传染病模型建模

传染病模型建模
传染病模型建模

传染病模型建模

Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

对传染病的传播的研究

摘要

本文以常见传染病的传播为研究方向,并结合微分方程的知识建立传染病的传播与控制模型。在模型的基础上,运用MATLAB软件拟合出患者人数与时间的关系曲线,从而能够从图中直观地对该病的传播作出分析并提出应对措施。在问题一,我们把该地区人群分为五类:患者、疑似患者、治愈者、死亡者、正常人。在对该传染病扩散与传播的控制模型的建立中,我们将疑似患者看作是潜伏期患者,主要考虑各项人数的增减情况,通过单位时间内正常人数的变化、单位时间内潜伏期患者人数的变化、单位时间内确诊患者人数的变化、单位时间内非参与者人数的变化联系建立微分方程模型。

在问题二、三中,利用所建立的微分方程模型代入给出的数据,从而用MATLAB拟合出各项人数随时间的变化曲线,分析所得图形及其合理性,得到有关该传染病的信息。

在问题四中,根据以上所建立的模型,提出相应的应对措施:一旦发现患病情况就及时去医院就诊;加大隔离措施强度;个人应养成良好的卫生习惯,勤洗手,多通风,减少与病菌的接触可能,适当锻炼来防止被传染。

关键词:传染病微分方程模型 MATLAB 曲线拟合应对措施

目录

一、问题重述

1.1. 相关情况

2013年,某种传染病的出现成为热点,尤其是其高致死率,引起了人们的恐慌,最近又有研究显示,这种传染病有变异的可能.现在假设有一种未知的病毒潜伏期为1a --2a 天,患病者的治愈时间为3a 天,假设该病毒可以通过人与人之间的直接接触,患者每天接触的人数为r ,因接触被感染的概率为λ (λ为感染率) .为了控制疾病的传播与扩散,将人群分成五类,患者、疑似患者、治愈者、死亡者、正常人.潜伏期内的患者被隔离的比例为p (为潜伏期内患者被隔离的百分数)。 1.2. 问题的提出

问题一:在合理的假设下建立该病毒扩散与传播的控制模型。 问题二:利用你所建立的模型对如下数据进行模拟:

1233,7,60,10,30%,50%

a a a r p λ======, 初始发病人数100,疑似患者

210,患者2天后入院,疑似患者2天后被隔离.由上面的数据请给出患者人数随时间变化的曲线,并分析所给结果的合理性。

问题三:隔离强度由30%提高到80%,患者人数将有何变化。 问题四:请据此模型,给出控制此传染病传播的建议。

二、模型假设

1、在该传染病的考察期内,该考察地区的总人数为常数,不考虑人口流动。

2、将病毒的所有传播途径都视为与病原体的直接接触造成。

3、忽略该考察时间内人口的自然死亡率和出生率。

4、被隔离的人群完全断绝与外界的接触,因此不具有传染性。

5、被治愈者获得抗体,不考虑其二次传染患病。

6、将治愈者和死亡者定义为非参与者,即退出研究的传染病传播体系。

7、疑似患者即为潜伏期的患者,是被有效接触后具有传染性且传染概率也为

λ,经过隔离治疗可转为治愈者(非参与者),治愈时间为3a 天。

8、潜伏期患者和确诊患者接触传染的均为易感病正常人,且均将其传染为潜伏期患者。

三、符号的约定和说明

I :确诊患者

E :潜伏期患者(即疑似患者) R :非参与者(痊愈和死亡的患者) S :普通易感的正常人

λ:潜伏期患者和确诊患者的传染概率 21~a a :传染性病毒的潜伏期

3a :潜伏期患者和确诊患者被治愈的时间

N :该地区总人数

r :该人群的人均每天接触人数 p :潜伏期内患者被隔离的百分数

四、对问题一的解答

. 问题分析

根据人口守恒的前提,排除人口出生率、自然死亡率以及人口的流动,使该考察地区的总人口保持不变,所以将该地区分为:

I :确诊患者

E :潜伏期患者(被病毒有效接触后有传染性的人) R :非参与者(痊愈和死亡的患者) S :普通易感者(正常人)

建立上述五种情况的人数在单位时间变化的微分方程模型。 由上述五类得到以下关系图:

图表 1

故 ()1(1)N N I p S N E p S dt λ=----

()1(1)dS

I p S E p S dt

λ=---- ··················(1) (2)单位时间内潜伏期患者(疑似患者)人数变化:

潜伏期患者的数量变化为正常人被感染为潜伏期患者人数减去潜伏期患者被治愈和转为确诊患者的人数,结合以上信息 即

()()123

211(1)dE I t p S E E p S Ep dt a a a λ=--+--+·······(2) (3)单位时间内确诊患者人数变化:

确诊患者人数为潜伏期患者转变人数减去被治愈人数 即

123

21dI E I dt a a a =-+ (3)

(4)单位时间内非参与者的人数变化:

非参与者人数为确诊患者被治愈人数或死亡数 即

3

1

dR I dt a = (4)

(5)总人数:

N I E R S =+++ (5)

对模型的部分说明: 1、传染病毒的平均潜伏期为

12

2

a a +,即单位时间内潜伏期病人以比例常数12

2

0a a >+,转为感染者; 2、确诊病人平均死亡或痊愈的疗程为3a ,即单位时间感染者的治愈率为

3

1

0a >; 3、潜伏期患者平均疗程为3a ,即单位时间内潜伏期患者的治愈率为3

1

0a >; 4、单位时间内每个易感者与病人的接触率参数为0r >; . 模型的建立

其中0(0)I I =,0(0)S S =,0(0)R R =,0(0)A A = ,0(0)E E = ,人7101?=N 为系统中各类的初始值。

五、对问题二的解答

. 问题分析

该问题是建立在问题一的基础上,利用问题一所建立的模型,代入题二中给出的数据,用MATLAB 解该微分方程并得到患者人数随时间变化的曲线,然后对曲线图对该传染病的扩散和传播进行分析。

. 模型的建立

71233,7,60,10,30%,50%,110a a a r p N λ=======?, 初始发病人数100(即1000=I ),疑似患者210(即2100=E ),患者2天后入院,疑似患者2天后被隔离。

这样可以得到患者人数随时间变化的曲线(如下图):

图表 2

. 结果分析

从上图中可以看出患者人数先随时间急剧升高,说明这是病毒传播初期未有效控制的发展趋势,然后可以看到最高点(第天)患者人数达到最大值7817000人,随后通过对确诊患者和潜伏期患者进行隔离治疗,使患病人数开始较平稳下降,并在100天后患者人数下降到2006000人,说明病情得到了有效控制,且可以看出该结果与实际情况相符,有良好的合理性。

六、对问题三的解答

. 问题分析

该问题是建立在问题二的基础上,利用问题二建立的模型,提高p 值得到新的患者人数随时间变化的曲线图,并与问题二中曲线图作对比,分析患者人数的变化情况,从而可知道隔离强度大小对疫情控制的影响。 . 模型的建立

问题三中71233,7,60,10,80%,50%,110a a a r p N λ=======?, 初始发病人数100(即1000=I ),疑似患者210(即2100=E ),患者2天后入院,疑似患者2天后被隔离。

这样可得到与问题二的对比图(绿线为%80=p 的图,蓝线为%30=p 的图):

. 结果分析

分析绿线可以看到病毒传染初期患者人数依然急剧升高,最高点(第天)患者人数达到最大值7555000人,100天后下降到1921000人。

对比%

p(即绿线与蓝线),可以看出患者人数在病毒传染

=

p与%

30

80

=

初期发展趋势大致一样,但是明显可以看出%

=

30

p相比,达到最高

80

=

p与%

点的时间明显提前且最多患者人数更小,且在100天后患者人数小于%

p

=

30时人数。从对比中可以看出,提高隔离强度可以更好地控制疫情,减少患病人数。

. 对隔离强度p的灵敏度分析

对于该问题中的隔离强度p由30%变为80%,通过问题三的图像中两条曲线的对比,可以看出:当p增大后患者人数最大值相较于问题二来说减少了,同时达到最大值的时间减少了,而且疫情消退的时间也稍微减短了,这说明隔离前度p增大时患者人数的最高峰减少了,同时达到最高峰的时间也相应的减短了。因此政府和意愿应尽量增大隔离强度p。

七、对问题四的解答

随着社会的进步,科技的发展,一般的传统的传染病都能得到及时的防御

和治疗。要想及时有效地控制传染病的扩散和传播,关键在于尽早得到治疗。

根据题目我们建立出模型:

从模型中我们可以看出正常人的减少是由于被潜伏期患者以及确诊患者的传染,所以为了有效控制病情的恶性蔓延,应该一旦发现病情则立即前往医院隔离治疗。

从问题二中的结果看来,同样也反映了这样的情况。相同的隔离程度下,发现并且隔离的时间越早,累计的患者数量越少。政府和医院需要提高警惕,一旦察觉到有疫情的产生就要采取相应的疫情防范措施,疑似患者需要及时去医院进行确诊,既保护自己,又防止有更多人感染,在疫情发生阶段,尽量减少与外人的接触。模型中p越大,S越少,而E增加也越来越少,因此对疫情的控制有很好的效果。

从问题三的结果中得出,在相同隔离时间下,隔离强度越大,疫情时间持续越短,累计的患者数量越少。所以政府和医院需要增强隔离强度,做好防御措施,减少拖延患者前去医院治疗的时间,加派医生,保证医疗设施和医护人员的齐全,普通易感者也需要在家做好杀毒措施,保持通风,注意家人卫生,并使用84消毒药水拖地,做好杀菌工作。

结合模型和问题二、三的曲线图看来,曲线的拖尾较长,说明此次疫情持续时间长,需要长时间的防护措施应对来缩短疫情周期,以避免二次疫情高峰的可能性。所以,防止患病的关键在于自己应提高防范意识,不可以懈怠,提升警惕性;少去人流量大的地方;多做运动,强身健体;勤洗手,多通风,养成良好的卫生习惯;早睡早起,保证营养,增强个人免疫力。而在医疗方面,

a减小来控制卫生部应加大隔离防治措施力度,且改进医疗手段,使治愈时间

3

疫情。

八、模型的评价及推广

. 模型的优缺点

模型的优点:

(1)、将医学领域的问题转化到数学领域进行分析和讨论,可以清楚地定量地得出传染病的发展趋势和高峰以及未来的预测,具有很强的可靠性和实用性。

(2)、模型中各个变量的关系明确,易于模型的求解。

(3)、本文的数学模型是以连续的微分方程为基础,不会得出准确的解析解,本文在合理的参数确定的前提下,将参数进行拟合,准确模拟出传染病的发展趋势和走向的曲线,从宏观的角度上给社会一个清晰的概念,易于被社会接受,对政府和医院控制疫情传播提供有效地帮助,具有一定地实用价值和直观性。模型的缺点:

(1)、采用微分方程方法建立数学模型,易受外界因素变化的影响,其稳定性具有相对性。

(2)、模型中的参数变量有其自身的随机性,虽然本文对已知数据进行统计平均的处理方法,但在计算过程中存在误差。

(3)、模型中涉及的参数较多,在实际生活中很难确定各参数,因此模型具有理想化。

. 模型的推广

本文建立的传染病模型的方法和思维对其他类似的问题也能很实用,可广泛应用于人口、肿瘤、社会、经济等方面。根据传染病的模型建立研究进而可以推广产生SIR模型。该模型是对进行理论性定量研究的一种重要方法,是根据种群生长的特性,疾病的发生及在种群内的传播、发展规律以及与之有关的社会等因素,建立能反映传染病动力学特性的数学模型,通过对模型动力学性态的定性,定量分析和数值模拟,来分析疾病的发展过程,揭示流行规律,预测变化趋势,分析疾病流行的原因和关键。

参考文献:

[1].杨启凡,《数学建模》,浙江:浙江大学出版社,

[2].卓金武,《MATLAB在数学建模中的应用》,北京:北京航空航天大学出版社,

[3].姜启源,数学建模案例选集,北京:高等教育出版社,

[4].姜启源谢金星叶俊,数学模型(第三版),北京:高等教育出版社,

[5].

[6].梁国业等,《数学建模》,北京:冶金工业出版社,

[7].韩中庚等,《数学建模方法及其应用》,北京:高等教育出版社,

[8].龚春王正林等,《精通MATLAB最优化计算》,北京:电子工业出版社,

九、附录:

问题二

新建m文件夹:

function x=pencil(t,x)

%s=x(1) e=x(2) i=x(3) r=x(4);

a1=3;

a2=7;

a3=60;

p=;

m=10;

b=;

x=[-b*x(3)*(1-p)*x(1)-b*x(2)*(1-p)*x(1),b*x(3)*(1-p)*x(1)-

2/(a1+a2)*x(2)+b*x(2)*(1-p)*x(1)-x(2)*p*1/a3,2/(a1+a2)*x(2)-1/a3*x(3),1/a3*x(3)]';

在命令窗口内输入:

[t,x]=ode23s(@pencil,[0,100],s0)

plot(t,x(:,3));

hold on

text(0,100,'(0,100)','color','r')

text,+006,',+006)','color','r')

text(100,+006,'(100,+006)','color','r')

plot(0,100,'g+',,+006,'g+',100,+006,'g+')

问题三

新建m文件夹:

function x=pencil(t,x)

%s=x(1) e=x(2) i=x(3) r=x(4);

a1=3;

a2=7;

a3=60;

p=;

m=10;

b=;

x=[-b*x(3)*(1-p)*x(1)-b*x(2)*(1-p)*x(1),b*x(3)*(1-p)*x(1)-

2/(a1+a2)*x(2)+b*x(2)*(1-p)*x(1)-x(2)*p*1/a3,2/(a1+a2)*x(2)-1/a3*x(3),1/a3*x(3)]';

function x=pen(t,x)

%s=x(1) e=x(2) i=x(3) r=x(4);

a1=3;

a2=7;

a3=60;

p=;

m=10;

b=;

x=[-b*x(3)*(1-p)*x(1)-b*x(2)*(1-p)*x(1),b*x(3)*(1-p)*x(1)-

2/(a1+a2)*x(2)+b*x(2)*(1-p)*x(1)-x(2)*p*1/a3,2/(a1+a2)*x(2)-1/a3*x(3),1/a3*x(3)]';

命令窗口输入:

[t,x]=ode23s(@pencil,[0,100],s0)

plot(t,x(:,3));

hold on

text(0,100,'(0,100)','color','r')

text,+006,',+006)','color','r')

text(100,+006,'(100,+006)','color','r')

plot(0,100,'g+',,+006,'g+',100,+006,'g+')

[t,x]=ode23s(@pen,[0,100],s0)

plot(t,x(:,3),'g');

hold on

text(0,100,'(0,100)','color','r')

text,+006,',+006)','color','r')

text(100,+006,'(100,+006)','color','r')

plot(0,100,'g+',,+006,'g+',100,+006,'g+')

数学建模之传染病模型

第五章 微 分 方 程 模 型 如果实际对象的某特性是随时间(或空间)变化的,那么分析它的变化规律,预测它的未来性态时,通常要建立此实际对象的动态模型,这就是微分方程模型. §1 传 染 病 模 型 建立传染病的数学模型来描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮的到来等,一直是各国有关专家和官员关注的课题. 考虑某地区的传染病的传染情况,设该地区人口总数为N ,既不考虑生死,也不考虑迁移,时间以天为计量单位. 一. SI 模 型 假设条件: 1. 人群分为易感染者(Susceptible )和已感染者(Infective )两类人,简称为健康人 和病人,在时刻t 这两类人在总人数中所占比例分别记作()t s 和()t i . 2. 每个病人每天有效接触的平均人数是λ(常数),λ称为日接触率,当病人与健康 人有效接触时,使健康者受感染变为病人. 试建立描述()t i 变化的数学模型. 解: ()()1=+t i t s ()()N N t i N t s =+∴ 由假设2知,每个病人每天可使()t s λ个健康者变为病人,又由于病人数为 ()t i N ,∴每天共有()()t i N t s λ个健康人被感染. 于是i s N λ就是病人数i N 的增加率,即有 i s N dt di N λ= (1)

i s dt di λ=∴ 而1=+i s . 又记初始时刻(0=t )病人的比例为0i ,则 ()()?????=-=0 01i i i i dt di λ 这就是Logistic 模型,其解为 ()t e i t i λ-??? ? ??-+= 11110 [结果分析] 作出()t t i ~和i dt di ~的图形如下: 1. 当2 1=i 时,dt di 取到最大值m dt di ?? ? ??,此时刻为 ??? ? ??-=-11ln 01i t m λ 2. 当∞→t 时,1→i 即所有人终将被传染,全变为病人(这是不实际的). 二. SIS 模 型 在前面假设1、2之下,再考虑病人可以医治,并且有些传染病如伤风、痢疾等愈后免疫力很低,可以假定无免疫性,于是病人被治愈后变成健康者,健康者还可以被感染再变成病人,此模型称SIS 模型.

数学建模传染病模型剖析

传染病的传播 摘要:本文先根据材料提供的数据建立了指数模型,并且全面地评价了该模型的合理性与实用性。而后对模型与数据做了较为扼要地分析了指数模型的不妥之处。并在对问题进行较为全面评价的基础上引入更为全面合理的假设和建立系统分析模型。运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法结合

MATLAB 编程(程序在附件二)拟合出与实际较为符合的曲线并进行了疫情预测。同时运用双线性函数模型对卫生部的措施进行了评价并给出建议以及指出建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难本文的最后,通过本次建模过程中的切身体会,说明建立如SARS 预测模型之类的传染病预测模型的重要意义。 关键词:微分方程 SARS 数学模型 感染率 1问题的重述 SARS (Severe Acute Respiratory Syndrome ,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS 的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。请你们对SARS 的传播建立数学模型,具体要求如下: 1)建立传染病传播的指数模型,评价其合理性和实用性。 2)建立你们自己的模型,说明为什么优于指数模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。附件1提供的数据供参考。 3)说明建立传染病数学模型的重要性。 2 定义与符号说明 N …………………………………表示为SARS 病人的总数; K (感染率)……………………表示为平均每天每人的传染他人的人数; L …………………………………表示为每个病人可能传染他人的天数; dt d N(t)………………………… 表示为每天(单位时间)发病人数; N(t)-N(t-L)………………………表示可传染他人的病人的总数减去失去传染能力的病人数; t …………………………………表示时间; R 2 ………………………………表示拟合的均方差; 3 建立传染病传播的指数模型 3.1模型假设 1) 该疫情有很强的传播性,病人(带菌者)通过接触(空气,食物,……)将病菌传播给健康者。单位时间(一天)内一个病人能传播的人数是常数k ; 2) 在 所传染的人当中不考虑已治愈的人是否被再次被传播,治愈的人数占该地区的总人数是绝对的少数,治愈者不会再被传播并不影响疫情在该时间内的感染率常数k; 3) 病者在潜伏期传播可能性很小, 仍按健康人处理; 4) SARS 对不同的年龄组的感染率略有不同(相差不大),但我们只考虑它健康人的感染率是一样的;

数学建模 传染病模型

传染病模型 摘要 当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。 不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。 本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作。 关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。

一、问题重述 有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。 1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t 时刻的感染人数。 2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。建立模型求t时刻的感染人数。 3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t 时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。 二、问题分析 1、这是一个涉及传染病传播情况的实际问题,其中涉及传染病感染人数随时间的变化情况及一些初始资料,可通过建立相应的微分方程模型加以解决。 2、问题表述中已给出了各子问题的一些相应的假设。 3、在实际中,感染人数是离散变量,不具有连续可微性,不利于建立微分方程模型。但由于短时间内改变的是少数人口,这种变化与整体人口相比是微小的。 因此,为了利用数学工具建立微分方程模型,我们还需要一个基本假设:感染人数是时间的连续可微函数。 三、模型假设 模型二和模型三的假设条件: 假设一:在疾病传播期内所考察地区的总人数N不变,即不考虑生死,也不考虑迁移。人群分为易感染者(Susceptible)和已感染者(Infective)两类(取两个词的第一个字母,称之为SI模型),以下简称健康者和病人。时刻t这两类人在总人数中所占比例分别记作s(t)和i(t)。 假设二:每个病人每天有效接触的平均人数是常数,称为日接触率。当病人

数学建模论文资料传染病模型)

传染病模型 摘要 “传染病的传播过程”数学模型是通过控制已感染人群来实现的。利用隔离等手段来保护未被感染的人群,减少其对健康人群的危害。由于传染病具有研究新型病例有着重要的意义,利用数学知识联系实际问题,作出相应的解答和处理。问题一:描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。问题二,在区分健康人群和已经感染人群的情况下,要建立适合总人数不变,区分已经感染的人群和的数学模型,必须在问题一的条件下作出合理假设,同时得出该模型,最后结合已知数据可算出每个已感染人群每天接触健康人群的函数和数学模型。问题三,传染病无免疫性——病人治愈成为健康人,健康人可再次被感染,问题三加入健康人可以再次感染,一个感染期内每个病人的有效接触人数,称为接触数。 一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。为此,必须从诸多因素中,抓住主要因素,去掉次要因素。先把问题简化,建立相应的数学模型。将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型。从而使模型逐步完善。下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路。

一.问题的提出 描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。问题二,在区分健康人群和已经感染人群的情况下,要建立适合总人数不变,区分已经感染的人群和的数学模型,必须在问题一的条件下作出合理假设,同时得出该模型,最后结合已知数据可算出每个已感染人群每天接触健康人群的函数和数学模型。问题三,传染病无免疫性——病人治愈成为健康人,健康人可再次被感染,问题三加入健康人可以再次感染,一个感染期内每个病人的有效接触人数,称为接触数。 二.问题的分析 2.1 问题分析 描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。 2.2模型分工

数学建模-传染病模型-

传染病模型 医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。 社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。 一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。 问题提出 请建立传染病模型,并分析被传染的人数与哪些因素有关如何预报传染病高潮的到来为什么同一地区一种传染病每次流行时,被传染的人数大致不变 关键字:传染病模型、建模、流行病 摘要:随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍 乱、天花等曾经肆虐全球的传染性疾病已经得到有效的控制。但是一些新的、不断变异着的传染病毒却悄悄向人类袭来。20世纪80年代十分险恶的爱滋病毒开始肆虐全球,至今带来极大的危害。还有最近的SARS病毒和禽流感病毒,都对人类的生产生活造成了重大的损失。长期以来,建立制止传染病蔓延的手段等,一直是各国有关专家和官员关注的课题。 不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,这里不可能从医学的角度一一分析各种传染病的传播,而只是按照一般的传播模型机理建立几种模型。 模型1 在这个最简单的模型中,设时刻t的病人人数x(t)是连续、可微函数, 方程(1)的解为 结果表明,随着t的增加,病人人数x(t)无限增长,这显然是不符合实际的。 建模失败的原因在于:在病人有效接触的人群中,有健康人也有病人,而其中只有健康人才可以被传染为病人,所以在改进的模型中必须区别健康人和病人这两种人。 模型2 SI模型 假设条件为 1.在疾病传播期内所考察地区的总人数N不变,即不考虑生死,也不考虑迁移。人群分为易感染者即健康人(Susceptible)(S)和已感染者即病人(Infective)(i)两类(取两个词的第一个字母,称之为SI模型),以下简称健康者和病人。时刻t这两类人在总人数中所占比例分别记作s(t)和i(t)。 2.每个病人每天有效接触的平均人数是常数 ,称为日接触率。当病人与健康者接触时,使健康者受感染变为病人。

传染病的数学模型

传染病模型详解 /,SI SIS SIR 经典模型 经典的传播模型大致将人群分为传播态S ,易感染态I 和免疫态R 。S 态表示该个体带有病毒或谣言的传播能力,一旦接触到易感染个体就会以一定概率导致对方成为传播态。I 表示该个体没有接触过病毒或谣言,容易被传播态个体感染。R 表示当经过一个或多个感染周期后,该个体永远不再被感染。 SI 模型考虑了最简单的情况,即一个个体被感染,就永远成为感染态,向周围邻居不断传 播病毒或谣言等。假设个体接触感染的概率为β,总人数为 N ,在各状态均匀混合网络中建立传播模型如下: dS SI dt N I SI d t N ββ?=-????=?? 从而得到 (1)di i i dt β=- 对此方程进行求解可得: 0000(),01t t i e i t i i i i e ββ==-+() 可见,起初绝大部分的个体为I 态,任何一个S 态个体都会遇到I 态个体并且传染给对方,网络中的S 态个数随时间成指数增长。与此同时,随着I 态个体的减少,网络中S 态个 数达到饱和,逐渐网络中个体全部成为S 态。 然而在现实世界中,个体不可能一直都处于传播态。有些节点会因为传播的能力和意愿 的下降,从而自动转变为永不传播的R 态。而有些节点可能会从S 态转变I 态,因此简单的SI 模型就不能满足节点具有自愈能力的现实需求,因而出现SIS 模型和SIR 模型。 SIR 是研究复杂网络谣言传播的经典的模型。采用与病毒传播相似的过程中的S ,I ,R 态 代表传播过程中的三种状态。Zanetee ,Moreno 先后研究了小世界传播过程中的谣言传播。 Moreno 等人将人群分为S (传播谣言)、I (没有听到谣言),R (对谣言不再相信也不传播)。 假设没有听到谣言I 个体与S 个体接触,以概率()k λ变为S 个体,S 个体遇到S 个体 或R 个体以概率()k α变为R ,如图 所示。建立的平均场方程:

传染病模型(微分方程)

t 微分方程建模(传染病模型)的求解。 1、模型1:SI 模型。 假设: (1)t 时刻人群分为易感者(占总人数比例的()s t )和已感染者(占总人数比例的()y t ) (2)每个病人每天有效接触的平均人数是常数λ,λ称为日接触率,当健康者与病人接触时,健康者受感染成为病人。 分析:根据假设,每个患者每天可以使()s t λ个健康者变为病人,因为病人数为()Ny t ,所以每天共有()()Ns t y t λ个健康者变为病人。即: dy N Nsy dt λ=,且()()1s t y t +=,设初始时刻病人比例为b ,则: (1) (0)dy y y dt y b λ?=-???=?,用MATLAB 解此微分方程: >> syms a b >> f=dsolve('Dy=a*y*(1-y)','y(0)=b','t') f = 1/(1-exp(-a*t)*(-1+b)/b) %11 ()1111(1)t t y t b e e b b λλ--= = --+- 当0.09,0.1b λ==时,分别在坐标系oty 中作出()y t 的图像,坐标系oyy '中作出 (1)y y y λ'=-的图像, >> a=0.1; >> b=0.09; >> h=dsolve('Dy=a*y*(1-y)','y(0)=b','t') h = 1/(1-exp(-a*t)*(-1+b)/b) >> f=subs(h) f = 1/(1+91/9*exp(-1/10*t)) ()y t 的图像 >> ezplot(f,[0,60]) >> grid on >> figure (2) >> fplot('0.1*y*(1-y)',[0,1])

传染病传播数学模型

第二节传染病传播的数学模型很多医学工作者试图从医学的不同角度来解释传染病传播时的一种现象,这种现象就是在某一民族或地区,某种传染病传播时,每次所涉及的人数大体上是一常数。结果都不能令人满意,后来由于数学工作者的参与,用建立数学模型来对这一现象进行模拟和论证,得到了较满意的解答。 一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。为此,必须从诸多因素中,抓住主要因素,去掉次要因素。先把问题简化,建立相应的数学模型。将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型。从而使模型逐步完善。下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路。 一.最简单的模型 假设:(1) 每个病人在单位时间内传染的人数是常数k;(2) 一个人得病后经久不愈,并在传染期内不会死亡。 以i(t)表示t时刻的病人数, k表示每个病人单位时间内传染的人 数,i(0)= i表示最初时有0i个传染病人,则在t?时间内增加的病人 数为 ()()() i t t i t k i t t +?-=?

两边除以t ?,并令t ?→0得微分方程 ()()()000di t k i t dt i i ?=???=? ………… (2.1) 其解为 ()00 k t i t i e = 这表明传染病的转播是按指数函数增加的。这结果与传染病传播初期比较吻合,传染病传播初期,传播很快,被传染人数按指数函数增长。但由(2.1)的解可知,当t →∞时,i(t)→∞,这显然不符合实际情况。最多所有的人都传染上就是了。那么问题在那里呢?问题是就出在于两条假设对时间较长时不合理。特别是假设(1),每个病人单位时间内传染的人数是常数与实际情况不符。因为随着时间的推移,病人越来越多,而未被传染的人数却越来越少,因而不同时期的传播情况是不同的。为了与实际情况较吻合,我们在原有的基础上修改假设建立新的模型。 二. 模型的修改 将人群分成两类:一类为传染病人,另一类为未被传染的人,分别用i(t)和s(t)表示t 时刻这两类人的人数。i (0)= 0i 。 假设:(1) 每个病人单位时间内传染的人数与这时未被传染的人数成正比。即()0k ks t =; (2) 一人得病后,经久不愈,并在传染期内不会死亡。 由以上假设可得微分方程

传染病的数学模型

222 SI/SIS,SIR 经典模型 经典的传播模型大致将人群分为传播态 S ,易感染态I 和免疫态R 。S 态表示该个体 带有病毒或谣言的传播能力,一旦接触到易感染个体就会以一定概率导致对方成为传播态。 I 表示该个体没有接触过病毒或谣言,容易被传播态个体感染。 R 表示当经过一个或多个 感染周期后,该个体永远不再被感染。 SI 模型考虑了最简单的情况, 即一个个体被感染, 就永远成为感染态, 向周围邻居不断传 播病毒或谣言等。假设个体接触感染的概率为 Γι ,总人数为 N ,在各状态均匀混合网络中 建立传播模型如下: dS - SI dU :SI .t N 从而得到 对此方程进行求解可得: ∣o e ∣(t) ------- —∣o +i °e 可见,起初绝大部分的个体为 I 态,任何一个S 态个体都会遇到I 态个体并且传染给对 方,网络中的S 态个数随时间成指数增长。 与此同时,随着I 态个体的减少,网络中S 态个 数达到饱和,逐渐网络中个体全部成为 S 态。 然而在现实世界中,个体不可能一直都处于传播态。有些节点会因为传播的能力和意愿 的下降,从而自动转变为永不传播的 R 态。而有些节点可能会从 S 态转变I 态,因此简单 的SI 模型就不能满足节点具有自愈能力的现实需求,因而出现 SIS 模型和SIR 模型。 SIR 是研究复杂网络谣言传播的经典的模型。 采用与病毒传播相似的过程中的 S , I , R 态 代表传播过程中的三种状态。 Zanetee, Moreno 先后研究了小世界传播过程中的谣言传播。 Moreno 等人将人群分为 S (传播谣言)、I (没有听到谣言),R (对谣言不再相信也不传 播)。 假设没有听到谣言I 个体与S 个体接触,以概率,(k )变为S 个体,S 个体遇到S 个体 或R 个体以概率: (k )变为R ,如图2.9所示。建立的平均场方程: 传染病模型详解 [,i ° =K O ) BI 1 9 SlR 權峑眄优■业趨图

传染病模型数学建模论文

甲型H1N1流感传播模型研究 摘要 本文采用了SIR模型对的甲型h1n1流感病毒的传播规律进行了研究和预测,文章收集了美国地区的甲流实验室确认病例数量的数据,对模型进行了验证,并提出了如何降低流感在人群中发病率的俩种可靠方法。 一、问题重述 近年来由墨西哥发端的甲型h1n1型流感(又称猪流感)正成为人们关注的焦点,通过相关网站获得数据,建立一个模型对甲型h1n1流感的走势进行预测。 二、问题分析 甲型h1n1流感的传播是一道传染病问题。在数学建模领域已经有很多关于这方面的研究,其中SIR模型是比较完整的模型。SIR模型通过建立微分方程组,按照一般的传播机理建立集中模型。本文选取美国地区的甲流实验室确认病例数量,建立SIR模型,对甲型h1n1流感的传播规律进行预测。

三、建立模型 (一)、不考虑潜伏期的数学模型 1、模型假设 (1)、在甲型H1N1流感传播期内,美国境内的总人数为N 亿不变,既不考虑生死,也不 考虑迁移,人群分为易感染者S ,发病人群I 和退出人群R(括死亡者和治愈者)四类,时刻t 内这三类人在总人数中所占比例分别为s(t)、i(t)、r(t)。 (2)、i(t)关于时间的增长率与s(t)成正比,比例常数为λ。 病人的数量减少速度与当时的病人总人数成正比,比例常数为ν。治愈 的病人具有了免疫力,即治愈后不再会成为二次患者。 (3)、s(t)、r(t)、i(t)之和是一个常数1。 2、模型构成 易感者和发病者有效接触后成为发病者者。设每个发病者平均每天有效接触的易感者数为()S t λ,()NI t 个发病者平均每天能使()()S t NI t λ个易感者成为病毒潜伏者。 所以有: ()()()dS t S t I t dt λ=- (1) 单位时间内退出者的变化等于发病人群的减少,即 ()()dR t I t dt ν= (2) 发病人群的变化等于易感人群转入的数量,即 ()()()()dI t S t I t I t dt λν=- (3) 记初始时刻的健康者和病人的比例分别为0S 、0R (不妨设0R =0)。 3、模型求解 方程组(1)、(2)、(3)无法求出解析解,我们定义一个新的变量 /σλν=,于是可以求出方程的解为: 000 1()ln s i s i s s σ=+-+ (4) 下面分析s(t)、i(t)、r(t)的变化情况: a 、不论初始条件0S 、0R 如何,病人最终将消失,即0i ∞=。 b 、最终未被感染者的健康者的比例是s ∞,是方程 0001()ln 0s s i s s σ +-+=在(0,1/)σ内的根。

数学建模_传染病模型 (1)

传染病模型 医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。 社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。 一般把传染病流行范围内的人群分成三类:S 类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I 类,感病者(Infective),指染上传染病的人,它可以传播给S 类成员;R 类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。 问题提出 请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变? 关键字:传染病模型、建模、流行病 摘要:随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍乱、 天花等曾经肆虐全球的传染性疾病已经得到有效的控制。但是一些新的、不断变异着的传染病毒却悄悄向人类袭来。20世纪80年代十分险恶的爱滋病毒开始肆虐全球,至今带来极大的危害。还有最近的SARS 病毒和禽流感病毒,都对人类的生产生活造成了重大的损失。长期以来,建立制止传染病蔓延的手段等,一直是各国有关专家和官员关注的课题。 不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,这里不可能从医学的角度一一分析各种传染病的传播,而只是按照一般的传播模型机理建立几种模型。 模型1 在这个最简单的模型中,设时刻t 的病人人数x(t)是连续、可微函数, 病人人数的增加,就有 到考察的人数为常数足使人致病接触并且每天每个病人有效t t t ?+λ)(t t x t x t t x ?=-?+)()()(λ 程有个病人,即得微分方时有再设00x t = )1()0(,d d 0x x x t x ==λ 方程(1)的解为 )2()(0t e x t x λ= 结果表明,随着t 的增加,病人人数x(t)无限增长,这显然是不符合实际的。 建模失败的原因在于:在病人有效接触的人群中,有健康人也有病人,而其中只有健康人

传染病传播的数学模型_上课

微分方程模型 [学习目的] 1.加深对微分方程概念的理解,掌握针对一些问题通过建立微分方程 的方法及微分方程的求解过程; 2.了解微分方程模型解决问题思维方法及技巧; 3.领会建立微分方程模型的逐步改进法的核心及优点,并掌握该方法; 4.理解微分方程的解的稳定性的意义,会用稳定性判定模型的解是否 有效; 5.体会微分方程建摸的艺术性。 在自然学科(如物理、化学、生物、天文)以及在工程、经济、军事、社会等学科量的问题可以用微分方程来描述。正如列宁所说:“自然界的统一性显示在关于各种现象领域的微分方程式的‘惊人的类似中’.”(列宁选集第二卷,人民1972年版第295页)。要建立微分方程模型,读者必须掌握元素法(有关元素法,在高等数学中已有介绍)。所谓元素法,从某种角度上讲,就是分析的方法,它是以自然规律的普遍性为根据并且以局部规律的独立的假定为基础。在解决各种实际问题时,微分方程用得极其广泛。读者通过下面的几个不同领域中的模型介绍便有所体会,要想掌握好它,在这方面应作大量的练习。 §17.1、传染病传播的数学模型 [学习目标] 1.通过学习建立传染病传播的数学模型的思维方法,能归纳出该类建模的关键 性步骤及思维方法;并能指出求解传染病传播的数学模型的方法技巧; 2.能用已知的传染病传播的数学模型,预报某种传染病的传播; 3.学会从简单到复杂的处理问题的方法。 由于人体的疾病难以控制和变化莫测,因此医学中的数学模型较为复杂。生物医学中的数学模型分为两大类:传染病传播的数学模型和疾病数学模型。 以下仅讨论传染病的传播问题。人们将传染病的统计数据进行处理和分析,发现在某一民族或地区,某种传染病传播时,每次所涉及的人数大体上是一常数。这一现象如何解释呢?关于这个问题,医学工作者试图从医学的不同角度进行解释都得不到令人满意的解释。最后由于数学工作者的参与,在理论上对上述结论进行了严格的证明。同时又由于传染病数学模型的建立,分析所得结果与

传染病传播的数学模型

传染病传播的数学模型 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

传染病传播的 数学模型 很多医学工作者试图从医学的不同角度来解释传染病传播时的一种现象,这种现象就是在某一民族或地区,某种传染病传播时,每次所涉及的人数大体上是一常数。结果都不能令人满意,后来由于数学工作者的参与,用建立数学模型来对这一现象进行模拟和论证,得到了较满意的解答。 一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。为此,必须从诸多因素中,抓住主要因素,去掉次要因素。先把问题简化,建立相应的数学模型。将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型。从而使模型逐步完善。下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路。 一.最简单的模型 假设:(1) 每个病人在单位时间内传染的人数是常数k ;(2) 一个人得病后经久不愈,并在传染期内不会死亡。 以i(t)表示t 时刻的病人数,0k 表示每个病人单位时间内传染的人数,i(0)= 0i 表示最初时有0i 个传染病人,则在t ?时间内增加的病人数为 ()()()0i t t i t k i t t +?-=?

两边除以t ?,并令t ?→0得微分方程 ()()()000di t k i t dt i i ?=???=? ………… () 其解为 ()00k t i t i e = 这表明传染病的转播是按指数函数增加的。这结果与传染病传播初期比较吻合,传染病传播初期,传播很快,被传染人数按指数函数增长。但由的解可知,当t →∞时,i(t)→∞,这显然不符合实际情况。最多所有的人都传染上就是了。那么问题在那里呢问题是就出在于两条假设对时间较长时不合理。特别是假设(1),每个病人单位时间内传染的人数是常数与实际情况不符。因为随着时间的推移,病人越来越多,而未被传染的人数却越来越少,因而不同时期的传播情况是不同的。为了与实际情况较吻合,我们在原有的基础上修改假设建立新的模型。 二. 模型的修改 将人群分成两类:一类为传染病人,另一类为未被传染的人,分别用i(t)和s(t)表示t 时刻这两类人的人数。i (0)= 0i 。 假设:(1) 每个病人单位时间内传染的人数与这时未被传染的人数成 正比。即()0k ks t =; (2) 一人得病后,经久不愈,并在传染期内不会死亡。 由以上假设可得微分方程

传染病模型数学建模论文

甲型H1N1流感传播模型研究 小组成员:宋科康张晓鹏姚步泉 摘要 本文采用了SIR模型对的甲型h1n1流感病毒的传播规律进行了研究和预测,文章收集了美国地区的甲流实验室确认病例数量的数据,对模型进行了验证,并提出了如何降低流感在人群中发病率的俩种可靠方法。

一、问题重述 近年来由墨西哥发端的甲型h1n1型流感(又称猪流感)正成为人们关注的焦点,通过相关网站获得数据,建立一个模型对甲型h1n1流感的走势进行预测。 二、问题分析 甲型h1n1流感的传播是一道传染病问题。在数学建模领域已经有很多关于这方面的研究,其中SIR模型是比较完整的模型。SIR模型通过建立微分方程组,按照一般的传播机理建立集中模型。本文选取美国地区的甲流实验室确认病例数量,建立SIR模型,对甲型h1n1流感的传播规律进行预测。 美国甲型H1N1流感实验室确认病例数量: 三、建立模型 (一)、不考虑潜伏期的数学模型

1、模型假设 (1)、在甲型H1N1流感传播期内,美国境内的总人数为N 亿不变,既不考虑生 死,也不考虑迁移,人群分为易感染者S ,发病人群I 和退出人群R(括死亡者和治愈者)四类,时刻t 内这三类人在总人数中所占比例分别为s(t)、i(t)、r(t)。 (2)、i(t)关于时间的增长率与s(t)成正比,比例常数为λ。 病人的数量减少速度与当时的病人总人数成正比,比例常数为ν。治愈 的病人具有了免疫力,即治愈后不再会成为二次患者。 (3)、s(t)、r(t)、i(t)之和是一个常数1。 2、模型构成 易感者和发病者有效接触后成为发病者者。设每个发病者平均每天有效接触的易感者数为()S t λ,()NI t 个发病者平均每天能使()()S t NI t λ个易感者成为病毒潜伏者。所以有: () ()()dS t S t I t dt λ=-(1) 单位时间内退出者的变化等于发病人群的减少,即 () ()dR t I t dt ν=(2) 发病人群的变化等于易感人群转入的数量,即 () ()()()dI t S t I t I t dt λν=-(3) 记初始时刻的健康者和病人的比例分别为0S 、0R (不妨设0R =0)。 3、模型求解 方程组(1)、(2)、(3)无法求出解析解,我们定义一个新的变量 /σλν=,于是可以求出方程的解为: 0001()ln s i s i s s σ=+-+(4) 下面分析s(t)、i(t)、r(t)的变化情况: a 、不论初始条件0S 、0R 如何,病人最终将消失,即0i ∞=。 b 、最终未被感染者的健康者的比例是s ∞,是方程 0001()ln 0s s i s s σ +-+=在(0,1/)σ内的根。 C 、若01/s σ>,则开始有:()i t 先增加。当01/s σ=时,()i t 达到最大值,然后() i t

传染病的扩散和传播模型(hgp)

流行病毒的扩散与传播的控制问题 摘要 本文以微分方程为理论基础,建立流行病毒的扩散与传播的控制模型,进而对疫情的蔓延趋势进行分析。 对问题一,首先将人群划分为五类:正常人、疑似患者、确诊患者、治愈者、死亡者,前三类组成传染系统。假设疑似患者包括病毒携带者(潜伏期患者)和非病毒携带者(最终为正常人)两部分,潜伏期患者最终都会被确诊,由此建立各类人群数量之间的变化关系。 然后将疫情变化分为两个阶段:控制前和控制后。在控制前阶段,由于病人未被隔离,相当于自由传染源,其每人每天接触的r个人都会成为疑似病例,因此疫情发展较迅速。在控制后阶段,疑似病例被隔离,确诊病人得到有效治疗,传染源减少,传染源每天接触的人数'r减少,治愈人数增多,退出传染系统者增多,最终疫情得到有效控制。 由上,建立起微分方程模型。 对问题二,代入题中限制条件求解模型得到潜伏期人数和确诊患者人数随时间变化的曲线图,控制前2 t=时,潜伏期人数Q增至15093,确诊患者人数I增至为4062,并且两者增长速度很快,控制后四五天,潜伏期人数和确诊患者人 数增到最大值 max 15206 Q=, max 12659 I=,而后逐渐下降,在12 t=时潜伏期人数几乎为零,当14 t=时确诊患者人数几乎为零。这时,疫情已经被控制。 对问题三,提前一天开始控制,3 t=时,潜伏期人数达到最大值 max 3722 Q=; 4 t=时确诊患者人数达到最大 max 3167 I=,而后也逐渐降低,到第十一天潜伏期的人数几乎为零,第十二天患病者人数几乎为零。

对问题四,将隔离强度增强p改为0.9,重复求解得:高峰期潜伏者人数 max 2527 Q=确诊患者人数 max 2093 I=。到第九天潜伏期人数减为零,到第十天确诊患者人数减为零,并根据以上分析结合实际给出一份建议报告。 关键词:传染病微分方程潜伏期 一、问题重述 近来猪流感在墨西哥爆发,引起全世界人的关注。流行病毒的扩散与传播的控制问题得到各国领导人和世界卫生组织的重视。各国都采取各种措施预防猪流感病毒的传播和蔓延。假设该病毒的潜伏期为d1至d2天,得病患者经治疗经过d3天可以治愈,严重的可能引起患者死亡。该病毒可通过直接接触、口腔飞沫进行传播、扩散。设人群中每人每天的接触人数为r。人群中的人可以分为5类:确诊患者、疑似患者、治愈者、死亡人和正常人,可控制参数是隔离措施强度,即潜伏期内的患者及疑似患者被隔离的百分数。 1.建立流行病病毒扩散与传播的控制模型; 2.利用所建立的模型针对如下数据进行模拟: 条件1.的d1=2, d2=7, d3=20, r=15;

关于传染病模型

关于SARS 模型的建立与相关的预测分析 本文先根据材料提供的模型与数据较为扼要地分析了附件 1 的模型的优缺点, 摘要:全面地评价了该模型的合理性与实用性。而后在对问题进行较为全面评价的基础上引入更为全面合理的假设和建立系统分析模型。运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上运用经典的龙格——库塔微分方程求解算法结合MA TLAB 编程程序在附件一拟合出与实际较为符合的曲线并进行了疫情预测。同时运用双线性函数模型对卫生部的措施进行了评价并给出建议。而后运用差分方程(程序在附件二)就SARS 对经济(主要是旅游业)的影响进行了较为准确的分析,进而通过模型算出的理论预测数值与实际数值进行对比,以数值上的显著差异直观地表现了SARS对经济(旅游)的影响,并对接下来的几个月进行了较为合理的预测。本文的最后,通过本次建模过程中的切身体会,以一篇短文评述去说明建立如SARS 预测模型之类的传染病预测模型的重要意义。 关键词:微分方程龙格—库塔算法SARS 双线性函数模型差分方程数学模型1 一问题的重述SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症俗称:非典型是肺炎)21 世纪第一个在世界范围内传播的传染病。SARS 的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。请你们对SARS的传播建立数学模型,具体要求如下:(1)对附件 1 所提供的一个早期的模型,评价其合理性和实用性。(2)建立你们自己的模型,说明为什么优于附件 1 中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后 5 天采取严格的隔离措施,对疫情传播所造成的影响做出估计。附件 2 提供的数据供参考。(3)收集SARS 对经济某个方面影响的数据,建立相应的数学模型并进行预测。附件3 提供的数据供参考。(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。 (二)对附件 1 所提供的模型的评价 该模型的合理性首先体现在模型假设上:“假定初始时刻的病例数为N0,平均每病(K ,人每天可传染K 个人一般为小数)平均每个病人可以直接感染他人的时间为L 天。” 其一,一般来说每病人每天可传染的人数与当时的健康人数有关1,但由于北京的人数基数较大,SARS 病人数相对较少并且SARA持续时间不是很长,所以这样假设也是可以的。其二,每个病人可以直接感染他人的时间是有限的,该模型考虑到了这一点,也是很合理的。该模型的合理性还在于用数理统计的方法估计相关参数。该模型的实用性是较好地模拟与预测了北京的SARA数据与发展。在传染病发病初期对疫情的预测结果还是较为理想的,这主要得益于发病初期,由于病情来得突然,有关部门没有来得及采取措施加以控制,使病情得以蔓延迅速,而且发病初期在治疗方法上不是特别有效,治愈所需的时间长,所以使用N t N 0 1 k t 作为模型进行估计以及参数的假设均较为合理,基本上是可行的。但是到了疫情发展中后期,由于政府部门采取强硬措施加强防治工作以及人民群众的防范意识与警觉程度上的普遍提高,加之治疗措施的改进,使得每天被传染的人数下降,并且治愈的人数在不断增加,治愈时间也在不断缩短,每天的病人数应在上一天的基础上减去治愈和死亡的人数,“ “ 并且由于采取强硬措施L”的取值会大大的减小,K”取值也会是个变量,而不是常数。大多数疑是病人往往在早期就会被隔离,所以,基本2上很少能转化成自由非典病人而去接触并传染别人。如果此时还是选取N t N 0 1 k t这样的单调递增函数作为预测模型,就会有较大的误差。该模型的另一个不足是没有考虑SARS 的潜伏期,也没有对人群进行合理的分类(如易感染人群、病人、治愈人群等等),所以必须建立更为合理的假设与模型。

传染病的数学模型

传染病模型详解 2.2.2 /,SI SIS SIR 经典模型 经典的传播模型大致将人群分为传播态S ,易感染态I 和免疫态R 。S 态表示该个体带有病毒或谣言的传播能力,一旦接触到易感染个体就会以一定概率导致对方成为传播态。I 表示该个体没有接触过病毒或谣言,容易被传播态个体感染。R 表示当经过一个或多个感染周期后,该个体永远不再被感染。 SI 模型考虑了最简单的情况,即一个个体被感染,就永远成为感染态,向周围邻居不断传 播病毒或谣言等。假设个体接触感染的概率为β,总人数为 N ,在各状态均匀混合网络中建立传播模型如下: dS SI dt N I SI d t N ββ?=-????=?? 从而得到 (1)di i i dt β=- 对此方程进行求解可得: 0000(),01t t i e i t i i i i e ββ==-+() 可见,起初绝大部分的个体为I 态,任何一个S 态个体都会遇到I 态个体并且传染给对方,网络中的S 态个数随时间成指数增长。与此同时,随着I 态个体的减少,网络中S 态个 数达到饱和,逐渐网络中个体全部成为S 态。 然而在现实世界中,个体不可能一直都处于传播态。有些节点会因为传播的能力和意愿 的下降,从而自动转变为永不传播的R 态。而有些节点可能会从S 态转变I 态,因此简单的SI 模型就不能满足节点具有自愈能力的现实需求,因而出现SIS 模型和SIR 模型。 SIR 是研究复杂网络谣言传播的经典的模型。采用与病毒传播相似的过程中的S ,I ,R 态 代表传播过程中的三种状态。Zanetee ,Moreno 先后研究了小世界传播过程中的谣言传播。 Moreno 等人将人群分为S (传播谣言)、I (没有听到谣言),R (对谣言不再相信也不传播)。 假设没有听到谣言I 个体与S 个体接触,以概率()k λ变为S 个体,S 个体遇到S 个体 或R 个体以概率()k α变为R ,如图 2.9 所示。建立的平均场方程:

传染病传播的数学模型

. 传染病传播的数学模型 很多医学工作者试图从医学的不同角度来解释传染病传播时的一种 现象,这种现象就是在某一民族或地区,某种传染病传播时,每次所涉及的人数大体上是一常数。结果都不能令人满意,后来由于数学工作者的参与,用建立数学模型来对这一现象进行模拟和论证,得到了较满意的解答。 一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。为此,必须从诸多因素中,抓住主要因素,去掉次要因素。先把问题简化,建立相应的数学模型。将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型。从而使模型逐步完善。下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路。 一.最简单的模型 假设:(1) 每个病人在单位时间内传染的人数是常数k;(2) 一个人得病后经久不愈,并在传染期内不会死亡。 以i(t)表示t时刻的病人数,表示每个病人单位时间内传染的人数,k0i(0)= 表示最初时有个传染病人,则在时间内增加的病人数为ii t 001 /

11 . ???????ttt?i?t?tk?ii0?t?t→0得微分方程,并令两边除以??tdi???ti?k?0dt?…………(2.1 )????i0i?0??kt ei?ti0其解为0这表明传染病的转播是按指数函数增加的。这结果与传染病传播初期比较吻合,传染病传播初期,传播很快,被传染人数按指数函数增长。但由(2.1)的解可知,当t→∞时,i(t)→∞,这显然不符合实际情况。最多所有的人都传染上就是了。那么问题在那里呢?问题是就出在于两条假设对时间较长时不合理。特别是假设(1),每个病人单位时间内传染的人数是常数与实际情况不符。因为随着时间的推移,病人越来越多,而未被传染的人数却越来越少,因而不同时期的传播情况是不同的。为了与实际情况较吻合,我们在原有的基础上修改假设建立新的模型。 二. 模型的修改 将人群分成两类:一类为传染病人,另一类为未被传染的人,i。时刻这两类人的人数。表示ti (0)= 和分别用i(t)s(t)0假设:(1) 每个病人单位时间内传染的人数与这时未被传染的??t?kks;人数成正比。即0(2) 一人得病后,经久不愈,并在传染期内不会死亡。 由以上假设可得微分方程 2 / 11 . ??tdi?????ttksi??

相关文档
最新文档