塑性变形理论基础

冷冲压工艺及模具设计

NO.1第1章冷冲压变形基本知识

1.1塑性变形理论基础

1.2冷冲压材料

本章主要内容

金属塑性与塑性变形概念,塑性变形时的应力与应变,加工硬化与硬化曲线,冲压成形中的变形趋向性及其控制,冲压材料及其冲压成形性能。

本章学习目的要求

熟悉金属塑性变形的性质、影响因素、变形规律及冲压变形

趋向性的控制,初步掌握冲压材料的成形性能、性能试验方法、冲压对材料的基本要求及材料的选用原则。

本章重点

影响金属塑性的因素,塑性变形时应力应变关系,硬化与卸载规律,变形趋向性控制,材料的冲压成形性能及选用

1.1塑性变形理论基础

1.1.1金属塑性变形概述

1.1.2塑性变形时的应力与应变

1.1.3加工硬化与硬化曲线

1.1.4 冲压成形中的变形趋向性及其控制

1.1.1金属塑性变形概述

1.塑性变形、塑性与变形抗力的概念

塑性变形:物体在外力作用下产生变形,外力去除以后,物体

并不能完全恢复自己的原有形状和尺寸的变形。

塑性:物体具有塑性变形的能力。

变形抗力:在一定的变形条件(加载状况、变形温度及速度)下,引起物体塑性变形的单位变形力。

注意:

1)变形抗力反映了物体在外力作用下抵抗塑性变形的能力。

2)塑性不仅与物体材料的种类有关,还与变形方式和变形条件有关。

3)金属塑性的高低通常用塑性指标[延伸率δ和断面收缩率ψ]来衡量。

1.1.1金属塑性变形概述

2.塑性变形对金属组织和性能的影响

(1)形成了纤维组织当变形程度很大时,多晶体晶粒便显著地沿变形方

向被拉长。形成的纤维组织会使变形抗力增加,且会产生明显的各向异性。

(2)形成了亚组织随着变形程度的增加,一些位错互相纠缠在一起,密

集的位错纠结在晶粒内围成细小的粒状组织。亚组织的形成使得位错运

动更加困难,导致变形抗力的增加。

(3)产生了内应力由于变形不均,会在材料内部产生内应力,变形后作

为残余应力保留在材料内部。内应力的存在,将导致金属的开裂和变形

抗力的增加。

(4)产生了加工硬化随着变形程度的增加,金属的强度和硬度逐渐增加,而塑性和韧性逐渐降低。加工硬化在生产中具有很大的实际意义。

1.1.1金属塑性变形概述

3.影响金属塑性的因素

(1)金属的成分和组织结构一般组成金属的元素越少、晶粒愈细小、组织分布愈均匀,则金属的塑性愈好。

(2)变形时的应力状态塑性变形时,压应力的成分愈多,金属愈不易破坏,其可塑性也就愈好。

(3)变形温度对大多数金属而言,总的趋势是随着温度的升高,塑性增加,变形抗力降低。例举例外情形:碳钢的蓝脆区与红脆区。

(4)变形速度变形速度在冲压生产中以压力机滑块的移动速度来近似反映金属的变形速度。常规冲压使用的压力机工作速度较低,对金属塑性变形的影响不大。大型复杂件冲压时宜用低速。

(5)尺寸因素同一种材料,在其他条件相同的情况下,尺寸越大,其可塑性越差。

1.应力与应变状态

1.1.2塑性变形时的应力与应变

点的应力状态:通常是围绕该点取出一个微小正六面体(即所谓单元体),用该单元体上三个相互垂直面上的九个应力分量来表示。考虑剪应力互等,只要已知六个应力分量,则过此点任意切面上的应力都可求得。

(1)点的应力状态应力——正应力、剪应力

图1-1

点的应力状态

主应力状态:塑性变形可能出现的

主应力状态有九种,见图1-2。

1.应力与应变状态

1.1.2塑性变形时的应力与应变

图1-2 九种主应力图

主切应力:单元体其他方向的截面

上都有切应力,而且在与主平面成45°的截面上切应力达到最大值,称为主切应力。主切应力面上的应力状态如图1-6所示。

1-6

主切应

力状态

点的应变状态一般认为金属材料在

塑性变形时体积不变,因此主应变状态图只有三种。

主切应力及正应力值分别为:

2

/)(,2/)(,2/)(2/)(,2/)(,2/)(133132232112133132232112σσσσσσσσσσστσστσστ+=+=+=-±=-±=-±=2

/)(31m ax σστ-±=若σ1≥σ2≥σ3,则

1.应力与应变状态

1.1.2塑性变形时的应力与应变

图1-7点的应变状态

应变的大小可以通过物体变形前后尺寸的变化量来表示,如图1-9所示。三个方向的主应变可分别用相对应变(亦称条件应变)和实际应变(亦称对数应变)表示如下:1.应力与应变状态

1.1.2塑性变形时的应力与应变

实际应变:

00300020001t t t t t b b b b b l l l l l ?=

-=?=

-=?=

-=δδδ???

?

???

?

?

?==?==?==t t b b l

l t t t dt

b b b db

l l l dl 00003020

1ln

ln ln εεε相对应变:

图1-9变形前后尺寸的变化

(2)点的应变状态

实际应变与相对应变之间的关系为:ε=ln(1+δ)

分析:只有当变形程度很小时,δ才近似等于ε。一般把变形程度在10%以下的变形情况称为小变形问题。板料冲压成形一般属于大变形问题。

塑性变形时的体积不变定律:

321=++εεε分析:①塑性变形时,物体只有形状和尺寸发生变化,而体积保持不变。1.应力与应变状态

1.1.2塑性变形时的应力与应变

②不论应变状态如何,其中必有一个主应变的符号与其他两个主应变的符号相反,这个主应变的绝对值最大,称为最大主应变。③任何一种物体的塑性变形方式只有三种,与此相应的主应变状态图也只有三种,如图1-10所示。

图1-10 三种主应变图

2.塑性条件(屈服条件)

1.1.2塑性变形时的应力与应变

屈服——由弹性状态进入塑性状态。主要取决于两方面的因素:

(1)在一定的变形条件(变形温度和变形速度)下材料的物理机械性质

——转变的根据;

(2)材料所处的应力状态——转变的条件。

单向应力状态时:ζ=ζ

S 一般应力状态时:ζ

1

3

=βζ

S

中间应力β应力状态应用举例

σ

2

=σ1或σ2=σ3 1.0单向应力叠加三向等应力软凸模胀形、外缘翻边

σ

2

=(σ1+σ3)/2 1.155平面应变状态宽板弯曲

σ1不属于上面两种情况≈1.1其他应力状态(如平面应力状态等)缩口、拉深

表2-1 β值

弹性变形阶段:应力与应变之间的关系是线性的、可逆的,与加载历史无关;

塑性变形阶段:应力与应变之间的关系则是非线性的、不可逆的,与加载历史有关。

C

=--=--=--1

31

332322121εεσσεεσσεεσσC m

m m =-=-=-3

32211εσσεσσεσσ3.塑性变形时应力与应变的关系

1.1.2塑性变形时的应力与应变

经研究,当采用简单加载时,塑性变形的每一瞬间,主应力与主应变之间存在下列关系:

全量理论

(1)应力与应变符号不一定一致,即拉应力不一定对应拉应变,压应力不

一定对应压应变,要看应力与平均应力的差值;由全量理论可分析得出:

3.塑性变形时应力与应变的关系

1.1.2塑性变形时的应力与应变

(2)某方向应力为零其应变不一定为零;

(3)在任何一种应力状态下,应力分量的大小与应变分量的大小次序是相对应的,即若б1>б2>б3,则ε1>ε2>ε3。

C

=--=--=--1

31

332322121εεσσεεσσεεσσC m

m m =-=-=-332211εσσεσσεσσ

(4)若有两个应力分量相等,则对应的应变分量也相等,即若б1=б2,

则有ε1=ε2。

(5)三向等应力状态下,坯料不产生任何塑性变形(ε1=ε2=ε3=0),但有微小体积弹性变化。

3.塑性变形时应力与应变的关系

1.1.2塑性变形时的应力与应变

由全量理论可分析得出(续):

C

=--=--=--1

31

332322121εεσσεεσσεεσσC m

m m =-=-=-3

32211εσσεσσεσσ

1.1.3加工硬化与硬化曲线

1.硬化现象与硬化曲线

硬化现象:随着塑性变形

程度的增加,材料的强度、

硬度和变形抗力逐渐增加,

而塑性和韧性逐渐降低的

现象。

硬化曲线:实际上就是材料

变形时的应力随应变变化的

曲线。

图1-11 金属的应力-应变曲线

1—实际应力曲线2—假象应力曲线

1.硬化现象与硬化曲线

1.1.3加工硬化与硬化曲线

为了实用上的需要,常用直线或指数曲线来近似代替实际硬化曲线。硬化直线方程为:ζ = ζ0+D ε

式中ζ0——近似屈服强度;D ——硬化模数。

式中

A ——系数;

n ——硬化指数

硬化曲线方程为:

n

A εσ=表1-2 几种金属材料的A 与n 值

材料A /MPa n 材料

A /MPa n 软铜

710~7500.19~0.22银4700.31黄铜(w Zn 40%)9900.46铜420~4600.27~0.34黄铜(w Zn 35%)760~8200.39~0.44硬铝320~3800.12~0.13磷青铜

11000.22铝

160~210

0.25~0.27

磷青铜(低温退火)

890

0.52

2.卸载规律与反载软化现象 1.1.3加工硬化与硬化曲线

卸载规律:反映了在塑性变形过程中不可避免地有弹性变形存在。该规律对分析冲压成形时的回弹很有实际意义。反载软化规律:反映了对材料先拉伸再压缩时,压缩时的屈服点将低于拉伸时的屈服点。该规律

应用于拉弯工艺。

图1-15 反载软化曲线图1-14 拉伸—卸载曲线

1.1.4冲压成形中的变形趋向性及其控制

1.冲压成形中的变形趋向性

在冲压成形过程中,坯料的各部分在同一模具的作用下,却可能发生不同形式的变形,即具有不同的变形趋向性。

冲压成形时的变形区与传力区:图1-16

重要结论:在冲压成形中,需要最小变形力的区是相对弱区,而且弱区必先变形,因此,变形区应为弱区。

即:“弱区必先变形,变形区应为弱区”

2.控制变形趋向性的措施

1.1.4冲压成形中的变形趋向性及其控制

生产中控制变形趋向的措施主要有以下几方面:1)改变坯料各部分的相对尺寸

2)改变模具工作部分的几何形状和尺寸4)改变坯料局部区域的温度

环形坯料的变形趋向控制

3)改变坯料与模具接触面之间的摩擦阻力举例:

第一章 冲压变形的基本原理 复习题答案

第一章冲压变形的基本原理复习题答案 一、填空题 1.塑性变形的物体体积保持不变,其表达式可写成ε1+ε2+ε3=0。 2.冷冲压生产常用的材料有黑色金属、有色金属、非金属材料。 3.物体在外力的作用下会产生变形,如果外力取消后,物体不能恢复到原来的形状和尺 寸,这种变形称为塑性变形。 4.影响金属塑性的因素有金属的组织、变形温度、变形速度、变形的应力与应变状态、 金属的尺寸因素。 5.在冲压工艺中,有时也采用加热冲压成形方法,加热的目的是提高塑性,降低变形 抗力。 6.材料的冲压成形性能包括成形极限和成形质量两部分内容。 7.压应力的数目及数值愈大,拉应力数目及数值愈小,金属的塑性愈好。 8.在同号主应力图下引起的变形,所需的变形抗力之值较大,而在异号主应力图下引起 的变形,所需的变形抗力之值就比较小。 9.在材料的应力状态中,压应力的成分愈多,拉应力的成分愈少,愈有利于材料塑性的 发挥。 10.一般常用的金属材料在冷塑性变形时,随变形程度的增加,所有强度指标均增加,硬 度也增加,塑性指标降低,这种现象称为加工硬化。 11.用间接试验方法得到的板料冲压性能指标有总伸长率、均匀伸长率、屈强比、硬化指 数、板厚方向性系数γ和板平面方向性系数△γ。 12.在筒形件拉深中如果材料的板平面方向性系数△γ越大,则凸耳的高度越大。 13.硬化指数n值大,硬化效应就大,这对于伸长类变形来说就是有利的。 14.当作用于坯料变形区的拉应力的绝对值最大时,在这个方向上的变形一定是伸长变 形,故称这种变形为伸长类变形。

15. 当作用于坯料变形区的压应力的绝对值最大时,在这个方向上的变形一定是压缩变 形,故称这种变形为压缩类变形。 16. 材料对各种冲压加工方法的适应能力称为材料的冲压成形性能。 17. 材料的冲压性能好,就是说其便于冲压加工,一次冲压工序的极限变形程度和总的极限变形程度大,生产率高,容易得到高质量的冲压件,模具寿命长等。 18. 材料的屈服强度与抗拉强度的比值称为屈强比。屈强比小,对所有的冲压成形工艺都 有利。 二、判断题(正确的打√,错误的打×) 1. 变形抗力小的软金属,其塑性一定好。 (×) 2. 物体的塑性仅仅取决于物体的种类,与变形方式和变形条件无关。 (×) 3. 金属的柔软性好,则表示其塑性好。 (×) 4. 变形抗力是指在一定的加载条件和一定的变形温度下,引起塑性变形的单位变形力。 (×) 5. 物体某个方向上为正应力时,该方向的应变一定是正应变。 (×) 6. 物体某个方向上为负应力时,该方向的应变一定是负应变。 (×) 7. 物体受三向等压应力时,其塑性变形可以很大。 (×) 8. 材料的塑性是物质一种不变的性质。 (×) 9. 金属材料的硬化是指材料的变形抗力增加。 (×) 10. 物体受三向等拉应力时,坯料不会产生任何塑性变形。 (∨) 11. 当坯料受三向拉应力作用,而且0321>>>σσσ时,在最大拉应力σ1方向上的变 形一定是伸长变形,在最小拉应力 σ3方向上的变形一定是压缩变形。 (∨) 12. 当坯料受三向压应力作用,而且σσσ3210>>> 时,在最小压应力σ3方向上的变形一定是伸长变形,在最大压应力σ1方向上的变形一定是压缩变形。 (∨)

金属塑性成型原理-知识点

名师整理精华知识点 名词解释 塑性成型:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法 加工硬化:略 动态回复:在热塑性变形过程中发生的回复 动态再结晶:在热塑性变形过程中发生的结晶 超塑性变形:一定的化学成分、特定的显微组织及转变能力、特定的变形温度和变形速率等,则金属会表现出异乎寻常的高塑性状态 塑性:金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力。 屈服准则(塑性条件):在一定的变形条件下,只有当各应力分量之间符合一定关系时,指点才开始进入塑性状态,这种关系成为屈服准则。 塑性指标:为衡量金属材料塑性的好坏,需要有一种数量上的指标。 晶粒度:表示金属材料晶粒大小的程度,由单位面积所包含晶粒个数来衡量,或晶粒平均直径大小。填空 1、塑性成形的特点(或大题?) 1组织性能好(成形过程中,内部组织发生显著变化)2材料利用率高(金属成形是靠金属在塑性状态下的体积转移来实现的,不切削,废料少,流线合理)3尺寸精度高(可达到无切削或少切屑的要求)4生产效率高适于大批量生产 失稳——压缩失稳和拉伸失稳 按照成形特点分为1块料成形(一次加工、轧制、挤压、拉拔、二次加工、自由锻、模锻2板料成形多晶体塑性变形——晶内变形(滑移,孪生)和晶界变形 超塑性的种类——细晶超塑性、相变超塑性 冷塑性变形组织变化——1晶粒形状的变化2晶粒内产生亚结构3晶粒位向改变 固溶强化、柯氏气团、吕德斯带(当金属变形量恰好处在屈服延伸范围时,金属表面会出现粗超不平、变形不均匀的痕迹,称为吕德斯带) 金属的化学成分对钢的影响(C略、P冷脆、S热脆、N兰脆、H白点氢脆、O塑性下降热脆);组织的影响——单相比多相塑性好、细晶比粗晶好、铸造组织由于有粗大的柱状晶粒和偏析、夹杂、气泡、疏松等缺陷、塑性降低。 摩擦分类——干摩擦、边界摩擦、流体摩擦 摩擦机理——表面凹凸学说、分子吸附学说、粘着理论 库伦摩擦条件T=up 常摩擦力条件 t=mK 塑性成形润滑——1、特种流体润滑法2、表面磷化-皂化处理3、表面镀软金属 常见缺陷——毛细裂纹、结疤、折叠、非金属夹杂、碳化物偏析、异金属杂物、白点、缩口残余 影响晶粒大小的主要因素——加热温度、变形程度、机械阻碍物 常用润滑剂——液体润滑剂、固体润滑剂(干性固体润滑剂、软化型固体润滑剂) 问答题 1、提高金属塑性的基本途径 1、提高材料成分和组织的均匀性 2、合理选择变形温度和应变速率 3、选择三向压缩性较强的变形方式 4、减小变形的不均匀性 2、塑性成形中的摩擦特点 1、伴随有变形金属的塑性流动 2、接触面上压强高 3、实际接触面积大 4、不断有新的摩擦面产生 5、常在高温下产生摩擦 3、塑性成形中对润滑剂的要求 1、应有良好的耐压性能 2、应有良好的耐热性能 3、应有冷却模具的作用 4、应无腐蚀作用 5、应无毒 6、应使用方便、清理方便 4、防止产生裂纹的原则措施 1、增加静水压力 2、选择和控制适合的变形温度和变形速度 3、采用中间退火,以便消除变形过程中产生的硬化、变形不均匀、残余应力等。 4、提高原材料的质量 5、细化晶粒的主要途径 1、在原材料冶炼时加入一些合金元素及最终采用铝、钛等作为脱氧剂 2、采用适当的变形程度和变形温度 3、采用锻后正火或退火等相变重结晶的方法 6、真实应力-应变的简化形式及其近似数学表达式1、幂指数硬化曲线Y=B?n 2、有初始屈服应力的刚塑性硬化曲线Y=σs+B1?m 3、有初始屈服应力的刚塑性硬化直线Y=σs+B2?4、无加工硬化的水平直线Y=σs 7、为什么晶粒越细小,强度和塑性韧性都增加?晶粒细化时,晶内空位数目与位错数目都减少,位错与空位、位错间的交互作用几率减小,位错易于运动,即塑性好。位错数目少,塞积位错数目少,使应力集中降低。晶粒细化使晶界总面积增加,致使裂纹扩展的阻力增加,推迟了裂纹的萌生,增加了断裂应变。晶粒细小,裂纹穿过晶界进入相邻晶粒并改变方向的频率增加,消耗的能量增加,韧性增加。另外晶界总面积增加可以降低晶界上的杂质浓度,减轻沿晶脆性断裂倾向。 8、变形温度对金属塑性的影响 总趋势:随着温度的升高,塑性增加,但是这种增加并非简单的线性上升;在加热过程的某些温度区间,往往由于相态或晶粒边界状态的变化而出现脆性区,使金属的塑性降低。在一般情况下,温度由绝对零度上升到熔点时,可能出现几个脆性区,包括低温的、中温的、和高温的脆性区。 9、动态回复、为什么说是热塑性变形的主要软化机制? 动态回复是指在热塑性变形过程中发生的回复,2,动态回复,主要是通过位错的攀移,交滑移等,来实现的,对于铝镁合金、铁素体钢等,由于它们层错能高,变形时扩展位错宽度窄,集束容易,位错的攀移和交滑移容易进行,位错容易在滑移面间转动,而使异号位错相互抵消,结果使位错密度下降,畸变能降低,不足以达到动态再结晶所需的能量水平。因此这类金属在热塑性变形过程中,即使变形程度很大,变形温度远高于再结晶温度,也只会发生动态回复,而不发生动态再结晶。 10、什么是动态再结晶,其主要影响因素?(自己总结吧,课本太乱) 动态再结晶:在热塑性变形过程中发生的结晶。与金属的位错能高地有关,与晶界迁移的难易有关 ,金属越纯,发生动态再结晶的能力越强。

材料成型技术基础复习提纲整理知识讲解

材料成型技术基础复习提纲整理

第一章绪论 1、现代制造过程的分类(质量增加、质量不变、质量减少)。 2、那几种机械制造过程属于质量增加(不变、减少)过程。 (1)质量不变的基本过程主要包括加热、熔化、凝固、铸造、锻压(弹性变形、塑性变形、塑性流动)、浇灌、运输等。 (2)质量减少过程材料的4种基本去除方法:切削过程;磨料切割、喷液切割、热力切割与激光切割、化学腐蚀等;超声波加工、电火花加工和电解加工;落料、冲孔、剪切等金属成形过程。 (3)材料经过渗碳、渗氮、氰化处理、气相沉积、喷涂、电镀、刷镀等表面处理及快速原型制造方法属于质量增加过程。 第二章液态金属材料铸造成形技术过程 1、液态金属冲型能力和流动性的定义及其衡量方法 液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力。 液态金属的充型能力通常用铸件的最小壁厚来表示。 液态金属自身的流动能力称为“流动性”。液态金属流动性用浇注流动性试样的方法来衡量。在生产和科学研究中应用最多的是螺旋形试样。 2、影响液态金属冲型能力的因素(金属性质、铸型性质、浇注条件、铸件结构)

(1)金属的流动性:流动性好的液态金属,充型能力强,易于充满薄而复杂的型腔,有利于金属液中气体、杂质的上浮并排除,有利于对铸件凝固时的收缩进行补缩。 流动性不好的液态金属,充型能力弱,铸件易产生浇不足、冷隔、气孔、夹杂、缩孔、热裂等缺陷。 (2)铸型性质:铸型的蓄热系数b(表示铸型从其中的金属液吸取并储存在本身中热量的能力)愈大,铸型的激冷能力就愈强,金属液于其中保持液态的时间就愈短,充型能力下降。 (3)浇注条件:浇注温度对液态金属的充型能力有决定性的影响。浇注温度越高,充型能力越好。在一定温度范围内,充型能力随浇注温度的提高而直线上升,超过某界限后,由于吸气,氧化严重,充型能力的提高幅度减小。 液态金属在流动方向上所受压力(充型压头)越大,充型能力就越好。但金属液的静压头过大或充型速度过高时,不仅发生喷射和飞溅现象,使金属氧化和产生”铁豆”缺陷,而且型腔中气体来不及排出,反压力增加,造成“浇不足”或“冷隔”缺陷。 浇注系统结构越复杂,流动阻力越大,液态金属充型能力越低。 (4)铸件结构:衡量铸件结构的因素是铸件的折算厚度R(R=铸件体积/铸件散热表面积=V/S)和复杂程度,它们决定着铸型型腔的结构特点。 R大的铸件,则充型能力较高。R越小,则充型能力较弱。 铸件结构复杂,厚薄部分过渡面多,则型腔结构复杂,流动阻力大,充型能力弱。 铸件壁厚相同时,铸型中的垂直壁比水平壁更容易充满。

第一章 冲压变形的基本原理

第一章冲压变形的基本原理 1.1 金属塑性变形的基本概念 金属在外力作用下产生形状和尺寸的变化称为变形,变形分为弹性变形和塑性变形。而冲压加 工就是利用金属的塑性变形成形制件的一种金属加工方法。要掌握冲压成形加工技术,首先必须了 解金属塑性变形的一些基本原理。 1.1.1 塑性变形的物理概念 所有的固体金属都是晶体,原子在晶体所占的空间内有序排列。在没有外力作用时,金属中原子处于稳定的平衡状态,金属物体具有自己的形状与尺寸。施加外力,会破坏原子间原来的平衡状态,造成原子排畸变图1.1.1,引起金属形状与尺寸的变化。 图1.1.1 晶格畸变 a)无外力作用;b)外力作用产生弹性畸变;c)晶格滑移或孪动;d)外力卸去后的永久变形 假若除去外力,金属中原子立即恢复到原来稳定平衡的位置,原子排列畸变消失和金属完全恢复了自己的原始形状和尺寸,则这样的变形称为弹性变形(图1.1.1a )。增大外力,原子排列的畸变程度增加,移动距离有可能大于受力前的原子间距离,这时晶体中一部分原子相对于另一部分产生较大的错动(图1.1.1c )。外力除去以后,原子间的距离虽然仍可恢复原状,但错动了的原子并不能再回到其原始位置(图1.1.1d ),金属的形状和尺寸也都发生了永久改变。这种在外力作用下产生不可恢复的永久变形称为塑性变形。 受外力作用时,原子总是离开平衡位置而移动。因此,在塑性变形条件下,总变形既包括塑性变形,也包括除去外力后消失的弹性变形。 1.1.2塑性变形的基本形式 金属塑性变形是金属在外力的作用下金属晶格先产生晶格畸变,外力继续加大时,产生晶格错动,而这种错动通常在晶体中采取滑移和孪动两种形式。。

塑性成形重要知识点总结

塑性变形:材料在一定外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法。塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。 滑移:晶体在力的作用下,晶体的一部分沿一定的晶面和晶向相对于晶体的另一部分发生相对移动或切变。 滑移面:滑移中,晶体沿着相对滑动的晶面。滑移方向:滑移中,晶体沿着相对滑动的晶向。孪生:晶体在切应力作用下,晶体一部分沿着一定的晶面和一定的晶向发生均匀切变。 张量:由若干个当坐标改变时,满足转换关系的分量所组成的集合。 晶粒度:金属材料晶粒大小的程度。 变形织构:在塑性变形时,当变形量很大,多晶体中原为任意取向的各个晶粒,会逐渐调整其取向而彼此趋于一致。这种由于塑性变形的结果而使晶粒具有择优取向的组织。 动态再结晶:在热塑性变形过程中发生的再结晶。 主应力:切应力为0的微分面上的正应力。 主方向:主应力方向,主平面法线方向。 主应力空间:由三个主方向组成的空间 主切应力:切应力达到极值的平面上作用得切应力。 主切应力平面:切应力达到极值的平面。 主平面:应力空间中,可以找到三个互相垂直的面,其上均只有正应力,无切应力,此面就称为主平面。 平面应力状态:变形体内与某方向轴垂直的平面上无应力存在,并所有应力分量与该方向轴无关的应力状态。 平面应变状态:物体内所有质点都只在同一个坐平面内发生变形,而该平面的法线方向没有变形的变形状态。 理想刚塑性材料:研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。 理想弹塑性材料:塑性变形时,需考虑塑性变形之前的弹性变形,而不考虑硬化的材料。 弹塑性硬化材料:塑性变形时,既要考虑塑性变形前的弹性变形,又要考虑加工硬化的材料。刚塑性硬化材料:研究塑性变形时,不考虑塑性变形之前的弹性变形,需考虑变形过程中的加工硬化的材料。 屈服轨迹:两相应力状态下屈服准则的表达式在主应力坐标平面上的几何图形,一条封闭的曲线。 屈服表面:屈服准则的数学表达式在主应力空间中的几何图形是一个封闭的空间曲面称为屈服表面。 应变增量:以物体在变形过程中某瞬时的形状尺寸为原始状态,在此基础上发生的无限小应变。全量应变:反映张量在某一变形过程或变形过程中的某个阶段结束时的应变。 比例加载:在加载过程中,所有的外力一开始就按同一比例加载。 干摩擦:当变形金属与工具之间的接触表面上不存在任何外来的介质,即直接接触时所产生的摩擦。 流体摩擦:当变形金属与工具表面之间的润滑剂层较厚,两者表面完全被润滑剂隔开,这种状态下的摩擦称为。 磷化:塑性成形时润滑前在坯料表面上用化学方法制成一层磷酸盐或草酸盐薄膜,呈多孔吸附润滑剂。

塑性铰知识讲解

塑性铰

钢结构中的塑性铰及其应用综述 姓名:严小伟 学号:15121116 北京交通大学 2020年7月

钢结构中的塑性铰及其应用综述摘要:结构构件在地震作用下产生塑性变形,在塑性铰形成的过程中能吸取大量的能量。在设计中恰到好处地设计塑性铰形成的位里并加以应用,可有效降低震害,不至于出现迅速倒塌的后果。 关键字:塑性铰理论;塑性变形;破坏机制 1.引言地震是一种具有突发性和毁灭性的自然灾害,它对当今人类社会的危害主要体现在两个方面:一是地震引起建筑物的破坏或倒塌将会导致严重的人身伤亡和财产损失,二是地震及其地震引起的水灾、火灾等次生灾害将破坏人类社会赖以生存的自然环境,造成严重的经济损失,产生巨大的社会影响。我国地处世界上两个最活跃的地震带上,是世界上的多地震国家之一,强烈地震给我国人民带来的灾难尤为严重。从历史上来看,我国的地震灾害面积己达到我国的国土面积的一半以上,尤其在近几年地震活动相当频繁。因为很多特大地震给人类带来了巨大的经济损失,一些特大地震己给人类社会带来了不可估量的经济损失,这就使得我们要对深入研究土木工程结构的抗震设计理论和应用方法进行深入的研究。不同阶段,客观因素和人类的认识水平是不一样的,这就形成了不同的抗震设计思想和方法。通过工程技术措施,保证建筑物和工程设施的抗震安全,是减轻地震灾害的有效手段,作为抗震灾害的重要环节,结构抗震设计理论的不断完善是世界各国重点研究的课题之一。结构在塑性变形中形成的塑性铰在抗震中能发挥重要作用,塑性铰能否在罕遇地震中出现,对结构安全和生命财产的安危是至关重要的。所以,很有必要对其进行研究和探讨,并应充分利用塑性铰来消耗地震的能量,提高结构的抗震性能,降低地震灾害。

冲压成形的理论基础毕业论文

冲压成形的理论基础毕业论文 1.1 冲压的概念、基本工序、现状及发展方向 1.1.1 冲压的概念、特点及应用 冲压是利用安装在冲压设备(主要是压力机)上的模具对材料施加压力,使其产生分离或塑性交形,从而获得所需零件(俗称冲压件或冲件)的一种压力加工方法。冲压通常是在常温下对材料进行冷变形加工,且主要采用板料来加工成所需零件,所以也叫冷冲压或板料冲压。冲压是材料压力加工或塑性加工的主要方法之一,隶属于材料成形工程技术。 冲压所使用的模具称为冲压模具.简称冲模。冲模是将材料(金属或非金属)批量加工成所需冲件的专用工具。冲模在冲压中至关重要,没有符合要求的冲模,批量冲压生产就难以进行,没有先进的冲模,先进的冲压工艺就无法实现。冲压工艺与模具、冲压设备和冲压材料构成冲压加工的三要素. 与机械加工及塑性加工的其他方法相比,冲压加工无论在技术方面还是经济方面都具有许多独特的优点。主要表现如下。 ①冲压加工的生产效率高,且操作方便,易于实现机械化与自动化。这是因为冲压是依靠冲模和冲压设备来完成加工,普通压力机的行程次数为每分钟几十次,高速压力机每分钟可达数百次甚至千次以上,而且每次冲压行程就可能得到一个冲件。它们的关系如下图0-1。 ②冲压时由模具保证了冲压件的尺寸与形状精度,且一般不破坏冲压材料的表面质量,而模具的寿命一般较长,所以冲压件的质量稳定,互换性好,具有“一

模一样”的特征。 ③冲压可加工出尺寸围较大、形状较复杂的零件,如小到钟表的秒针,大到汽车纵梁、覆盖件等,加上冲压时材料的冷变形硬化效应,冲压件的强度和刚度均较高。 ④冲压一般没有切屑碎料生成,材料的消耗较少,且不需其他加热设备,因而是一种省料,节能的加工方法,冲压件的成本较低。 但是,冲压加工所使用的模具一般具有专用性,有时一个复杂零件需要数套模具才能加工成形,且模具制造的精度高,技术要求高,是技术密集形产品。所以.只有在冲压件生产批量较大的情况下,冲压加工的优点才能充分体现,从而获得较好的经济效益。 冲压在现代工业生产中,尤其是在大批量生产中应用十分广泛。相当多的工业部门越来越多地采用冲压方法加工产品零部件,如汽车、农机、仪器、仪表、电子、航空、航天、家电及轻工等行业。在这些工业部门中,冲压件所占的比重都相当的

冲压变形基础习题与解答

第2章冲压变形基础(答案) 一、填空 1.在室温下,利用安装在压力机上的模具对被冲材料施加一定的压力,使之产生分离和塑性变形,从而获得所需要形状和尺寸的零件(也称制件)的一种加工方法。 2.用于实现冷冲压工艺的一种工艺装备称为冲压模具。 3.冲压工艺分为两大类,一类叫分离工序,一类是变形工序。 4.物体在外力作用下会产生变形,若外力去除以后,物体并不能完全恢复自己的原有形状和尺寸,称为塑性变形。5.变形温度对金属的塑性有重大影响。就大多数金属而言,其总的趋势是:随着温度的升高,塑性增加,变形抗力降低。 6.以主应力表示点的应力状态称为主应力状态,表示主应力个数及其符号的简图称为主应力图。可能出现的主应力图共有九种。 7.塑性变形时的体积不变定律用公式来表示为:ε1+ε2+ε3=0。 8.加工硬化是指一般常用的金属材料,随着塑性变形程度的增加,其强度、硬度和变形抗力逐渐增加,而塑性和韧性逐渐降低。 9.在实际冲压时,分离或成形后的冲压件的形状和尺寸与模具工作部分形状和尺寸不尽相同,就是因卸载规律引起的弹性回复(简称回弹)造成的。 10. 材料对各种冲压成形方法的适应能力称为材料的冲压成形性能。冲压成形性能是一个综合性的概念,它涉及 的因素很多,但就其主要内容来看,有两个方面:一是成形极限,二是成形质量。 二、判断(正确的在括号内打√,错误的打×) 1.(×)主应变状态一共有9种可能的形式。 2.(×)材料的成形质量好,其成形性能一定好。 3.(√)热处理退火可以消除加工硬化(冷作硬化)。 4.(√)屈强比越小,则金属的成形性能越好。 5.(×)拉深属于分离工序。 三、选择 1.主应力状态中, A ,则金属的塑性越好。 A.压应力的成份越多,数值越大 B. 拉应力的成份越多,数值越大。 2.当坯料三向受拉,且σ1>σ2>σ3>0时,在最大拉应力σ1方向上的变形一定是 A ,在最小拉应力σ3方向上的变形一定是 B A.伸长变形 B.压缩变形 四、思考 1.冷冲压的特点是什么 2.冷冲压有哪两大类基本工序试比较分离工序和成形工序的不同之处。 3.何谓材料的板平面方向性系数其大小对材料的冲压成形有哪些方面的影响 4.何谓材料的冲压成形性能冲压成形性能主要包括哪两方面的内容材料冲压成形性能良好的标志是什么 5.冲压对材料有哪些基本要求如何合理选用冲压材料 1.冷冲压的特点是: (1)便于实现自动化,生产率高,操作简便。大批量生产时,成本较低。 (2) 冷冲压生产加工出来的制件尺寸稳定、精度较高、互换性好。 (3) 能获得其它加工方法难以加工或无法加工的、形状复杂的零件。 (4) 冷冲压是一种少无切削的加工方法,材料利用率较高,零件强度、刚度好。 2.冷冲压的基本工序为:分离工序和变形工序。 分离工序:材料所受力超过材料的强度极限,分离工序的目的是使冲压件与板料沿一定的轮廓线相互分离,成为所需成品的形状及尺寸。 成形工序:材料所受力超过材料的屈服极限而小于材料的强度极限,成形工序的目的,是使冲压毛坯在不破坏的条件下发生塑性变形,成为所要求的成品形状和尺寸。

金属塑性变形理论习题集

《金属塑性变形理论》习题集 张贵杰编 河北联合大学 金属材料与加工工程系 2013年10月

前言 《金属塑性变形理论》是关于金属塑性加工学科的基础理论课,也是“金属材料工程”专业大学本科生的主干课程,同时也是报考材料科学与工程专业方向硕士研究生的必考科目。 《金属塑性变形理论》总学时为72,内容上分为两部分,即“金属塑性加工力学”(40学时)和“塑性加工金属学”(32学时)。 为使学生能够学好本课,以奠定扎实的理论基础,提高分析问题和解决问题的能力,编者集20余年的教学经验特编制本习题集,一方面作为学生在学习本课程时的辅导材料,供课下消化课堂内容时使用,另一方面也可供任课教师在授课时参考,此外对报考研究生的学生还具有指导复习的作用。 本“习题集”在编写时,充分考虑了学科内容的系统性、学生学习的连贯性以及与教材顺序的一致性。该“习题集”中具有前后关联的一个个题目,带有由浅入深的启发性,能够引导学生将所学的知识不断深化。教师也可根据教学进程从中选题,作为课外作业指导学生进行练习。所有这些都会有助于学生理解和消化课堂上所学习的内容,从而提高课下的学习效率。 编者 2013年10月

第一部分 金属塑性加工力学 第一章 应力状态分析 1. 金属塑性加工中的外力有哪几种?其意义如何? 2. 为什么应力分量的表达需用双下标?每个下标都表示何物理意义? 3. 已知应力状态如图1-1所示,写出应力分量,并以张量形式表示。 4. 已知应力状态的六个分量7-=x σ,4-=xy τ,0=y σ,4=yz τ, 8-=zx τ,15-=z σ(MPa),画出应力状态图,写出应力张量。 5. 作出单向拉伸、单向压缩、三向等值压缩、平面应力、平面应变、 纯剪切应力状态的应力Mehr 圆。 6. 已知应力状态如图1-2所示,当斜面法线方向与三个坐标轴夹角余 弦31 ===n m l 时,求该斜面上的全应力S 、全应力在坐标轴上的 分量x S 、y S 、z S 及斜面上的法线应力n σ和切应力n τ。 图 1-1 ?? ?? ? ??------ =1548404847σT x y z 图 1-2 x 10

金属塑性_知识点汇总

金属塑性成形原理复习指南 第一章绪论 1、基本概念 塑性:在外力作用下材料发生永久性变形,并保持其完整性的能力。 塑性变形:作用在物体上的外力取消后,物体的变形不能完全恢复而产生的永久变形成为塑性变形。 塑性成型:材料在一定的外力作用下,利用其塑性而使其成形并获得一定的力学性能的加工方法。 2、塑性成形的特点 1)其组织、性能都能得到改善和提高。 2)材料利用率高。 3)用塑性成形方法得到的工件可以达到较高的精度。 4)塑性成形方法具有很高的生产率。 3、塑性成形的典型工艺 一次成形(轧制、拉拔、挤压) 体积成形 塑性成型 分离成形(落料、冲孔) 板料成形 变形成形(拉深、翻边、张形) 第二章金属塑性成形的物理基础 1、冷塑性成形 晶内:滑移和孪晶(滑移为主)滑移性能(面心>体心>密排六方) 晶间:转动和滑动 滑移的方向:原子密度最大的方向。 塑性变形的特点: ① 各晶粒变形的不同时性; ② 各晶粒变形的相互协调性; ③ 晶粒与晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。 合金使塑性下降。 2、热塑性成形 软化方式可分为以下几种:动态回复,动态再结晶,静态回复,静态再结晶等。 金属热塑性变形机理主要有:晶内滑移,晶内孪生,晶界滑移和扩散蠕变等。 3、金属的塑性 金属塑性表示方法:延伸率、断面收缩率、最大压缩率、扭转角(或扭转数) 塑性指标实验:拉伸试验、镦粗试验、扭转试验、杯突试验。 非金属的影响:P冷脆性 S、O 热脆性 N 蓝脆性 H 氢脆 应力状态的影响:三相应力状态塑性好。 超塑性工艺方法:细晶超塑性、相变超塑性 第三章金属塑性成形的力学基础 第一节应力分析 1、塑性力学基本假设:连续性假设、匀质性假设、各向同性假设、初应力为零、体积力为零、体积不变假设。

塑性成形原理知识点

1、塑性的概念:在外力作用下使固体金属发生永久变形而不破坏其完整性的能力。 2、塑性加工的特点:组织、性能好;材料利用率高;尺寸精度高;生产效率高。 3、塑性成形的分类:按工艺方法→体积(块料)成形{锻造、轧制、挤压、拉拔等},板料成形{弯曲、拉深、冲裁、剪切等};按成形温度→热成形、温成形、冷成型。 4、多晶体的塑性变形包括晶内变形和晶间变形。晶内变形的主要方式为滑移和孪生,其中以滑移变形为主。 5、体心立方:α-Fe、Cr、W、V、Mo;面心立方:Al、Cu、Ag、Ni、γ-Fe;密排六方:Mg、Zn、Cd、α-Ti 6、滑移的特点:滑移系越多,金属变形协调性好,塑性高。滑移方向的作用大于滑移面的作用。 7、单位面积上的内力称为应力。 8、* 9、 10、当滑移面上的剪切应力达到某一个值时,晶体产生滑移,改应力值即为临界剪切应力值。 11、滑移方向上的切应力分量为:τ=σcosυcosλ。 12、位错理论是指:滑移过程不是所有原子沿着滑移面同时产生刚性滑动,而是在某些局部区域先产生滑移,并逐步扩大。 13、晶体的滑移的主要方式是位错的移动和增值。 14、晶间变形是微量且困难的,其主要方式是晶粒间的相互滑动和转动。 15、塑性变形的特点是:具有不同时性、不均匀性和相互协调性。 16、晶粒大小对金属塑性变形的影响:当晶粒越小时,金属变形抗力越大、塑性越好、表面质量越好。

17、? 18、固溶体晶体中的异类原子(溶质原子)会阻碍位错的运动,从而对金属的塑性变形产生影响,表现为变形抗力和加工硬化率有所增加,塑性下降。这种现象称为固溶强化。 19、 20、当金属变形量恰好处在屈服延伸范围时,金属表面会出现粗糙不平、变形不均的痕迹,称为吕德斯带。为防止吕德斯带的产生,通常在薄板拉延前进行一道微量冷轧工序,使被溶质气团钉扎的错位大部分脱钉,再进行后续加工。 21、塑性变形对金属组织结构的影响:产生纤维组织、产生变形织构、产生亚结构。 22、当金属塑性变形程度增大时,金属的刚度及硬度升高,而塑性和韧性下降,这种现象称为加工硬化。 23、加工硬化可以改善一些冷加工工艺的工艺性、作为强化金属的手段,但是会降低金属塑性,使后续变形变得困难。加工硬化可以通过去应力退火得以消除。 24、金属热塑性变形的机理主要有:晶内滑移、晶内孪生(合称晶内变形),晶界滑移和扩散蠕变。 25、热塑性变形对金属组织性能的影响:改善晶粒组织;锻合内部缺陷;破碎并改善碳化物和非金属夹杂物在钢中的分布;形成纤维组织;改善偏析。 26、' 27、金属超塑性成型的种类分为:细晶超塑性和相变超塑性。 28、金属超塑性成型的特点有:大伸长率;无颈缩;低流动应力,易于成形;变形过程中基本无加工硬化;具有极好的流动性和充填性。 29、 30、金属超塑性成型对金属微观组织的影响:几乎看不到位错;没有晶内滑移;不形成亚结构。 31、金属超塑性成型对金属力学性能的影响:不产生织构、没有各向异性;具有较高的抗应力腐蚀能力;变形后没有残余应力;存在加工软化现象。 32、金属的塑性指标主要有:拉伸试验;镦粗实验;扭转试验。 33、化学成分对金属塑性的影响:磷→冷脆;硫→热脆;氮→兰脆;氢→氢脆。 34、变形温度对金属塑性的影响:总的趋势是随着温度升高,塑性增加,但在某些温度区间内,由于相态或晶粒边界的变化而出现脆性区,使金属的塑性降低。 35、, 36、变形力学条件对金属塑性的影响:当静水压力越大,即在主应力状态下压应力个数越多、

金属塑性变形原理

金属塑性变形原理 1、变形和应力 1.1塑性变形与弹性变形 金属晶格在受力时发生歪扭或拉长,当外力未超过原子之间的结合力时,去掉外力之后晶格便会由变形的状态恢复到原始状态,也就是说,未超过金属本身弹性极限的变形叫金属的弹性变形。多晶体发生弹性变形时,各个晶粒的受力状态是不均匀的。 当加在晶体上的外力超过其弹性极限时,去掉外力之后歪扭的晶格和破碎的晶体不能恢复到原始状态,这种永久变形叫金属的塑性变形。金属发生塑性变形必然引起金属晶体组织结构的破坏,使晶格发生歪扭和紊乱,使晶粒破碎并且使晶粒形状发生变化,一般晶粒沿着受力方向被拉长或压缩。 1.2应力和应力集中 塑性变形时,作用于金属上的外力有作用力和反作用力。由于这两种外力的作用,在金属内部将产生与外力大小相平衡的内力。单位面积上的这种内力称为应力,以σ表示。 σ=P/S 式中σ——物体产生的应力,MPa: P——作用于物体的外力,N; S——承受外力作用的物体面积,mm2。 当金属内部存在应力,其表面又有尖角、尖缺口、结疤、折叠、划伤、裂纹等缺陷存在时,应力将在这些缺陷处集中分布,使这些缺陷部位的实际应力比正常应力高数倍。这种现象叫做应力集中。 金属内部的气泡、缩孔、裂纹、夹杂物及残余应力等对应力的反应与物体的表面缺陷相同,在应力作用下,也会发生应力集中。 应力集中在很大程度上提高了金属的变形抗力,降低了金属的塑性,金属的破坏往往最先从应力集中的地方开始。 2、塑性变形基本定律 2.1体积不变定律 钢锭在头几道轧制中因其缩孔、疏松、气泡、裂纹等缺陷受压缩而致密,体积有所减少,此后各轧制道次的金属体积就不再发生变化。这种轧制前后体积不变的客观事实叫做体积不变定律。它是计算轧制变形前后的轧件尺寸的基本依据。 H、B、L——轧制前轧件的高、宽、长;h、b、l——轧制后轧件的高、宽、长。根据体积不变定律,轧件轧制前后体积相等,即 HBL=hbl 2.2最小阻力定律 钢在塑性变形时,金属沿着变形抵抗力最小的方向流动,这就叫做最小阻力定律。根据这个定律,在自由变形的情况下,金属的流动总是取最短的路线,因为最短的路线抵抗变形的阻力最小,这个最短的路线,即是从该动点到断面周界的垂线。

ANSYS弹性及塑性(详细、全面)1讲解

目录 什么是塑性 (1) 路径相关性 (1) 率相关性 (1) 工程应力、应变与真实应力、应变 (1) 什么是激活塑性 (2) 塑性理论介绍 (2) 屈服准则 (2) 流动准则 (3) 强化准则 (3) 塑性选项 (5) 怎样使用塑性 (6) ANSYS输入 (7) 输出量 (7) 程序使用中的一些基本原则 (8) 加强收敛性的方法 (8) 查看结果 (9) 塑性分析实例(GUI方法) (9) 塑性分析实例(命令流方法) (14)

弹塑性分析 在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面: ?什么是塑性 ?塑性理论简介 ?ANSYS程序中所用的性选项 ?怎样使用塑性 ?塑性分析练习题 什么是塑性 塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。 由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。塑性分析中考虑了塑性区域的材料特性。 路径相关性: 即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。 路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。 率相关性: 塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。 大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。 工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力—应变曲线形式给出。材料数据可能是工程应力 )。(P A0)与工程应变(?l l0),也可能是真实应力(P/A)与真实应变(n L l l() 0大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。 什么时候激活塑性: 当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。而屈服应力本身可能是下列某个参数的函数。 ?温度 ?应变率 ?以前的应变历史 ?侧限压力 ?其它参数 塑性理论介绍 在这一章中,我们将依次介绍塑性的三个主要方面: ?屈服准则 ?流动准则 ?强化准则 屈服准则: 对单向受拉试件,我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。 屈服准则是一个可以用来与单轴测试的屈服应力相比较的应力状态的标量表示。因此,

(完整版)《金属塑性成形原理》习题答案

金属塑性成形原理》 习题答案 一、填空题 1. 衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 2. 所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 3. 金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 4. 请将以下应力张量分解为应力球张量和应力偏张量 5. 对应变张量,请写出其八面体线变与八面体切应变的表达式。 =

6.1864 年法国工程师屈雷斯加( H.Tresca )根据库伦在土力学中研究成果, 并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果 采用数学的方式,屈雷斯加屈服条件可表述为 。 7. 金属塑性成形过程中影响摩擦系数的因素有很多, 归结起来主要有 金属的 种类和 化学成分 、 工具的表面状态 、 接触面上的单位压力 、 变形温度 、 变形速度 等几方面的因素。 8. 变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切 线方向即 为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态 下,塑性区内各点的应力状态不同其实质只是 平均应力 不同,而各点处 的 最大切应力 为材料常数。 9. 在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应 的速度 场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场, 称之为 真实 应力场和 真实 速度场,由此导出的载荷,即为 真实 载荷, 它是唯一的。 10. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: 11、金属塑性成形有如下特点: 、 、 、 12、按照成形的特点,一般将塑性成形分为 和 两大类,按 照成形时工件的温度还可以分为 、 和 三类。 13、金属的超塑性分为 和 两大类。 14、晶内变形的主要方式和单晶体一样分为 和 。 其中 变形是主要的,而 变形是次要的,一般仅起调节作用。 ,则单元内任一点外的应变可表示为

燕山大学塑性变形力学基础与轧制原理复习大纲

"塑性变形力学基础与轧制原理" 参考书:"塑性变形力力学基础及轧制及原理"曹鸿德等主编,机械工业出版社。 学生应掌握的主要内容: 点的应力状态的张量性质:已知主方向和主应力,求斜面应力:画出主应力图示;写出主应力平面的方向余弦,主切应力平面的法应力, 主切应力;什么是八面体平面,写出八面体平面法向应力及剪应力分式:写出平衡微分方程式;推导体积应力及不可压缩性条件,画出主应变图示:试述均匀变形的定义和特点,对数应变系数和条件应变系数的关系;试述塑性表面的概念;试述最大剪应力等于常值的塑性条件,写出公式:试述单位弹性形态改变势能等于常值的塑性条件,写出公式:试述两个塑性条件的差别和联系。 试述平面问题的概念,写出平面问题的方程式:如何选定滑移线的参变量和确定滑移线的方向,对简单的实际问题能给出滑移线的正方向:推导汉基积分(4一17)式及(4一18)式:试述滑移线的几何性质;证明汉基第一定理(画图):画出窄锤头冲压厚板时的滑移线场,并求解单位压力 P;试述何为几何可能位移和静力可能的屈服应力状态;求各种典型压力加工情况的上限解。 试述在平面镦粗和轧制时的单位摩擦力的分布规律;推导卡尔曼近似平衡微分方程式(6-46)及单位压力基本平衡微分方程式(4-49)并分析求解此方程式的基本方法;推导奥洛万近似的平衡微分方程式(6 -69);画图说明各种因素对单位压力的影响;导出计算咬入角及变形区 长度的公式;试述中性角的概念;前滑的概念及前滑公式,如何测定前滑系数;写出轧件的工程常用变形系数;试述位移体积的概念及导出其表达式,导出以对数变形系数表示的体积不变条件;简述变形抗力的概念;简述各种因素对变形抗力的影响,了解强化强度,变形速度的概念;试述滑动摩擦的种类及概念,基本滑动摩擦机理;导出斯通公式;阐述轧机传动力矩的组成及概念;画图说明在简单轧制,带张力轧制及单辊传动时金属对轧辊作用力的方向。

塑性变形理论基础

冷冲压工艺及模具设计 NO.1第1章冷冲压变形基本知识 1.1塑性变形理论基础 1.2冷冲压材料

本章主要内容 金属塑性与塑性变形概念,塑性变形时的应力与应变,加工硬化与硬化曲线,冲压成形中的变形趋向性及其控制,冲压材料及其冲压成形性能。 本章学习目的要求 熟悉金属塑性变形的性质、影响因素、变形规律及冲压变形 趋向性的控制,初步掌握冲压材料的成形性能、性能试验方法、冲压对材料的基本要求及材料的选用原则。 本章重点 影响金属塑性的因素,塑性变形时应力应变关系,硬化与卸载规律,变形趋向性控制,材料的冲压成形性能及选用

1.1塑性变形理论基础 1.1.1金属塑性变形概述 1.1.2塑性变形时的应力与应变 1.1.3加工硬化与硬化曲线 1.1.4 冲压成形中的变形趋向性及其控制

1.1.1金属塑性变形概述 1.塑性变形、塑性与变形抗力的概念 塑性变形:物体在外力作用下产生变形,外力去除以后,物体 并不能完全恢复自己的原有形状和尺寸的变形。 塑性:物体具有塑性变形的能力。 变形抗力:在一定的变形条件(加载状况、变形温度及速度)下,引起物体塑性变形的单位变形力。 注意: 1)变形抗力反映了物体在外力作用下抵抗塑性变形的能力。 2)塑性不仅与物体材料的种类有关,还与变形方式和变形条件有关。 3)金属塑性的高低通常用塑性指标[延伸率δ和断面收缩率ψ]来衡量。

1.1.1金属塑性变形概述 2.塑性变形对金属组织和性能的影响 (1)形成了纤维组织当变形程度很大时,多晶体晶粒便显著地沿变形方 向被拉长。形成的纤维组织会使变形抗力增加,且会产生明显的各向异性。 (2)形成了亚组织随着变形程度的增加,一些位错互相纠缠在一起,密 集的位错纠结在晶粒内围成细小的粒状组织。亚组织的形成使得位错运 动更加困难,导致变形抗力的增加。 (3)产生了内应力由于变形不均,会在材料内部产生内应力,变形后作 为残余应力保留在材料内部。内应力的存在,将导致金属的开裂和变形 抗力的增加。 (4)产生了加工硬化随着变形程度的增加,金属的强度和硬度逐渐增加,而塑性和韧性逐渐降低。加工硬化在生产中具有很大的实际意义。

屈服 塑性变形 基本常识

当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(σs或σ0.2)。 有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度 潜艇用钢的屈服强度肯定是涉密的,给你找个Q235钢材的屈服强度是235MPa. “屈服强度”,单位是Pa,如海狼级钢HY-100屈服强度应该是820MPa(这是相当高的值了,因为一般工程用的低碳钢屈服强度是215-275MPa,比如制造钢筋的Q215就是读“屈215”,屈服强度是215MPa)好了,看到帕斯卡这个单位你应该知道是什么意思了吧!力/面积。是应力的表达式,你可以理解为在应力达到820MPa时,这种钢材就会发生屈服现象。规范语言是材料在应力下发生应变。在应力不增加的情况下持续应变,这个应力就是材料的屈服点,应力和材料横截面积的比值就是屈服强度。 那个图,农业路没有补上来,我给你补个,S点就是他说的屈服点。如果看不明白我再补充解释。 屈服强度表示应当是σs或σ0.2。其中前者经常用来表示塑性材料,而后者表示塑性变形不怎么明显的脆性材料 屈服强度是对金属材质而言,不分板材材或者棒材或者管材。做拉伸试验测屈服强度,样品一律是棒子外观。 屈服强度反应的是材料抗塑性形变的能力。 给试样施加持续增大的拉力,随着拉力的增大,试样的形变会由弹性形变过度到塑性形变。过度阶段中测得的最小力,称之为屈服强度。

相关文档
最新文档