指定的成品库区。并且要依据相关规定对成品进行抽样检查,主要检验内容包括:尺寸检查、静载试验等。轨枕脱模后,应进行清模、喷涂隔离剂。完成后,进入下一项生产工艺。 4 蒸汽养护 1)蒸汽养护操作人员须经岗位培训,考试合格后方可上岗。 2)轨枕在养护窑内进行蒸汽养护。养护制度分静停、升温、恒温、降温四个阶段。在温度5℃~35℃的环境中静停时间≥3小时,升温速度不大于15℃/小时,恒温温度48±2℃,混凝土枕芯温度不大于60℃,恒温时间控制在13小时左右,何时结束恒温以试验室检验试块抗压

轨枕技术标准

铁路枕木 一、枕木的分类 材料属性分类:木制枕木;钢筋混凝土枕木;复合材料枕木。 用途分类:铁路枕木;专用轨道枕木;架设枕木。 铁路枕木分类: 普通枕木,用于铁路正线线路的普通枕木; 道岔枕木,用于铁路交汇处道岔区域; 桥梁枕木,用于铁路钢结构桥梁设备的桥面线路铺设; 铁路防腐木枕型号分类(按中国标准): 二、常用枕木的规格 目前,我国的标准铁路轨距为1435mm。 标准的枕木规格如下: 1、普通枕木:宽度220mm;厚度160mm;长度2500mm; 2、道岔枕木(普通):宽度220mm;厚度160mm;长度2600~4850mm,以150mm进位,共计16个长度规格; 3、道岔枕木(标准):宽度240mm;厚度160mm;长度2600~4800mm,以200mm进位,共计12个长度规格; 4、桥梁枕木:宽度220mm;厚度240、260、280、300mm;长度3000mm;枕木尺寸 普通木枕:标准长度为2500mm,其断面形状分为I、Ⅱ两类,用于不同等级的线路上。 I类:宽度220mm,厚度160mm; Ⅱ类:宽度200mm,厚度145mm;

道岔木枕:断面尺寸为两种标准; 75型标准为:宽度220mm,厚度160mm;长度从2600mm至4850mm,每种长度相差150mm,共16个长度规格。 92型标准为:宽度240mm,厚度160mm;长度从2600mm至4800mm,每种长度相差200mm,共12个长度规格。 桥梁木枕:其截面尺寸因主梁(或纵梁)中心间距的大小而异。 单线桥梁:长度3000mm,宽度200、220,高度220、240、260、280、300mm; 三、木制轨枕 1、技术条件 树种:落叶松、马尾松、红松等。 2、枕木的尺寸见表1 表1 类别类型长度(㎝)厚度(cm)宽度(cm)备注 普枕Ⅰ2501622 普枕Ⅱ25020 岔枕15进位260-4851622 岔枕20进位260-4801624 桥枕3002024 3、尺寸公差应符合表2的规定 表2(单位:cm) 类别公差 断面形状及尺寸种类限度 普通枕木长度±

GB T 12679-90汽车耐久性行驶试验方法

中华人民共和国国家标准 汽车耐久性行驶试验方法GB/T 12679—90 代替GB 1334—77 Motor vehicles—Durability running—Test method 1 主题内容与适用范围 本标准规定了汽车耐久性行驶试验方法。 本标准适用于大批量生产的汽车(矿用自卸汽车参照执行)。 2 引用标准 GB/T 12534汽车道路试验方法通则 GB/T 12545汽车燃料消耗量试验方法 GB/T 12548汽车速度表、里程表检验校正方法 GB/T 12678汽车可靠性行驶试验方法 JB 3743汽车发动机性能试验方法 3 术语 3.1 汽车耐久性 指汽车在规定的使用和维修条件下,达到某种技术或经济指标极限时,完 成功能的能力。 3.2 汽车耐久度 指汽车在规定的使用和维修条件下,能够达到预定的初次大修里程而又不 发生耐久性损坏的概率。 3.3 汽车耐久性损坏 指汽车构件的疲劳损坏已变得异常频繁;磨损超过限值;材料锈蚀老化;

汽车主要技术性能下降,超过规定限值;维修费用不断增长,已达到继续使用时经济上不合理或安全不能保证的程度。其结果是更换主要总成或大修汽车。 4 试验条件 按GB/T 12678的规定。 5 试验车辆 5.1 用于汽车耐久性行驶试验的汽车数量按表2确定。 5.2 本试验可用汽车使用试验、常规可靠性试验的同一组汽车。 5.3 整车、各总成及零部件的制造装配调整质量应符合该车技术条件的规定。 6 试验项目及方法 6.1 试验程序 试验程序按表1进行。

6.2 验收试验汽车 6.2.1 应按GB/T 12534中第4章之规定,调整内容须纳入故障统计。 6.3 磨合行驶 6.3.1 汽车磨合行驶里程及规范应按该车使用说明书的规定。出现故障须 纳入故障统计。 6.3.2 在汽车磨合行驶最后1000 km时测量机油消耗量。 6.4 发动机性能初试 按JB 3743中8.4之规定仅测量总功率。 注:在汽车耐久性行驶试验中,如果发动机大修,则在发动机大修前、后,均要按上述的规定各测量一次总功率。

混凝土枕分类及尺寸

混凝土枕分类及尺寸 (一)混凝土枕分类 混凝土枕,根据其使用部位的不同,可分一般混凝土枕、混凝土岔枕及混凝土桥枕3种。 一般混凝土枕(以下简称混凝土枕),技术比较成熟,已列为部标准,目前已经大批铺设使用。混凝土岔枕,经过多年来的铺设试验,岔枕本身强度、弹性均有所提高,扣件也有明显改进,可以大面积推广使用。 混凝土桥枕分有碴桥面带护轮轨的混凝土桥枕和钢桥用的混凝土桥枕两种。有碴桥面带护轮轨的混凝土桥枕已铺设使用,钢桥用混凝土桥枕现正在铺设试验中。 (二)混凝土枕特性 我国铁路已广泛使用预应力混凝土枕以代替木枕,与木枕相比,其优越性表现在以下几个 方面: 1.材源丰富; 2.适宜于工厂化生产,规格一致,保证线路质量均匀; 3.强度高,耐腐蚀,使用寿命长,一般为木枕的3~4倍; 4.道床阻力大,线路的稳定性好,适合铁路的高速大运量要求,且节约木材。 其缺点如下: 1.弹性差,在同样荷载作用下所受的冲击力大(比木枕约大25%); 2.对道床铺设要求较高,除了增大道床厚度外,还须铺设缓冲垫层; 3.重量大,Ⅰ、Ⅱ型混凝土枕一般在220~250 kg,Ⅲ型混凝土枕一般为350 kg左右,人工更换混凝土枕不便。 钢筋混凝土轨枕可分普通混凝土轨枕和预应力混凝土轨枕,两者本质区别在于后者在制造时应用了预应力技术。普通混凝土枕强度较低,抗裂性差,容易开裂失效,线路上极少铺设。预应力混凝土轨枕,制作时给混凝土施加强大的预压应力,弥补了普通混凝土轨枕的缺点,在我国已得到广泛使用。 在我国铁路上,曾先后试铺过多种类型的预应力混凝土轨枕,如“弦Ⅱ—61A”、“弦61”、“筋63”、“弦65一B”、“筋69”、“弦69”、“筋81”、“丝81”、“弦79”等型号。其符号“弦”、“丝”表示采用的钢筋为高强度钢丝,“筋”表示的钢筋是粗钢筋;“61”、“69”、“79”、“81”等表示设计年份。79型以前的混凝土轨枕统称为旧轨枕。 我国现用混凝土轨枕标准分为三级,并与不同类型轨道配套使用,其适用范围如表6—6所示。

预应力混凝土轨枕生产工艺与质量构成

预应力混凝土轨枕生产工艺与质量构成 发表时间:2018-09-10T17:25:52.780Z 来源:《基层建设》2018年第20期作者:唐平 [导读] 摘要:首先分析预应力混凝土轨枕生产工艺的特点,介绍预应力混凝土轨枕生产工艺流程及相关问题,最后提出了预应力混凝土轨枕的质量构成,供有关人员参考。 佛山市南海商邦混凝土构件有限公司 528237 摘要:首先分析预应力混凝土轨枕生产工艺的特点,介绍预应力混凝土轨枕生产工艺流程及相关问题,最后提出了预应力混凝土轨枕的质量构成,供有关人员参考。 关键词:预应力混凝土;轨枕;生产工艺;质量构成 引言 我国铁路最早使用的是木枕,但是由于铁路建设的特殊性,木枕需要用较为优质的木材,我国森林面积正在逐年减少,人均木材占有量严重匾乏,所以将木枕换为混凝土轨枕是铁路建设发展的必然趋势。现阶段,我国铁路建设事业正处于快速发展的新时期,加强对预应力混凝土轨枕生产工艺的研究具有重要的意义。 一、预应力混凝土轨枕生产工艺特点 我国传统的预应力混凝土轨枕生产工艺主要以流水机组法为主,也就是利用过桥式吊车,将生产模型移动到生产线中各个台位,在台位上设置专用的设备,完成相关的生产工艺,整个生产工艺就是将原材料生产为混凝土制品的过程。预应力混凝土轨枕具有最少10道的生产工序,如果全部采用过桥式吊车进行模型移动,会对生产效率以及安全造成影响。因此,过桥式吊车逐渐转变为辊道传送,而桥式吊车的作用主要是用于设备检修过程以及模型养护过程中,这种优化后的预应力混凝土轨枕被称为预应力混凝土流水机组-传送法。 采用流水机组-传送法生产工艺,主要是根据轨枕生产工艺规定,组合钢模型按照生产过程顺序一次通过各个台位,完成混凝土轨枕的成品生产。可以说,预应力混凝土轨枕制品的生产周期本质上也是钢模型的实际周转期。 现阶段,我国预应力混凝土轨枕流水机组-传送法具有以下几个方面的特点:(1)目前我国预应力混凝土轨枕生产工艺主要采用2X4联或2X5 联组合钢模型,每次成型的轨枕数量为8~10根,这样不仅减少了对钢材料的消耗,还提升了轨枕生产的效率。(2)为了保证2X4联或2X5联组合钢模型能够适应,一般使用1X5联组合式振动台,也就是在每一对并列轨枕上布置对应的单元台面。在台面与台面之间设置升降辊道,为轨枕模型流水线传送提供便利。(3)流水组合式-传送法工艺生产混凝土轨枕,其成型主要利用二次振动工艺。头一次振动采用普通振动法,保证振动台上模型中的混凝土振动密实,并且利用人工将模型内的轨枕生产混凝土用量适当的调整,保证其混凝土用量相一致;第二次振动利用加压振动法,加压的压力需要在5kpa以上。利用加压振动的作用在子能够使用低流动性以及干硬性的混凝土拌合物,既提高了混凝土的质量,满足轨枕成型具体的要求,在很大程度上还节约了水泥的用量,同时还能够根据具体的需要,在轨枕底部振压出设计的花纹。( 4)混凝土轨枕生产流水线主要采用辊道传送,逐渐形成了一个闭环工艺流程,保证棍凝土轨枕生产的节奏性与连续性,有效的减少了生产工序中不必要的运输,提升生产效益。(5)利用我国现行的预应力混凝土轨枕生产工艺,只需要将生产模型适当的调整,就能够生产岔枕、宽枕以及横腹杆式接触网支柱等混凝土制品。 二、预应力混凝土轨枕生产工艺流程 分析预应力混凝土轨枕流水机组-传送法的基本工艺流程,主要表现为这几个步骤: (1)预应力拉筋选择高强螺旋肋钢丝,将钢丝穿入挡板和挂板,采用镦头机实施钢丝墩头,接下来进行分板和入模操作。 (2)张拉预应力钢筋,自动张拉机是这一环节需要运用到的设备。 (3)安装螺旋筋、橡胶隔板和箍筋,主要采用的是人工安装的方式。 (4)灌注混凝土,浇灌机是混凝土灌注需要采用的设备。 (5)一次振动,在第一振台中用普通振动方式实施模型中混凝土的振动操作。 (6)二次振动,采取加压振动的方式需要利用悬臂吊加压盖板,二次振动在第二振动台上实施。 (7)利用人工操作拆除橡胶隔板,对模型周边多余混凝土进行清除,我们也将这一工艺流程称之为清边。 (8)在桥式吊车辅助下移动模型至养护池的指定位置,对模型中的混凝土利用蒸汽温度实施自动养护。 (9)采用放张机对预应张力进行释放,切断模型两端的多余钢丝。 (10)将轨枕成品从模型中脱出,也称为脱模,翻转脱模机是这一过程需要使用到的重要设备。 (11)传送辊道轨枕成品的过程中需要逐根检查成品外观,在无齿摩擦锯的帮助下切断轨枕中间的钢丝。 (12)取下轨枕下端的挡板,将成品利用码垛机进行装车,并将成品运输至露天厂库当中进行堆放。此外,对于轨枕的成品还应当根据相关规定实施必要的抽样检查,主要包括静载抗裂检验和尺寸检验等。 (13)清模操作,将脱模剂喷涂到模型上,这便进入到了下个轨枕的生产周期。 三、预应力混凝土轨枕生产工艺的若干问题 3.1混凝土自动化搅拌系统当中砂、石含水率的快速测定相关问题 从上料、配料、搅拌、计量和出料等环节分析,混凝土轨枕行业搅拌系统的自动化和机械化已经成为必然的发展趋势,然而在测定骨料含水率方面始终是一个难以解决的问题,多种砂石自动测水仪使用过,但效果差强人意,甚至存在容易损坏和精度不够的问题,目前主要依靠的还是搅拌司机的经验来对砂石含水率进行输入,这对于混凝土配合比的精度无疑是有影响的,这就需要研发更为方便、精度更高的砂石自动测水仪。 3.2混凝土轨枕车间噪音问题 噪声严重是轨枕车间存在的一个突出问题,其中振动台噪音达到近110db,无齿摩擦锯噪音达到近100db,这一高频噪声无疑会影响到工人的健康,此外在辊道上移动和桥吊走行等也存在不同程度的噪声。曾经采用的方法有在车间内设立隔声间,将液压剪替代无齿摩擦锯以及给工人佩戴耳罩,但由于生产操作不便,这些方法的作用可想而知。近几年在降噪措施方面为了便于维修和减少空气噪声,利用板式台面替代原有的振动台框式台面,隔离地面基础橡胶平板和振动台基础,以此达到减少振动传递的作用,同时混凝土干硬度

枕木选择、道床参数

查表《井巷工程》表3-10选择30kg/m钢轨,(二)选择道床参数 根据巷道通过的运输设备,已选用30kg/m钢轨其道床参数h c与h b 分别 为410mm和220mm,道砟面至轨道面高度为h a =h c -h b =410-220=190mm,采用钢筋 混凝土轨枕。(查表3-5与3-10与3-11) 道床参数的选择是指钢轨型号,轨枕规格和道咋高度三者的确定。下面可根据图表说明道床参数。 常用道床参数 表1-2 钢轨型号是以每米长度的重量来表示的。煤矿常用的型号是15,22, 30和38kg/m。钢轨型号是根据巷道类型,运输方式及设备,矿车容积与轨枕来选用。

巷道轨枕选择 表1-3 对轨道敷设的要求是:钢轨的型号应与行驶车辆的类型相适应,轨道敷设应平直,且具有一定的强度和弹性;在弯道处,轨道连接应光滑,接运输巷道内同一线路必须采用同一型号的钢轨;道岔的型号不得低于线路的钢轨型号;在倾角大于15°的巷道中,轨道的辅设应采取防滑措施。轨枕的类型和规格应与选用的钢轨型号相适应。矿井多使用钢筋混凝土轨枕或木轨枕,个别地点也有用轨枕的。混凝土轨枕主要用于井底车场,运输大巷,上(下)山和中巷;木轨枕主要用于道岔等处,钢轨枕主要用于固定道床。由于预应力钢筋混凝土轨枕具有较好的抗裂性和耐久性,构建刚度大,节约木料,造价低等优点,所以应大力推广使用。常用的轨枕规格见表1-3。 常用轨枕规格 表1-3 单位:mm

道咋道床有钢轨及连接件,轨枕,道咋等组成。道咋道床的优点是施工简单,容易更换,工程造价较低,有一定的弹性和良好的排水性,并有利于轨道调平。但在生产过程中,煤,岩粉洒落在道床上之后,使其弹性降低,排水受到阻碍,可能影响机车正常运行。只要加强维修,这种道床完全能够满足机车运行要求。 道砟应选用坚硬和不易风化的碎石或卵石,粒度以20~30MM为宜,并不得参有碎末等杂物,使其具有适当空隙度,以利排水和有良好的弹性。道砟的高度以应与选用的钢轨型号相适应。在主要运输巷道,其厚度不小于100mm,并至少不轨枕1/2~2/3的高度埋入道砟内,二者关系如图3-8所示。 道床宽度可按轨枕长队再加200mm考虑。相邻两轨枕中心线距一般为0.7~0.8m,在钢轨接头,道岔和弯道处应适当减小。道床参数见表3-5. 为了减少维护工作量和提高列车运行速度,大型矿井,特别是采用底卸式矿车运输时,井底车场和主要运输大巷应积极推广整体道床。固定道床一般是用混泥土整体浇注,将枕轨和道床固定在一起,这种道床具有维修工程量小,运营费用低,车辆运行平稳,运输速度高,服务年限长等优点。因此,这种道床主要用于大型矿井的斜井井筒,井底车场和个别运输大巷的轨道铺设中。但这种道床初期投资高,施工复杂,道床的弹性也较差。 无轨运输巷道底板的岩石强度要求f>4。否则需铺混泥土,其强度等级不低于C20. (资料素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

预应力钢筋混凝土轨枕裂缝分析及防控_张永忠

20114预应力钢筋混凝土轨枕裂缝分析及防控 张永忠 (太原铁路局大同工务段,山西大同037005) [摘要]混凝土轨枕裂缝的生成在此仅从物理、化学、力学的角度进行分析;混凝土轨枕裂缝的预防和控制裂缝从力学角度、加强生产管理,严格操作工艺、严格控制混凝土原材料三方面着手。 [关键词]预应力钢筋混凝土轨枕;裂缝;分析;防控 预应力钢筋混凝土轨枕因其使用寿命长、稳定性能好,可提高轨道的强度和稳定性,能保证均匀的轨道几何尺寸和轨道弹性,平顺性好,可以满足铁路高速、重载的要求,并减少了线路的养护工作量。现在在我国铁路线路上已经得到广泛应用。轨枕作为一种预应力混凝土结构,裂缝是难避免的,因此研究预应力混凝土轨枕裂缝的成因及其危害性,研究如何预防和控制裂缝,延长轨枕的使用寿命,对提高铁路轨道的稳定性,将是十分重要的。 1混凝土轨枕裂缝的类型 1)轨下垂直横向裂缝。这种裂缝出现在轨枕两侧下部,一般情况下,裂缝较小,宽度在0.1mm以下,长度未超过中和轴。1981年对Ⅰ型轨枕调查表明,钢轨接头处的轨枕,其轨下垂直裂缝比例为60%;而钢轨大腰处的轨下垂直裂缝比例为29%。 2)枕中垂直裂缝。1981年调查的Ⅰ型轨枕,其中筋69型轨枕枕中正负弯矩裂缝分别为34%和11%。裂缝的宽度及长度均比轨下裂缝严重,有的枕中正负弯矩裂缝连在一起形成环向裂缝,个别轨枕有多道环向裂缝。1991年调查的Ⅱ型轨枕,枕中垂直裂缝约占调查裂缝轨枕的23.7%,其中钢轨接头处的轨枕,枕中垂直裂缝比率更高,占63%以上。 3)轨枕顶面螺栓孔纵向裂缝。这种裂缝通常从螺栓孔处为起点逐渐向轨枕中部和端部延伸,有的一直裂到端部,造成劈裂,严重者裂缝宽达3~5mm。1975年及1981年调查的Ⅰ型轨枕,沿螺栓孔纵裂的轨枕数量占调查轨枕总数的比例最大为48%。1991年调查的Ⅱ型轨枕伤损率为9.6%,顶面沿螺栓孔纵裂占全部伤损轨枕的33.8%。总之,轨枕顶面沿螺栓孔纵裂是预应力混凝土轨枕最为普遍存在的裂缝。尤其是Ⅱ型轨枕大量铺设后,过早的出现各种裂缝伤损,以致失效的情况也有发生。 4)轨枕顶面螺栓孔处横裂。Ⅰ型轨枕和Ⅱ型轨枕都有这种裂缝出现。从调查结果看,大多数横裂方向与列车运行方向一致,即出现于复线铁路的单向运行区段。 5)轨枕端部纵向裂缝。这种纵向裂缝有的出现在轨枕端部顶面和底面,也有的出现在端部两侧,大致与钢筋(钢丝)平行。 6)轨枕中部纵向裂缝。这种纵向裂缝发生在轨枕中部的顶面和侧面,平行于钢筋方向,裂缝长度可达30~110mm,裂缝宽度约0.5~3mm,最大可达5mm。 7)龟裂。轨枕端部、中部的顶面或侧面出现纵横交错、不规则的网状裂缝。 2混凝土轨枕裂缝的成因 混凝土轨枕裂缝的生成可以从结构、工艺、材料等方面探讨,也可从设计、制造、铺设、使用等方面研究。在此,仅从物理、化学、力学的角度进行分析。 1)力学因素。混凝土轨枕所受弯矩的大小不仅与枕上动压力有关,而且与枕下道碴支承状态有关。原先设计铺设和养护时轨枕中间部分掏空400mm,掏空部分道碴顶面应低于枕底30mm,避免负弯矩过大而产生枕中上部横裂。随着Ⅱ型轨枕的大量使用,要求中间应垫满浮碴。与一般的预应力混凝土制品不同的是轨枕的支承状态随着列车的运行及养护维修条件而不断变化,一旦当支承状态与枕上垂直动压力联合作用引起的弯矩超过设计限值时,则轨枕的相应部分就会产生环形裂缝。当预加应力偏大而脱模时混凝土强度又不足时,轨枕端部就会产生纵向裂缝;列车运行时对钢轨的水平和纵向作用力和螺旋道钉引起的上拔力,又会使轨枕螺栓道钉孔周围产生纵向裂缝和横向裂缝。此外,螺旋道钉上拔力较大时,与预加应力叠加,则容易造成钉孔纵裂。 2)物理因素。指轨枕制造和铺设、运营过程中受冷热、干湿、冻融等的作用。当蒸汽养护过程中升温很快,恒温温度很高时,由于混凝土中气、水、水泥、砂石等不同材料热膨胀系数不同,而混凝土初期结构强度又很低时,高温使气、水大大膨胀,造成混凝土内部结构缺陷,容易引起轨枕表面特别是端头表面的混凝土龟裂,疏松。 3)化学因素。指钢筋锈蚀、混凝土腐蚀、碳酸化、碱集料反应等。对混凝土轨枕而言,其中碱集料反应引起的破坏不容忽视。一些地区的混凝土粗集料具有明显的碱活性,二者结合在一起,容易形成碱集料反应破坏。 综上所述,纵向裂缝主要由内因(材料、结构、工艺因素)所致,外因(荷载及冻融、干湿循环)仅是促其发展;横向裂缝则是内因(预应力配筋,断面及混凝土强度)与外因(荷载及轨枕支承条件)综合作用所致。 3混凝土轨枕裂缝的预防和控制 轨枕作为一种预应力混凝土结构,要想完全杜绝裂缝是很难做到的。但裂缝毕竟是有害的。为此,应当尽量来防止裂缝的出现。预防和控制裂缝,可以从三方面入手: 1)从力学角度。为防止横向裂缝,除了根据可能出现的最大荷载,合理配置预应力钢筋外,还应加强端部箍筋和道钉孔处螺旋筋的配置。此外,加强线路维修养护,使轨枕处于良好支承状态,也是防止轨枕轨下和枕中出现横向裂缝的重要条件。 2)加强生产管理,严格操作工艺。九十年代以后,中国混凝土轨枕工厂的上级管理部门对工艺操作提出按《技术条件》和《检查细则》严格要求,如严格混凝土配合比,确保振动密实和混凝土强度,特别是蒸汽养护,要求预养时间≥2h,升温速度≤20℃/h,恒温速度≤60℃,脱模时轨枕表面与环境温度之差≤20~40℃,有的工厂还在轨枕脱模存放的三天内进行浇水养护。这些措施对于减少轨枕裂缝,特别是龟裂及纵裂,将是十分有利的。 3)严格控制混凝土原材料。除了对水泥强度与安定性、集料的级配与含泥量等常规指标严格控制外,还应重点考虑碱集料反应问题。中国天然河砂至今未发现有碱活性,但不少地区的粗集料却有潜在碱活性,因此应大力推广应用低碱水泥(含碱量≤0.6%)和低碱减水剂。在目前使用低碱水泥和低碱减水剂尚有困难的情况下,应注意控制最大水泥用量,以使轨枕混凝土的碱含量不超过安全限值(3kg/m3)。 总之,通过以上三方面对混凝土轨枕裂缝的预防和控制措施,并且结合即时修补的方法,以避免裂缝发展。虽然可以延长混凝土轨枕的使用寿命,但远远满足不了目前铁路高速重载的发展需要,为了强化轨道结构,保持线路稳定,应该逐步推广使用新型的Ⅲ型轨枕,从而提高线路的综合技术经济效益。 [参考文献] [1]黄柒怀.混凝土轨枕的伤损及防治意见.铁道标准设计. [2]陈跃源.铁路轨道.北京:中国铁道出版. 134

混凝土枕分类及尺寸

混凝土枕分类及尺寸 (一)混凝土枕分类混凝土枕,根据其使用部位的不同,可分一般混凝土枕、混凝土岔枕及混凝土桥枕3种。 一般混凝土枕(以下简称混凝土枕),技术比较成熟,已列为部标准,目前已经大批铺设使用。 混凝土岔枕,经过多年来的铺设试验,岔枕本身强度、弹性均有所提高,扣件也有明显改进,可以大面积推广使用。 混凝土桥枕分有碴桥面带护轮轨的混凝土桥枕和钢桥用的混凝土桥枕两种。 有碴桥面带护轮轨的混凝土桥枕已铺设使用,钢桥用混凝土桥枕现正在铺设试验中。 (二)混凝土枕特性我国铁路已广泛使用预应力混凝土枕以代替木枕,与木枕相比,其优越性表现在以下几个方面: 1.材源丰富; 2.适宜于工厂化生产,规格一致,保证线路质量均匀; 3.强度高,耐腐蚀,使用寿命长,一般为木枕的3~4倍; 4.道床阻力大,线路的稳定性好,适合铁路的高速大运量要求,且节约木材。 其缺点如下: 1.弹性差,在同样荷载作用下所受的冲击力大(比木枕约大25%); 2.对道床铺设要求较高,除了增大道床厚度外,还须铺设缓冲垫层; 3.重量大,Ⅰ、Ⅱ型混凝土枕一般在220~250 kg,Ⅲ型混凝土枕一般为350 kg左右,人工更换混凝土枕不便。

钢筋混凝土轨枕可分普通混凝土轨枕和预应力混凝土轨枕,两者本质区别在于后者在制造时应用了预应力技术。 普通混凝土枕强度较低,抗裂性差,容易开裂失效,线路上极少铺设。 预应力混凝土轨枕,制作时给混凝土施加强大的预压应力,弥补了普通混凝土轨枕的缺点,在我国已得到广泛使用。 在我国铁路上,曾先后试铺过多种类型的预应力混凝土轨枕,如“弦Ⅱ—61A”、“弦61”、“筋63”、“弦65一B”、“筋69”、“弦69”、“筋81”、“丝81”、“弦79”等型号。 其符号“弦”、“丝”表示采用的钢筋为高强度钢丝,“筋”表示的钢筋是粗钢筋;“61”、“69”、“79”、“81”等表示设计年份。 79型以前的混凝土轨枕统称为旧轨枕。 我国现用混凝土轨枕标准分为三级,并与不同类型轨道配套使用,其适用范围如表6—6所示。 表6-6混凝土枕名称和适用范围原名称丝79型预应力混凝土枕丝81型预应力混凝土枕新名称适用范围S一1型预应力混凝土枕中、轻型轨道( 43、38 kg/m钢轨)S一2型预应力混凝土枕重、次重型轨道( 60、50 kg/m钢轨)筋81型预应力混凝土枕与75 kg/m钢轨配套用钢弦混凝土枕J一2型预应力混凝土枕S一3型预应力混凝土枕同上特重型轨道(≥70 kg/m钢轨)(三)混凝土枕规格尺寸我国各类混凝土枕的外型尺寸如表6—7所示,Ⅰ、Ⅱ型混凝土枕长度为250 cm,Ⅲ型混凝土枕长度为260 cm,截面为梯形,上小下大,有利于增加轨枕支承面积和在轨下截面配置较多的钢筋以抵抗正弯矩。 枕底面两端为双楔形,中间为矩形,枕底做出凹槽式花纹,以提高道床阻力。 轨枕的厚度在全长范围内不一致,轨下截面厚,中间截面薄。

预应力钢筋混凝土轨枕的冲击试验

预应力钢筋混凝土轨枕的冲击试验 摘要:伍伦贡大学采用了大功率重锤冲击试验机以评估预应力钢筋混凝土轨枕在冲击荷载下的脉冲应变影响。本文不仅详细介绍了大功率重锤冲击试验机,试验的仪表化和标准化,还包括故障模型分析、裂纹扩展、弯曲刚度和能量吸收机制。测试用的预应力轨枕由澳大利亚制造,现场的轨道基床已由实验室模型获得的频率响应函数进行了模拟和校准。试验主要利用大功率重锤冲击试验机研究了预应力轨枕的能量转移机制。 关键字:预应力钢筋混凝土轨枕,冲击试验,有砟铁轨 Abstract: The wollongong university high power hammer impact test enginery prestressed concrete sleeper to assess the impact of the load in pulse strain effects. This paper not only introduces detailed high-power hammer impact test enginery, test instrument, and standardization, including failure model analysis, crack propagation, bending stiffness and energy absorption mechanism. Test of prestressed sleeper by Australia manufacturing, the scene of rail and the bed had been obtained by laboratory model frequency response function and calibration of the simulation. Test the main use high power hammer impact test enginery studied energy transfer mechanism of prestressed sleeper. Key word: prestressed concrete sleeper, impact test track a frantic jumble 1.引言 本文通过对轨道环境的模拟,使用冲击试验方法研究了预应力钢筋混凝土轨枕的能量转移机制,并重点用试验验证了轨枕的极限抗冲击性和破坏模型。试验所用的预应力钢筋混凝土轨枕基于澳大利亚标准AS1085.14[2]设计制造,轨道的支撑环境由弹性材料模拟,该材料已被现场和实验室震动测定所验证[3]。本次试验采用的是大功率冲击试验机,以评估柔性支撑环境下预应力钢筋混凝土轨枕的冲击响应,测试结果可用于验证设计的数值模型,和预测其他不同轨道环境下的应力转移机制。 2.试验综述 2.1试样 试验所用的钢筋混凝土轨枕由澳大利亚的一家生产商供应,这也是“澳大利

汽车耐久性试验,这次讲清楚了

汽车耐久性试验,这次讲清楚了 汽车耐久性非常重要,它关系着一辆车的使用寿命,甚至是关系到性命的大事。如果一辆车子发动机的耐久性不好,会给车主带来或多或少的麻烦的。 耐久 是指其“保持质量和功能的使用时间”,一般汽车企业对整车耐久性的要求都是XX年或XX 万公里,为了达到整车的耐久性,就需要整车、系统、子系统和零件分别满足各自的耐久性要求。 疲劳 是指试件或构件材料在交变应力与交变应变的作用下,裂纹萌生、扩展,直到小片脱落或断裂的过程称为疲劳。 汽车在行驶时不断受到由于路面不平而引起的路面冲击载荷,同时还受到转向侧向力、驱动力和制动力的作用。这些力一般都随着时间发生变化。另外,汽车发动机本身也是一个振动源。因此汽车在行驶过程中处于一个相当复杂的振动环境中,其各个零部件一般都会受到随着时间发生的应力、应变的作用;经过一定的工作时间,一些零部件就会发生疲劳损坏,出现裂纹或断裂。据统计,汽车90%以上的零部件损坏都属于疲劳损坏。 汽车耐久试验按总成分 一、零部件的耐久测试 零件先按照主机厂试验大纲完成功能性试验,台架可靠试验的全部或者80%(类似比例),环境老化试验的全部或一部分,这部分一般是零部件厂家自己做(实验室经过主机厂认可),也会有一些厂家指定第三方试验室完成。 二、整车耐久测试 综合耐久、驱动耐久、SPC耐久,各试验考核侧重点不一样。 测试的地点两种:一是测试场,上面会有各种路面,某些车型可能会要求通过数万公里的强化路面测试,在不幸跑出问题之后分析根因然后在上市之前改善;二就是公共道路,模拟一般用户的一般使用状况,记录过程中出现的问题,反馈质量/设计部门。 汽车发动机耐久性试验 汽车发动机的设计,要经过以它自身为主的耐久性测试的。这种测试主要是以发动机本身在试验台上测试,而不是整部车子。要测试出发动机的耐久性,就需要模拟一部车子日常的使用状况,有时候需要在高速上奔驰,有时候又得在闹市里面蠕动,要模拟这些发动机运转状态并不难,可是对于几乎任何一台机子而言,这样测试的话无论是在开发时间,还是在试验资金的角度上,都是难以完成的。 因此,发动机的耐久性测试主要是通过加大发动机的测试负荷,以减少测试时间的方法来测试。试验的的原理就是加大过负荷的比例,分析这个时候的寿命时间的问题,然后结合之前所加大的过负荷比例等参数,对日常使用寿命进行预测,得到一个大概的正常寿命。

混凝土轨枕

混凝土轨枕.txt如果真诚是一种伤害,请选择谎言;如果谎言是一种伤害,请选择沉默;如果沉默是一种伤害,请选择离开。本发明公开了一种混凝土轨枕及其生产方法,该轨枕适合重载及提速后铁路标准线路用轨枕,以及半径在500m-1200m的曲线和直线的山区铁路线路使用。本发明的轨枕挡肩结构,其挡肩混凝土加高,轨距挡板加厚,橡胶垫板加厚,轨枕内按竖向错开排列方式布置有螺旋肋钢筋,在挡肩端部位置配置剪力筋。有益效果是:提高挡肩强度,改变横向作用力在挡肩上的传递方向,增大受力面积,理论及实验均证明了可提高挡肩极限承载能力一倍以上,有效地解决了混凝土挡肩易破损的问题;同时解决了轨距挡板座沿挡肩上爬、下串的问题;提高轨下及枕中截面的静载力,防止产生沿钢筋的竖向裂纹,有效地增强轨枕的抗疲劳能力及后期强度 。 一种混凝土轨枕,其中部负弯矩部分为正梯形,两轨下正弯矩部分为高度不等的正梯形和倒梯形组成的六棱形,轨枕横向侧面与底面夹角为105-135°,使得正负弯矩部分都能充分发挥钢筋和混凝土各自的力学性能优势,同时在使用中其受力条件得到了全面改善;用此轨枕组成的轨排,在与道床结合后,能够形成相互制约的强有力的有机整体,提高道床对轨排的控制力,降低了维修工人的劳动强度,可确保列车安全运行。 一种新型预应力混凝土轨枕,其长度L=2600mm,轨下截面高h↓[1]=230mm,上宽B↓[1]=170mm,下宽B↓[2]=300mm,中间截面高h↓[2]=185mm,上宽b↓[1]=206mm,下宽b↓[2]=280mm,纵向配筋为10根Φ7mm的压痕钢筋,15个横向箍筋以Φ6mm的光面钢筋制成,在制作无螺栓扣件轨枕时,其扣件之铁件要预埋在无挡肩的轨槽内。 一种预应力混凝土轨枕的短钢模型,由钢模壳体、主梁、端梁固定为一个整体,钢模壳体采用4×1的并行排列形式,并形成最佳尺寸方案,两端设张拉机,先行张拉时,钢模内预设锚固板,钢筋两端固定在锚固板上,张拉机对每块锚固板分别张拉,解决了预应力加载和卸载过程中应力不均的问题,同时锚固板永久留在轨枕内,提高了混凝土与钢筋的粘结力,保证了轨枕的质量。 弹性预应力钢筋混凝土轨枕,包括轨枕、轨枕的立螺栓孔、立螺栓孔旋筋和弹性垫,其特征是所述的弹性垫与轨枕底部吻合,且连为一体,所述的轨枕和弹性垫通过铆钉固定。本实用新型轨枕的凹坑与弹性垫凸出部分相吻合,且连接牢固不易分离。 [转贴]预应力混凝土轨枕的裂缝及结构耐久性 ·上一篇 [转贴]晶牛集团宣布新材料重大发·下一篇 [转贴]复合土钉墙在软土地基中应

铁道部运输局关于发布新Ⅱ型预应力混凝土枕有关技术规定的通知

铁道部运输局铁道部科学技术司 关于发布新Ⅱ型预应力 混凝土枕有关技术规定的通知 各铁路局: 由铁道科学研究院、原专业设计院共同研制的新Ⅱ型预应力混凝土枕于2001年10月通过铁道部组织的技术鉴定,具备了批量生产的条件。为提高产品质量、保证行车安全,铁道部运输局、科技司会同建设司共同组织有关单位制定了暂行的《新Ⅱ型预应力混凝土枕技术条件》、《新Ⅱ型预应力混凝土枕产品质量检验规则》、《新Ⅱ型预应力混凝土枕产品企业生产条件考核办法》、《新Ⅱ型预应力混凝土枕钢模型技术条件》和《上道验收管理办法》。现将上述暂行规定予以发布(另发),自发布之日起实施。

主题词:工务轨枕质量规定通知 抄送:铁道院,各设计院,工程、建筑、物资总公司,部工程中心,质检中心,建设司。 铁道部运输局2002年6月21日印发

前言 本技术条件(暂行)以TB/T2190—91《II型预应力混凝土枕技术条件》、《预应力混凝土枕I型、II型及III型》(报批稿)和新II型枕科研成果为基础编制而成。 本技术条件(暂行)增加了“定义”等内容;对某些技术参数进行了修改,轨枕的承载能力检验值改变为由设计图纸给出;对新II型枕相关条文作了更加明确的规定。 本技术条件(暂行)由铁道部运输局、科技司和建设司组织编制。 本技术条件(暂行)由铁道科学研究院(铁建所)和铁道专业设计院负责编制和解释。

新II型预应力混凝土枕技术条件(暂行) 1 主要内容与适用范围 本技术条件规定了新II型预应力混凝土枕(以下简称轨枕)的技术要求、试验方法、检验规则、标记、堆放和运输。 2 规范性引用标准 下列标准所包含的条文,通过在本技术条件中引用而构成为本技术条件的条文。本技术条件出版时,所示标准版本均为有效。所有标准都会被修订,使用本技术条件的各方应探讨使用下列标准最新版本的可能性。 GB175—1999 硅酸盐水泥、普通硅酸盐水泥 GB/T343—1994 一般用途低碳钢丝 GB/T701—1997 低碳钢热轧圆盘条 GB/T5224—1995 预应力混凝土用钢绞线 GB/T5223—1995 预应力混凝土用钢丝 GB50204—2002 混凝土结构工程施工及验收规范 TB10210—2001 铁路混凝土与砌体工程施工及验收规范 GBJ80—1985 普通混凝土拌合物性能试验方法 GBJ81—1985 普通混凝土力学性能试验方法 TB2181—1990 混凝土拌合物稠度试验方法跳桌增实法 TB10425—1994 铁路混凝土强度检验评定标准 TB1878—2002 预应力混凝土枕疲劳试验方法 TB1879—2002 预应力混凝土枕静载抗裂试验方法 GBJ82—1985 普通混凝土长期性能和耐久性能试验方法 GBJ119—1988 混凝土外加剂应用技术规范 TB/T2922—1988 铁路混凝土用骨料碱活性试验方法 TB3054—2002 铁路工程预防碱骨料反应技术条件 3 定义 本技术条件采用下列定义: 3.1 露筋 轨枕内部钢筋(含钢丝、钢绞线,以下通称钢筋)未被混凝土包裹而外露。 3.2 裂缝 轨枕表面伸入混凝土内部的缝隙。 3.3 油肩 机油渗入轨枕挡肩部位混凝土。‘

相关文档
最新文档