测定砷含量的几种方法

测定砷含量的几种方法
测定砷含量的几种方法

此处介绍银盐法、氢化物原子荧光光度法、氢化物发生原子吸收光谱法。

一、银盐法

1. 原理

样品经消化后,以碘化钾、氯化亚锡将高价砷还原为三价砷,然后与锌粒和酸产生的新生态氢生成砷化氢,经银盐溶液吸收后,形成红色胶态物,在510nm 处比色,与标准系列比较定量。最低检出量为0.2mg/kg。

2. 适用范围

标准方法(GB/T5009.11-1996),适用于各类食品中总砷的测定。

3. 试剂

除另有规定,所用的试剂为分析纯试剂,水为蒸馏水或同等纯度水。

(1)硝酸。

(2)硫酸。

(3)盐酸。

(4)硝酸+高氯酸混合液(4+1):量取80ml 硝酸,加20ml 高氯酸,混匀。(5)硝酸镁溶液(150g/L):称取15g 硝酸镁〖Mg(NO3)2·6H2O〗溶于水中,并稀释至100ml 。

(6)氧化镁。

(7)碘化钾溶液(150g/L):称取15g 碘化钾溶于水中,并稀释至100ml,储于棕色瓶中。

(8)酸性氯化亚锡溶液:称取40.0g 氯化亚锡(SnCl2·2H2O),加盐酸溶解并稀释至100.0ml,加入数颗金属锡粒。

** 氯化亚锡(SnCl2)又称二氯化锡,白色或半透明晶体,带二个分子结晶水(SnCl2·2H2O)的是无色针状或片状晶体,溶于水、乙醇和乙醚。氯化亚锡试剂不稳定,在空气中被氧化成不溶性氯氧化物,失去还原作用,为了保持试剂具有稳定的还原性,在配制时,加盐酸溶解为酸性氯化亚锡溶液,并加入数粒金属锡粒,使其持续反应生成氯化亚锡及新生态氢,使溶液具有还原性。氯化亚锡在本实验的作用为将As5+还原为As3+;在锌粒表面沉积锡层以抑制产生氢气作用过猛。

(9)盐酸溶液(1+1):量取50ml 盐酸,小心倒入50ml 水中,混匀。(10)乙酸铅溶液(100g/L)。

(11)乙酸铅棉花:用100g/L 乙酸铅溶液浸透脱脂棉后,压除多余溶液,并使疏松,在100℃以下干燥后,储存于玻璃瓶中。

** 乙酸铅棉花塞入导气管中,是为吸收可能产生的硫化氢,使其生成硫化铅而滞留在棉花上,以免吸收液吸收产生干扰,硫化物和银离子生成灰黑色的硫化银,

但乙酸铅棉花要塞得不松不紧为宜。

(12)无砷锌粒。

不同形状和规格的无砷锌粒,因其表面积不同,与酸反应的速度就不同,这样生成的氢气气体流速不同,将直接影响吸收效率和测定结果。一般认为蜂窝状锌粒3g,或大颗粒锌粒5g 均可获得良好结果。也有人认为大小颗粒的锌粒混合使用则效果满意。一般确定标准曲线与试样均用同一规格的锌粒为宜。

(13)氢氧化钠溶液(200g/L)。

(14)硫酸溶液(6+94):量取6.0ml 硫酸,小心倒入94ml 水中,混匀。(15)二乙氨基二硫代甲酸银-三乙醇胺-三氯甲烷溶液:称取0.25g 二乙氨基二

硫代甲酸银〖(C2H5)2NCS2Ag 〗置于乳钵中,加少量三氯甲烷研磨,移入100ml 量筒中,加入 1.8ml 三乙醇胺,再用三氯甲烷分次洗涤乳钵,洗液一并移入量筒中,再用三氯甲烷稀释至100.0ml,放置过夜。滤入棕色瓶中保存。

** 二乙氨基二硫代甲酸银(silver diethyl dithio carbamate),或称二乙基二硫代氨基甲酸银盐(diethyl dithio carbamic acid,Ag salt),(C2H5)2NC(S)SAg,分子量256.15,为黄色粉末,不溶于水而溶于三氯甲烷,性质极不稳定,遇光或热,易生成银的氧化物而呈灰色,因而配置浓度不易控制。若市售品不适用,实验室也可自行制备。

** 二乙氨基二硫代甲酸银制备法:分别溶解1.7g 硝酸银、2.3g二乙氨基二硫代甲酸钠(DDCNa,铜试剂)于100ml 蒸馏水中,冷却到20℃以下,缓缓搅拌混合,过滤生成的柠檬黄色银盐(AgDDC )沉淀,用冷蒸馏水洗涤沉淀数次,在干燥器中干燥,避光保存备用。

** 吸收液中AgDDC 浓度以0.2%~0.25%为宜,浓度过低将影响测定的灵敏度及重现性,因此,配置试剂时,应放置过夜或在水浴上微热助溶。轻微的混浊可以过滤除去。若试剂溶解度不好时,应重新配制,吸收液必须澄清。

(16)砷标准储备溶液:精密称取0.1320g在硫酸干燥器中干燥过的或在100℃干燥2h的三氧化二砷,加5ml 200g/L氢氧化钠溶液,溶解后加25ml 硫酸(6+94)溶液,移入1000ml 容量瓶中,加新煮沸冷却的水稀释至刻度,储存于棕色玻璃塞瓶中。此溶液每毫升相当于0.10mg 砷。

(17)砷标准使用液:吸取 1.0ml砷标准溶液,置于100ml容量瓶中,加1ml 硫酸(6+94)溶液,加水稀释至刻度,此溶液每毫升相当于 1.0 μg砷。

4. 仪器

(1)分光光度计。

(2)测砷装置

①100~150ml 锥形瓶:19号标准口。

②导气管:管口19号标准口或经碱处理后洗净的橡皮塞与锥形瓶密合时不应漏气。管的另一端管径 1.0mm。

③吸收管:10ml 刻度离心管作吸收管用。

5. 操作方法

5.1 样品消化

(1)硝酸- 高氯酸- 硫酸法

A. 粮食、粉丝、粉条、豆干制品、糕点、茶叶等及其他含水分少的固体食品:称取 5.00g 或10.00g 的粉碎样品,置于250~500ml 定氮瓶中,先加水少许使湿润,加数粒玻璃珠,10~15ml 硝酸- 高氯酸混合液,放置片刻,小火缓缓加热,待作用缓和,放冷。沿瓶壁加入5ml 或10ml 硫酸,再加热,至瓶中液体开始变成棕色时,不断沿瓶壁滴加硝酸- 高氯酸混合液至有机质完全分解。加大火力,至产生白烟,溶液应澄明无色或微带黄色,放冷。在操作过程中应注意防止爆炸。

加20ml 水煮沸,除去残余的硝酸至产生白烟为止,如此处理两次,放冷。将冷后的溶液移入50ml或100ml 容量瓶中,用水洗涤定氮瓶,洗涤液并入容量瓶中,放冷,加水至刻度,混匀。定容后的溶液每10ml相当于1g 样品,相当加入硫酸量1ml。

样品消化液中残余的硝酸需如法驱尽,硝酸的存在影响反应与显色,会导致结果

偏低,必要时需增加测定用硫酸的加入量。

取与消化样品相同量的硝酸- 高氯酸混合液和硫酸,按同一方法做试剂空白实验。

B. 蔬菜、水果:称取25.00g 或50.00g 洗净打成匀浆的样品,置于250~

500ml 定氮瓶中,加数粒玻璃珠,10~15ml硝酸- 高氯酸混合液,以下按粮食等样品自"放置片刻"起依法操作,但定容后的溶液每10ml相当于5g 样品,相当加入硫酸量1ml。

C. 酱、酱油、醋、冷饮、豆腐、腐乳、酱腌菜等:称取10.00g 或20.00g 样品(或吸取10.00ml 或20.00ml 液体样品),置于250~500ml定氮瓶中,加数粒玻璃珠,5~15ml硝酸-高氯酸混合液,以下按粮食等样品自"放置片刻"起依法操作,但定容后的溶液每10ml 相当于2g 样品或2ml 样品。

D. 含酒精性饮料或含二氧化碳饮料:吸取10.00ml 或20.00ml 样品,置于250~500ml 定氮瓶中,加数粒玻璃珠,先用小火加热除去乙醇或二氧化碳,再加5~

10ml硝酸-高氯酸混合液,混匀后,以下按粮食等样品自"放置片刻"起依法操作,但定容后的溶液每10ml 相当于2ml 样品。

吸取5~10ml 水代替样品,加与消化液相同量的硝酸- 高氯酸混合液和硫酸。按相同操作方法做试剂空白实验。

E. 含糖量高的食品:称取 5.00g 或10.00g 的粉碎样品,置于250~500ml 定氮瓶中,先加水少许使湿润,加数粒玻璃珠,10~15ml 硝酸-高氯酸混合后,摇匀。缓缓加入5ml或者10ml 硫酸,待作用缓和停止起泡沫后,再加大火力,至有机质分解完全,发生白烟,溶液应澄明无色或微带黄色,放冷。以下按粮食等样品自" 加20ml 水煮沸" 起依法操作。

F. 水产品:取可食部分样品捣成匀浆,称取 5.00g 或10.00g (海产藻类、贝类可适当减少取样量),置于250~500ml定氮瓶中,加数粒玻璃珠,10~15ml硝酸-高氯酸混合后,以下按粮食等样品自"沿瓶壁加入5ml或10ml硫酸" 起依法操作。

(2)硝酸- 硫酸法:以硝酸代替硝酸- 高氯酸混合液进行操作。

(3)灰化法

A. 粮食、茶叶及其他含水分少的食品:称取 5.00g 磨碎样品,置于坩埚中,加

入1g氧化镁,1ml 氯化镍及10ml硝酸镁溶液,混匀,浸泡4h。于低温或置水浴锅上蒸干。用小火炭化至无烟后移入马弗炉中加热至550℃,灼烧3~4h,冷却后取出。

加5ml 水湿润灰分后,用细玻棒搅拌,再用少量水洗下玻棒上附着的灰分至坩埚内。放置水浴上蒸干后移入高温炉550℃灰化2h,冷却后取出。

加5ml 水湿润灰分,再慢慢加入10ml盐酸溶液(1 +1),然后将溶液移入

50ml 容量瓶中。坩埚用盐酸溶液(1 +1)洗涤3次,每次5ml,再用水洗涤3次,每次5ml,洗涤液均并入容量瓶中,再加水至刻度,混匀。定容后的溶液每10ml相当于1g 样品,相当于加入盐酸量(中和需要量除外) 1.5ml 。全量供银盐法测定时,不必再加盐酸。

取于灰化样品相同量的氧化镁和硝酸镁溶液,按同一操作方法作试剂空白试验。

B. 植物油:称取 5.00g 样品,置于50ml 瓷坩埚中,加10g 硝酸镁,再在上面覆盖2g氧化镁,将坩埚置小火上加热,至刚冒烟,立即将坩埚取下,以防内容物溢出,待烟小后,再加热至炭化完全。将坩埚移至马弗炉中,550℃以下灼烧至

灰化完全,冷却取出。

加5ml 水湿润灰分,再缓缓加入15ml盐酸溶液(1 +1),然后将溶液移入

50ml 容量瓶中。坩埚用盐酸溶液(1+1)洗涤5次,每次5ml,洗涤液均并入容量瓶中,加盐酸(1 +1)至刻度,混匀。定容后的溶液每10ml相当于1g 样品,相当于加入盐酸量(中和需要量除外) 1.5ml 。

取于消化样品相同量的氧化镁和硝酸镁,按同一操作方法作试剂空白试验。

C. 水产品:取可食部分样品捣成匀浆,称取5.00g 置于坩埚中,加1g氧化镁及10ml 硝酸镁溶液,混匀,浸泡4h。以下按灰化法中粮食等样品自"于低温或置水浴锅上蒸干" 起依法操作。

5.2测定

(1)用硝酸-高氯酸-硫酸或硝酸-硫酸消化液吸取一定量的消化后的定容溶液(相当于5g 样品)及同量的试剂空白液,分别置于150ml 锥形瓶中,补加硫酸至总量为5ml,加水至50~55ml。

吸取0.0,2.0,4.0,6.0,8.0,10.0ml 砷标准使用液(相当于0,2,4,6,8,10μg 砷)分别置于150ml锥形瓶中,加水至40ml,再加10ml 硫酸(1+1)。于样品消化液,试剂空白液及砷标准溶液中各加3ml 150g/L 碘化钾溶液,0.5ml 酸性氯化亚锡溶液,混匀,静置15min。各加入3g 无砷锌粒,立即分别塞上装有

乙酸铅棉花的导气管,并使管尖端插入盛有4ml 银盐溶液的离心管中的液面下,在常温下反应45min 后,取下离心管,加三氯甲烷补足4ml 。用1cm 比色杯,以零管调节零点,于波长520nm 处测吸光度,绘制标准曲线比较。

** 砷化氢发生及吸收应防止在阳光直射下进行,同时应控制温度在25℃左右,温度过高反应快,吸收不彻底,过低则反应时间延长,作用时间以1h 为宜,夏季可缩短为45min。室温高时三氯甲烷部分挥散,在比色前用三氯甲烷补足4ml,并不影响结果。

吸收液中含有水分时,当吸收与比色环境的温度改变,会引起轻微浑浊,比色时可微温使其澄清。

(2)用灰化法消化液取灰化法消化液及试剂空白液,分别置于150ml 锥形瓶中。吸取0.0, 2.0, 4.0, 6.0,8.0,10.0ml 砷标准使用液(相当于0,2,4,6,8,10μg砷)分别置于150ml 锥形瓶中,加水至43.5ml,再加6.5ml 盐酸。以下按①自"于样品消化液"起依法操作。

6. 计算

(A1-A2)× 1000

X = -------------------------------------

M × V2/V1 × 1000

式中:X- 样品中砷的含量,mg/kg 或mg/L;A1-测定用样品消化液中砷的含量,μg;A2-试剂空白液中砷的含量,μg;M - 样品质量(体积),g(ml);V1-样品消化液的总体积,ml ;V2-测定用样品消化液的体积,ml。

二、氢化物原子荧光光度法

1. 原理

食品样品经湿消解或干灰化后,加入硫脲使五价砷还原为三价砷,再加入硼氢化钠或硼氢化钾使还原生成砷化氢,由氩气载入石英原子化器中分解为原子态砷,

在特制砷空心阴极灯的发射光激发下产生原子荧光,其荧光强度在固定条件下与被测液中的砷浓度成正比,与标准系列比较定量。

2. 试剂本方法所用试剂均为分析纯以上试剂,测定用水为去离子水或同等程度的水。

(1)氢氧化钠溶液(2g/L )。

(2)硼氢化钠(NaBH4)溶液(10g/L ):称取硼氢化钠10.0g ,溶于2g/L 氢氧化钠溶液1000ml中,混匀。此溶液于冰箱中可保存10天,取出后应当日使用。(也可称取14g硼氢化钾代替10g硼氢化钠)

(3)硫脲溶液(50g/L )。

(4)硫酸溶液(1+9):量取硫酸100ml,小心倒入900ml 水中,混匀。

(5)氢氧化钠溶液(100g/L )(供配制砷标液用,少量即够)。

(6)砷标准溶液

A. 砷标准贮备液,含砷0.1mg/ml 。精密称取于100℃干燥2h以上的三氧化二砷(As2O3)0.1320g ,加100g/L 氢氧化钠10ml溶解,用水定量转入1000ml容量瓶中,加硫酸(1+9)25ml,定容至刻度。

B. 砷标准使用液,含砷1μg/ml 。吸取1.00ml 砷标准贮备液于100ml容量瓶中,用水稀释至刻度。此液应当日配制使用。

(7)湿消解试剂:硝酸、硫酸、高氯酸。

(8)干灰化试剂:六水硝酸镁(150g/L )、氧化镁、盐酸(1+1)。

3. 仪器

XDY、AFS或VI 系列氢化物原子荧光光度计。

4. 操作步骤

4.1 样品消解

(1)湿消解:固体样品称样1~2.5g ,液体样品称样5~10g(或ml)(精确至小数点后第2位),置于50~100ml锥形烧瓶中,同时做两份试剂空白。加硝酸20~40ml,硫酸1.25ml ,摇匀后放置过夜,置于电热板上加热消解。若消解液处理至10ml左右时仍有未分解物质或色泽变深,稍冷,补加硝酸5~10ml,再消解至10ml 左右观察,如此重复两三次,注意避免炭化。如仍不能消解完全,则加入高氯酸1~2ml,继续加热至消解完全后,再持续蒸发至高氯酸的白烟散尽,硫酸的白烟开始冒出,冷却,加水25ml,再蒸发至冒硫酸白烟。冷却,用水将内容物定量转入25ml 容量瓶或比色管中,其间加入50g/L 硫脲2.5ml ,补水至刻度并混匀,备测。

(2)干灰化:一般应用于固体样品。称取1~2.5g (精确至小数点后第2位)于50~100ml坩埚中,同时做两份试剂空白。加150g/L 硝酸镁10ml 混匀,低热蒸干,将氧化镁1g 仔细覆盖在干渣上,于电炉上炭化至无黑烟,移入550℃马弗炉灰化4h。取出放冷,小心加入盐酸(1+1)10ml 以中和氧化镁并溶解灰分,转入25ml 容量瓶或比色管,向容量瓶或比色管中加入50g/L 硫脲2.5ml ,另用硫酸(1+9)12.5ml 分次涮洗坩埚后转出合并,直至25ml 刻度,混匀备测。4.2标准系列制备:取25ml容量瓶或比色管6支,依次准确加入1μg/ml 砷标准使用液0,0.05 ,0.2 ,0.5 ,2.0 ,5.0ml(各相当于砷浓度0,2,8,20,80,

200ng/ml ),各加硫酸(1+9)12.5ml ,50g/L 硫脲2.5ml ,补加水至刻度,混匀备测。

4.3 测定仪器参考条件:光电倍增管电压:400V;砷空心阴极灯电流:35mA;原子化器:温度820~850℃;高度7mm;氩气流速:载气600ml/min ;屏蔽气800ml/min ;测量方式:荧光强度或浓度直读;读数方式:峰面积;读数延迟时

间:1s;读数时间:15s;硼氢化钠溶液加入时间:5s;标液或标样加入体积:2ml。

(1)浓度方式测量:如直接测荧光强度,则在开机并设定好仪器条件后,预热稳定约20min。按"B" 键进入空白值测量状态,连续用标准系列的0管进样,待读数稳定后,按空档键寄存下空白值(即让仪器自动扣底)即可开始测量。先依次

测标准系列(可不再测0管),标列测完后应仔细清洗进样器(或更换一支),并再用0管测试使读数基本回零后,才能测试剂空白和样品,每测不同的样品前都应清洗进样器。记录(或打印)下测量数据。

(2)仪器自动方式:利用仪器提供的软件功能可进行浓度直读测定,为此在开机、设定条件和预热后,还需输入必要的参数,即样品量(g或ml),稀释体积(ml),进样体积(ml),结果的浓度单位,标准系列各点的重复测量次数,标准系列的点数(不计零点)及各点的浓度值。首先进入空白值的测量状态,连续用标列的0管进样以获得稳定的空白值并执行自动扣底后,再依次测标列(此时0

管需再测一次)。在测样液前,需再次进入空白值测量状态,先用标列0管测试使读数复原并稳定后,再用两个试剂空白各进一次样,让仪器取其均值作为扣底的空白值,随后即可依次测样品。测定完毕后退回主菜单,选择"打印报告"即可将测定结果打出。

5. 计算如果采用荧光强度测量方式,则需先对标准系列的结果进行回归运算(由于测量时0管强制为0,故零点值应该输入以占据一个点位),然后根据回归方程求出试剂空白液和样品被测液的砷浓度,再按下式计算样品的砷含量:(c -c0)× 25

X = -------------------------

M × 1000

式中:X- 样品的砷含量,mg/kg(或mg/L);

c- 样品被测液的浓度,ng/ml ;

c0- 试剂空白液的浓度,ng/ml ;

M-样品的量,g(或ml)。

6. 注意事项

(1)线性范围和相关系数:标准曲线的线性范围为0~200ng/ml ,在此范围内相关系数>0.9990。如果采用仪器软件提供的二、三次曲线回归功能,则量程范围

还可扩大1个数量级。

检出限:本方法的检出限为2ng/ml 砷(按低浓度测量时的三倍标准差计算),若取样量以5g(ml)计,则对样品的最低测定浓度为0.01mg/kg(或mg/L)。精密度:湿消解法重复测定的相对标准偏差<10%;干灰化法重复测定的相对标准

偏差<15%。

准确度:湿消解法测定的回收率为90%~105%;干灰化法测定的回收率为85%~100%。

(2)砷的氢化和原子化机理

①在酸性环境中,硫脲使五价砷还原为三价砷,自身被氧化为甲脒化二硫。

②硼氢化钠(或钾)与酸作用生成大量新生态氢。

③三价砷再被新生态氢还原为气态的砷化氢逸出。

④砷化氢被氩气和反应中产生的氢气载入石英管炉中,受热后即分解为原子态

砷,在砷灯发射光的激发下产生原子荧光。

(3)试剂及其浓度和用量

A. 硼氢化钠的浓度:硼氢化钠的水溶液不太稳定,浓度越稀越不稳定,必须加入氢氧化钠以提高其稳定性;但氢氧化钠又不能加得太多,否则会剧烈降低反应

时的酸度。采用进口试剂按本方法配制,保存于冰箱中两周内效果不变。国产试剂纯度较低,稳定性也较差。

B. 硼氢化钠的用量:在本仪器上硼氢化钠溶液的用量是通过加液时间来控制的,经实测,在仪器上流速约为0.3ml/s 。实验证明,硼氢化钠溶液的用量对测定灵敏度有显著影响,当用量少时,由于还原力弱,灵敏度就低;当用量过多时,由于发生大量氢气产生稀释作用,灵敏度也降低。最优的用量是与具体的反应条件(硼氢化钠的浓度和碱度、样液的加入体积和酸度)密切相关的。在本方法条件下,10g/L 的硼氢化钠加液时间为5s(约1.5ml )效果最好。

C. 硫酸的用量:在生成砷化氢的反应中酸性介质可用硫酸、盐酸或其它酸,由于在样品消解时要加入硫酸,故本方法采用硫酸作介质。在实验所得的荧光强度

- 硫酸浓度曲线上,荧光强度起初随着酸度的增加而急剧增大,继之由于氢气的稀释作用而逐渐减小,约在硫酸(1+49)酸度时达到平台区。考虑到硼氢化钠溶液的流速以及消解后硫酸的剩余量可能出现的变异,本方法中硫酸的用量选择了相当于平台区中部硫酸浓度(1+19)的量。

D. 硫脲的影响:实验证明单用硼氢化钠不能将五价砷定量的还原为砷化氢,此时还原率只有70%~80%;而加入硫脲预还原后反应便能达到完全,由于样品经消解后绝大部分砷以被氧化为五价,所以加入硫脲是必须的。

(4)样品消解

A. 湿消解:对于很多加酸后反应剧烈的样品,应该冷处理较长时间(或过夜),以防止产生大量泡沫造成损失。必须避免消解液炭化,因碳可能把砷还原为元素态而造成大量损失。消解液中加入的酸(主要是硝酸)是造成空白值的主要因素,如果不同的样品消耗的酸量差异大,其空白值差异也大,此时应做各自的试剂空白。

B. 干灰化:硝酸镁在灼烧时放出氧,起着促进灰化的作用。150g/L 硝酸镁溶液10ml 分解后生成氧化镁0.23g ,加上加入的氧化镁共1.23g ,以后恰能被盐酸

(1+1)10ml 中和。氧化镁除了保温传热以外,更起着防止砷挥发损失的作用,因为灼烧中升华出的三氧化二砷能被它固定下来。因此在灰化前,应将氧化镁粉末仔细覆盖在全部样品干渣的表面。

C. 干扰:在研究对砷测定的干扰时,考虑了1)能生成氢化物的元素;2)在食品中经常存在的元素,因此选择了锑、铅、锡、铜、锌五种进行试验。当加入一定浓度倍数的试验离子后使结果偏离在± 10%以上时,即判为有干扰。结果如下:锑,6倍以下无干扰;铅,20倍以下无干扰;锡,30倍以下无干扰;铜,200倍以下无干扰;锌,200倍以下无干扰。

三、氢化物发生原子吸收光谱法

1. 原理

样品经湿消化处理后,加入还原剂使五价砷还原为三价砷,再加入硼氢化钠或硼氢化钾还原生成砷化氢,由氩气载入火焰原子化器中分解为原子态砷蒸气吸收波长193.7nm的共振线,其吸收量与砷含量成正比,与其标准系列比较定量。

2. 试剂实验用水为石英亚沸高纯水或电阻率80万欧姆以上的去离子水。所有试剂要求使用优级纯或更高级别试剂。

所用硝酸,BV-I 级硝酸和MOS级盐酸均购自北京化学试剂研究所。

(1)氢氧化钠溶液(2g/L )。

(2)硼氢化钠(NaBH4)溶液(10g/L ):称取硼氢化钠10.0g ,溶于2g/L 氢氧化钠溶液1000ml中,混匀。此溶液于冰箱中可保存10天,取出后应当日使用。(也可称取14g硼氢化钾代替10g硼氢化钠)

(3)10%碘化钾溶液:取10g碘化钾溶于100.0ml 双蒸水中。

(4)盐酸溶液(1+1):量取盐酸100ml,小心倒入100ml 水中,混匀。(5)20%盐酸羟铵溶液:取20g 盐酸羟铵溶于100.0ml 双蒸水中。

(6)砷标准溶液

A. 砷标准贮备液砷标准溶液1000.0mg/L (购于国家标准物质中心)。

B. 砷标准中间液将砷标准储备液以0.5mo1/L 盐酸逐级稀释至100.0mg/L 。

C. 砷标准使用液吸取0.50 ,1.25 ,2.50 ,3.75ml 砷标准贮备液于25.0ml 容量瓶中,加入 2.5ml10%碘化钾溶液或10%硫脲溶液,用盐酸(1+1)溶液稀释至刻度。此液应当日配制使用。

(7)硝酸溶液(70+30):取70ml硝酸加入30ml 双蒸水中。

(8)硝酸+高氯酸混合液(4+1):量取80ml硝酸,加20ml 高氯酸,混匀。(9)10%硫脲溶液:取10g硫脲溶于100.0ml 双蒸水中。

3仪器

(1)仪器:Varian AA--200型火焰原子吸收分光光度计(附氢化物发生装置及砷空心阴极灯)。

(2)微波样品消解装置MDS--2000型(美国CEM公司)。

(3)所用玻璃仪器均需以硝酸(1+5)浸泡过夜,用水反复冲洗,然后蒸馏水三次冲洗。并用1mol/L 乙二氨基四乙酸二钠盐浸泡过夜,用水反复冲洗,最后用石英亚沸高纯水冲洗三次,备用。

(4)仪器条件:见表1。

表 1 仪器参数元素As

波长(nm)193.7

灯电流(mA) 8 延迟时间(s) 30

4操作方法

4.1 样品处理(1)样品预处理:采样和制备过程中,应注意不使样品污染。植物性中药材去杂物后,取样品于60℃干燥4小时,磨碎过20目筛,储于塑料瓶中.保存备用。(2)微波消解:精密称取0.2000--0.5000g 样品于微波消化罐中,加10mol/L 硝酸4.0ml ,盖好内盖,旋紧外盖,放入微波消解装置,按照预先设定的程序(见表2)进行升温消化,待消化完毕后,取出消化罐,将消化液定量移入10.0ml 或2

5.0ml 比色管中,用双蒸水少量多次洗罐,稀释至刻度,混匀,即供试样液。同样做试剂空白液。

表 2 微波消化升温程序

步骤功率,% 压力,Psi 升压时间,min 保压时间,min 排

风量,%

1 100 20 10 5

100

210040105

100

310085105

100

4100135105

100

5100175105

100 注:1Psi=6.89kPa (Psi :磅力每平方英寸,是进口仪器常用非法定压力单位,为便于使用,本方法不再换算成法定压力单位)。取10ml比色管,依次准确加入 1.0 ml上述样液,先加入少许盐酸(1+1)溶液,再加入 1.0ml10%碘化钾溶液, 1.0ml20%盐酸羟胺溶液,用盐酸(1+1)溶液稀释至刻度,混匀备测。

(3)硝酸- 高氯酸湿消化:精密称取0.5000--1.0000g 样品于消化瓶中,加入硝酸-高氯酸溶液15.0ml ,同时做两份试剂空白,混匀,放置过夜。置于程序电热

板上加热消解,缓慢加热,若消解液处理至10ml 左右时仍有未分解物质或色泽变深,稍冷,补加硝酸5~10ml,再消解至10ml 左右观察,如此重复两三次,注

意避免炭化。如仍不能消解完全,则加入高氯酸1~2ml,继续加热至消解完全后,再持续蒸发至高氯酸的白烟散尽,冷却,加水5ml,再蒸发至冒硝酸白烟。冷却,用水将内容物定量转入10ml比色管中,其间加入10%硫脲1.0ml ,补水至刻度并混匀,备测。

** 硝酸- 高氯酸消化的样品不能用碘化钾作为还原剂,因为其与高氯酸反应生成高氯酸钾的乳白色沉淀,影响测定。所以用硫脲作为还原剂。

4.2 测定:在调整好的仪器条件下,将标准溶液,空白液,样品溶液分别导入置于火焰上的石英池中原子化进行测定。每做一批样品,同时测定标准参考物质中

砷元素的含量。

5. 计算

(A1 -A2)× V

X =-----------------

M × 1000 式中:X -样品中砷含量,mg/kg (或mg/L);A1-测定样液中砷含量,mg/L;A2-空白液中砷含量,mg/L;M-样品质量或体积,g (ml);V -样品定容总体积,ml 。用二硫代二安替比林甲烷光度法测定大苏打及洗硫废水中微量砷在1.8-3.6mol.L-1 硫酸介质中,试剂能与砷形成2:1黄色配合物,配合物最大吸收波长位于327nm,表观摩尔吸光系数为2.74 ×104L.mol -1.cm-2,Sandell 灵敏度为0.0027砷.Cm-2。在25mL的溶液中,砷量在0- 30μg范围内符合比耳定律, 可不经分离直接测定大苏打及洗硫废水及生铁中微量砷的测定

检量线的绘制: 准确移取不同量的砷标准溶液于25mL的容量瓶中, 依次加入

9mol.L-1 硫酸

5mL,1×10-3mol.L-1 二硫代二安替比林甲烷3mL,用水稀释至刻度, 摇匀。在光度

计上,于327nm波长处,用1cm比色皿,以相应试剂空白为参比,测定吸光度,绘制

检量线。

试样分析:

准确称取10克大苏打配制成250mL水溶液,取5mL于小烧杯内(测定洗硫废水中的砷,则取0.5mL废水), 然后加入浓硝酸与浓硫酸各2mL,加热至冒白烟,稍冷,

加入少量水,煮沸,取下即加入0.2克尿素,转入100mL容量瓶中,以水稀释至刻度,摇匀。移取10mL于25mL容量瓶中,以下按绘制检量线的方法显色,测定吸光度(测定洗硫废水中砷,应补加10%六偏磷酸钠1mL)。在检量线上查得砷量,并计算样品中砷含量。

看看这个方法不错吧,直接测定,不用转化,直接测定,是国际上目前唯一不用

转化三价砷为五价砷的方法!!

水质砷的测定

HZHJSZ00101水质砷的测定氢化物发生 原子吸收分光光度法 1、范围 本方法适用于测定地下水,地面水和基体不复杂的废水样品中的含量砷。适用于浓度范围与仪器特性有关,本装置检出限为0.25ìg/L。适用的浓度范围1.0~12ìg/L。 本方法对砷的测定选择性好,灵敏度高。但反应过程中能产生液相和气相两大类干扰。液相干扰是指共存金属离子被硼氢化钾先还原成金属粉末吸附了砷化氢并与之沉淀。气相干扰主要是碲、铋和硒的氧化物对砷化氢的干扰。对于5μg/L砷的测定,100mg/LCu2+、Mn2+、Sr2+、20mg/LFe3+、0.04mg/LCo2+、10mg/LBi3+无明显干扰。20mg/LZn2+、40mg/LFe3+、10mg/LSe4+、0.02mg/LCr6+产生负干扰。20mg/LPb2+、Ca2+、Ni2+、Mg2+、10mg/LAl3+、V5+、30mg/LBi3+、0.5mg/LSb3+和0.02mg/LGe4+是正干扰。加入碘化钾溶液可消除Zn2+、Ca2+、Mg2+、Sb3+、Ge4+和Cr6+的干扰。加入抗坏血酸溶液能消除Se4+和V5+以外的上述离子的干扰。加入硫脲溶液几乎可消除全部离子的干扰。抗坏血酸和硫脲对砷有明显的增感效应,可考虑同时使用这三种试剂。 2、原理 硼氢化钾或硼氢化钠在酸性溶液中,产生新生态氢,将水样中无机砷还原成砷化氢气体,将其用N2气载入石英管中,以电加热方式使石英管升温至900~1000℃。砷化氢在此温度下被分解形成砷原子

蒸汽,对来自砷光源的特征电磁辐射产生吸收,将测的水样中砷的吸光值和标准吸光值进行比较,确定水样中砷的含量。 3、试剂 3.1去离子水。 3.2工业氮气。 3.3盐酸、硝酸、高氯酸,均为优级纯。 3.4砷标准贮备溶液:将三氧化二砷在硅胶上预先干燥至恒重,准确称取0.1320g,溶于2mL20g/100mL氢氧化钠溶液中,用1+49盐酸溶液中和,然后再加2mL,移至100mL容量瓶中,摇匀。此溶液每毫升含1mL砷。 3.5砷标准使用溶液:吸取1.00mg/mL砷标准贮备溶液,逐级稀释成每毫升含1.0ìg砷。 3.6硼酸氢化钾溶液,10g/L:称取1g硼氢化钾于100mL烧杯中,加入1~2粒固体氢氧化钠,加入100mL水溶解,过滤。 3.730g/L碘化钾-10g/L坏血酸和硫脲混合溶液:称取3g碘化钾,1g抗坏血酸和1g硫脲,溶于100mL水中,摇匀。 4、仪器 4.1单光束原子吸收分光光度计; 4.2台式自动平衡记录仪; 4.3砷原子光谱灯; 4.4氢化物以生装置,见图1。石英管Φ8×160mm,电热丝功率600W。

(整理)土壤中铅超标的处理措施.

下面是一些对排铅有作用的食物,可以协助排铅. 牛奶:它所含的蛋白质成分,能与体内的铅结合成一种可溶性的化合物,从而阻止人体对铅的吸收.建议您每天喝上1~2杯牛奶. 虾皮:每100克虾皮中含钙量高达2克.最新研究表明增加膳食钙的摄入量除了对儿童骨质发育有益外,还能降低胃肠道对铅的吸收和骨铅的蓄积,可有效减少儿童对铅的吸收,降低铅的毒性.对于接触低浓度铅的儿童,膳食中增加钙的摄入量可有效降低铅的吸收. 海带:海带具有解毒排铅功效,可促进体内铅的排泄. 大蒜:大蒜中的某些有机成分能结合铅,具有化解铅毒的作用. 蔬菜:油菜,卷心菜,苦瓜等蔬菜中的维生素C与铅结合,会生成难溶于水且无毒的盐类,随粪便排出体外.一般情况下植物性食物的铅含量高于动物性的,且以根茎类的含铅量最高. 水果:猕猴桃,枣,柑等所含的果胶物质,可使肠道中的铅沉淀,从而减少机体对铅的吸收. 酸奶:可刺激肠蠕动减少铅吸收,并增加排泄. 因为在你排铅时如果不改善卫生习惯和饮食,你又可能吸收到铅,使铅又一次偏高,所以排铅工作一定要持续下去,建议半年去医院做一次血铅检测. 土壤重金属污染的修复方法主要有物理化学法、化学修复法和植物修复法等。通俗地讲,前两种都是通过在土壤中添加一些药剂以改变重金属的化学属性,从而达到降低毒性、改善污染的目的。植物修复中的植物萃取技术则是利用植物对重金属物质进行富集萃取,可以去除土壤中重金属的总量,因此是目前国际上比较经济、绿色、低能耗的先进修复技术。 在环境修复领域有个概念叫超富集植物,就是对重金属具有超常吸收和富集能力的特殊植物,堪称“土壤清洁工”。它可以通过植物根系吸收和富集分散在土壤中的重金属。例如蜈蚣草就是目前国际上公认砷的超富集植物,它对砷的吸收能力比普通植物高20万倍。这种植物的发现,对于国际植物修复领域的工程应用起到重要推动作用,同时也是国内植物修复技术的一个重要开端。 相比较其他修复方法,植物修复法投资和维护成本低,修复过程接近自然生态,不易产生二次污染。同时,在修复过程中还可以进行经济作物生产。传统的办法修复一亩农田要花几十万元甚至上百万元,而植物修复只需要几千元。不过,这种修复技术对于某些重金属还存在周期相对较长的缺陷,一般至少需要3-5年。因此,我们尝试在不中断农业生产的情况下,将超富集植物与有经济价值的农作物进行间作,修复效果不错,农民也易于接受。 问:我们了解到您的团队已经在国内部分地区建立了示范基地进行推广,能否介绍一下

食物中砷的测定方法

食物中砷的测定方法 此处介绍银盐法、氢化物原子荧光光度法、氢化物发生原子吸收光谱法。 一、银盐法 1.原理 样品经消化后,以碘化钾、氯化亚锡将高价砷还原为三价砷,然后与锌粒和酸产生的新生态氢生成砷化氢,经银盐溶液吸收后,形成红色胶态物,在510nm处比色,与标准系列比较定量。最低检出量为0.2mg/kg。 2.适用范围 标准方法(GB/T5009.11-1996),适用于各类食品中总砷的测定。 3.试剂 除另有规定,所用的试剂为分析纯试剂,水为蒸馏水或同等纯度水。 (1) 硝酸。 (2) 硫酸。 (3) 盐酸。 (4) 硝酸+高氯酸混合液(4+1):量取80ml硝酸,加20ml高氯酸,混匀。 (5) 硝酸镁溶液(150g/L):称取15g硝酸镁〖Mg(NO3)2·6H2O〗溶于水中,并稀释至100ml。 (6) 氧化镁。 (7) 碘化钾溶液(150g/L):称取15g碘化钾溶于水中,并稀释至100ml,储于棕色瓶中。 (8) 酸性氯化亚锡溶液:称取40.0g氯化亚锡(SnCl2·2H2O),加盐酸溶解并稀释至100.0ml,加入数颗金属锡粒。 **氯化亚锡(SnCl2)又称二氯化锡,白色或半透明晶体,带二个分子结晶水(SnCl2·2H2O)的是无色针状或片状晶体,溶于水、乙醇和乙醚。氯化亚锡试剂不稳定,在空气中被氧化成不溶性氯氧化物,失去还原作用,为了保持试剂具有稳定的还原性,在配制时,加盐酸溶解为酸性氯化亚锡溶液,并加入数粒金属锡粒,使其持续反应生成氯化亚锡及新生态氢,使溶液具有还原性。 氯化亚锡在本实验的作用为将As5+还原为As3+;在锌粒表面沉积锡层以抑制产生氢气作用过猛。 (9)盐酸溶液(1+1):量取50ml盐酸,小心倒入50ml水中,混匀。 (10)乙酸铅溶液(100g/L)。 (11)乙酸铅棉花:用100g/L乙酸铅溶液浸透脱脂棉后,压除多余溶液,并使疏松,在100℃以下干燥后,储存于玻璃瓶中。 **乙酸铅棉花塞入导气管中,是为吸收可能产生的硫化氢,使其生成硫化铅而滞留在棉花上,以免吸收液吸收产生干扰,硫化物和银离子生成灰黑色的硫化银,但乙酸铅棉花要塞得不松不紧为宜。 (12)无砷锌粒。 不同形状和规格的无砷锌粒,因其表面积不同,与酸反应的速度就不同,这样生成的氢气气体流速不同,将直接影响吸收效率和测定结果。一般认为蜂窝状锌粒3g,或大颗粒锌粒5g 均可获得良好结果。也有人认为大小颗粒的锌粒混合使用则效果满意。一般确定标准曲线与试样均用同一规格的锌粒为宜。 (13)氢氧化钠溶液(200g/L)。 (14)硫酸溶液(6+94):量取6.0ml硫酸,小心倒入94ml水中,混匀。

食品中总砷及无机砷的测定

食品中总砷及无机砷的测定 1.原理 食品试样经湿消解或干灰化后,加入硫脲使五价砷预还原为三价砷,再加入硼氢化钠或硼氢化钾使还原生成砷化氢,由氩气载入石英原子化器中分解为原子态砷,在特制砷空心阴极灯的发射光激发下产生原子荧光,其荧光强度在固定条件下与被测液中的砷浓度成正比,与标准系列比较定量。 2.试剂 2.1氢氧化钠溶液(2g/L)。 2.2硼氢化钠(NaBH。)溶液(10g/L):称取硼氢化钠10.O g,溶于2 g/L氢氧化钠溶液1000mL中,混匀。此液于冰箱可保存10天,取出后应当日使用(也可称取14g硼氢化钾代替10g硼氢化钠)。 2.3硫脲溶液(50g/L)。 2.4硫酸溶液(1+9):量取硫酸100 mL,小心倒入水900 ml。中,混匀。 2.5氢氧化钠溶液(100g/L)(供配制砷标准溶液用,少量即够)。 2.6砷标准储备液:含砷0.1 mg/mI。精确称取于100℃干燥2h以上的三氧化二砷(As203)0.1320g,加100g/L氢氧化钠10mL,溶解,用适量水转入1 000mI.容量瓶中,加(1+9)硫酸25mI,用水定容至刻度。 2.7砷使用标准液:含砷1μg/mL。吸取1.00 mL砷标准储备液于100 mL容量瓶中,用水稀释至刻度。此液应当日配制使用。 2.8湿消解试剂:硝酸、硫酸、高氯酸。 2.9千灰化试剂:六水硝酸镁(150g/L)、氯化镁、盐酸(1+1)。 3仪器 原子荧光光度计。 4分析步骤 4.1试样消解 4.1.1湿消解:固体试样称样1 g~2.5 g,液体试样称样5 g~10 g(或mI。)(精确至小数点后第二位),置人50mL~100mL锥形瓶中,同时做两份试剂空白。加硝酸20mI~40mI,硫酸1.25 mL,摇匀后放置过夜,置于电热板上加热消解。若消

土壤中砷汞的测定

土壤中总砷/总汞的测定 1主要仪器 AFS-9700 9700-214561型原子荧光光度计 2测定 2.1分析条件 光电倍增管负高压290V 空心阴极灯电流砷60mA 汞25mA 原子化高度8mm 载气(高纯氩)400mL/min;屏蔽气800mL/min 2.2样品消解: 称取经风干,研磨并过筛(100目)的土壤样品0.5g于50mL比色管中,加少量水润湿样品,加(HNO3:HCl=1:3)王水10mL,加塞摇匀过夜,于沸水中消解4个小时,冷却后加入2.5mL盐酸,10mL5%硫脲+5%抗坏血酸溶液,定容待测。 2.3校准曲线 砷标准曲线:分别准确吸取砷标准工作溶液(1.00mg/L)0.00、0.50、1.00、2.00、3.00、4.00、5.00mL置于100mL容量瓶中,分别加入5mL盐酸,10mL5%硫脲+5%抗坏血酸溶液,定容,此时得砷含量分别为:0.00、5.00、10.0、20.0、30.0、40.0、50.0ng/mL的标准溶液系列。 汞标准曲线:分别准确吸取汞标准工作溶液(20ng/mL)【标100mg/L=100ng/L,稀释1-100,10-500】0.00、0.50、1.00、2.00、3.00、5.00、10.00mL置于50mL容量瓶中,用5%盐酸定容,此时得汞含量分别为:0.00、0.20、0.40、0.80、1.20、2.00、4.00ng/mL的标准溶液系列。 2.4样品分析 将仪器调节至工作条件,在还原剂(2%硼氢化钾+0.5%氢氧化钾)和载液(5%盐酸)的带动下,测定标准系列和空白及试样。 3结果计算 含量(mg/kg)=c×V×0.01×n/m c----砷/汞的浓度,ng/ml;V----样品消解后定容体积,mL n----稀释倍数 m ---样品取样量,g;

微波消解原子荧光法测定食品中的砷

微波消解原子荧光法测定食品中的砷【摘要】目的建立微波消解原子荧光法测定食品中砷的方法。方法采用微波消解处理样品,原子荧光法测定,进行了消解条件、仪器条件、精密度、回收率等实验。结果方法的检出限为1.68ng/ml,在0.0028-0.05μg/ml范围内,相关系数r=0.9993,回收率在92.4-101.4之间,相对标准偏差4.03%。结论微波密闭消解样品,消化过程节约试剂,防止试样中待测元素的损失,干扰少,适用于食品中砷的测定。 【关键词】微波消解原子荧光法食品砷 砷的化合物在自然环境中广泛存在。人体长期摄入被砷污染的食物后,可以引起严重中毒,因此砷在食品卫生检测中被列为常规检测的有害元素。对砷的检测技术要求较高。在食品分析中常用的消解方法为湿法消解,该方法消解时间长,酸和其他溶液用量大,基体干扰严重[1]。本文用微波消化食品,方法简单,消化速度快,大大缩短了检验周期,取得满意的结果。 1试验部分 1.1原理样品经过预处理,在全封闭的消化罐中经微波消解后,加入硫脲使五价砷还原为三价砷,在酸性条件下,以硼氰化钾作还原剂,将样品中待测的砷还原成挥发性共价氢化物,借助载气将其带入原子化器中进行原子化。在砷特制空心阴极灯照射下,发射特征波长的荧光,其荧光强渡与砷含量成正比,与标准系列比较定量。 1.2主要仪器与试剂

AFS-820双光道原子荧光分光光度计(北京吉天仪器有限公司);MK型光纤压力自控密闭微波消解仪,附聚四氟乙烯样杯;DKP—型电子控温加热板(上海新仪微波化学科技有限公司)。砷标准溶液:国家标准物质研究中心(GBW08611),ρ(As)=1000μg/ml。用超纯水稀释成ρ(As)=1μg/ml标准使用液(临用现配);硝酸:优级纯(ρ20=1.42g/ml);30%过氧化氢,分析纯;硫脲—抗坏血酸(50g/L),称取硫脲和抗坏血酸各5g,溶于100ml水中。硼氰化钾溶液(10g/L):称取2.5g硼氰化钾并使其溶于250ml5g/L的氢氧化钾溶液中;载液:盐酸溶液(2%)。 1.3样品处理 称取约1.00g食品样品于溶样杯内,加硝酸6ml,放在180℃的电热板上,加热到硝酸黄烟帽尽(约15-20min),取下,放置室温;再加硝酸5ml,过氧化氢1.5ml,置入微波炉内,一档3min,二档5min,三档3min,加压消解;取出后加5ml水,置于180℃的电热板上加热,待水挥发尽干,再加入1.25ml硫酸,继续放在180℃的电热板上驱赶硝酸,至水挥发完。冷却后,用水将内容物定量转入25ml比色管中,其间加入2.5ml50g/L硫脲—抗坏血酸,补水至刻度,混匀备测。 1.4仪器条件[2] 灯电流:50mA,负高压:270V;载气流量:400ml/min,屏蔽气流量800ml/min;延时时间0s,读数时间:10s;原子化器高度8mm。 1.5标准曲线 分别吸取砷标准应用液0.50、1.00、2.00、4.00、8.00、10.00ml

土壤中砷含量的标准

土壤中砷含量的标准:一级土壤环境质量标准规定土壤砷含量≤15mg/kg,三级标准应≤30mg/kg 硫酸亚铁、硫酸锌加氮肥、氯化镁等可减轻砷对水稻的毒害。一般磷肥可减轻砷毒害而含砷较多的磷肥有时加重砷毒害。 大米中砷和镉含量的测定,我用的是两种分析方法,一种是ICP-MS法,一种是用原子荧光测砷,原子吸收石墨炉法测镉,原子吸收石墨炉法测镉与ICP-MS法检出来的结果差不多,可是用原子荧光法测砷只有ICP-MS法检测结果的一半(包括大米的质控样也一样),带了大米的标物分析,ICP-MS法检测出的结果较满意,与质控样的数值相吻合,这样原子荧光法测砷就不准了,同样用微波消解一起消解处理了,ICP-MS法做质控样准确了,因此可排除消解处理过程的不准确性了,这样问题只有出在原子荧光法测砷的过程了,原子荧光法测砷做出来的标线也很好的, 稻是我国乃至亚洲的主要粮食作物之一。世界上90%的水稻产自亚洲,而在亚洲一些国家(如孟加拉国、中国(包括台湾)、泰国等)的稻米主要生产区,土壤和地下水已遭受到较为严重的砷污染。土壤中的砷可以通过秸秆和稻米经食物链进入人体,直接或间接危害着人体健康。近年来,针对水稻吸收及转运砷的问题国内外已有一些报道,然而,这些研究都忽略了一个重要环节—水稻特殊的根际环境效应。而水稻根表自然形成的铁氧化物膜(铁膜)作为根际不可分割的一部分,以及砷等污染物进入根系的门户,对砷的迁移、吸收和在组织中的累积有何作用及作用程度如何?目前国内外有关的研究尚少,这也正是本论文主要研究的问题。本研究采用不同的培养系统研究了水稻根表形成的铁膜对砷吸收和转运的作用机制。(1)根表铁、锰氧化物膜对水稻吸收和转运砷的影响在诱导铁、锰膜12小时后,水稻根表出现了明显的红棕色铁膜,但锰膜形成的数量相对较少。当营养液中供应的砷为五价砷(As(Ⅴ))时,铁膜上砷的富集量远高于对照和锰膜处理,并且也明显高于三价砷(As(Ⅲ))处理。这说明铁膜对As(Ⅴ)的亲和力高于对As(Ⅲ)的亲和能力。供应As(Ⅲ)时,大部分砷(55%)累积在水稻根中;供应As(Ⅴ)时,大部分砷(60%)富集在根表铁膜中。对锰膜处理和对照而言,无论供应的砷为何种形态,大部分砷(62%-69%)均累积在根中。(2)根表铁膜的数量与基因型对水稻吸收和转运砷的影响对于三个基因型(两个亲本和一个后代)而言,形成铁膜的能力是不同的。根表沉积的铁膜数量和砷在膜上的富集浓度之间存在极显著的正相关关系。大约75-89%的砷与铁膜共同包裹在根表。地上部砷浓度存在显著的基因型差异,说明不同基因型水稻转运砷的能力是不同的。(3)磷饥饿及其诱导产生的铁膜对水稻吸收和转运砷的作用磷饥饿(缺磷)24小时后,水稻的根表出现了明显的红棕色物质的沉积,扫描电镜的能谱分析结果显示,根表的红棕色物质是铁的氧化物。磷饥饿时,富集在根表的砷浓度明显高于磷营养正常的水稻植株,然而转移到茎叶的砷浓度变化正好与之相反。这说明缺磷诱导铁膜的形成使磷—砷二元的相互作用关系转变为磷—铁膜—砷三元的相互作用关系,并且降低了砷由根系向地上部的转运。(4)砷在土壤—铁氧化物膜—水稻体系中的累积与迁移规律采用土壤—玻璃珠联合培养的方式,选择六个氧化能力不同的水稻基因型,以经历整个生育期的水稻及根表自然形成的铁膜为研究对象,研究了砷在土壤—铁膜—水稻(根系到籽粒)系统中的累积和迁移规律。主要结果如下:氧化能力不同的水稻基因型根表沉积的铁膜的数量存在明

土壤中总砷的分光光度法测定

土壤中总砷的分光光度法测定 相关背景:砷是世界卫生组织确定的高毒致癌物质,从上世纪初就开始受到科学家们的广泛关注。在农业生产中,砷主要是通过工业“三废”、农业利用等方式进入土壤,施用含砷的农药、化肥、有机肥等是土壤中砷的重要来源之一。砷进入土壤后,可被土壤胶体吸附固定,使其有效性降低。有机态砷进入土壤后,不仅被土壤吸附固定,也可在土壤微生物的作用下,并通过一系列的土壤过程,发生形态和价态的转化。农业生产与人类生活息息相关,研究不同形态砷在土壤中的转化及对植物砷有效性的影响,对提高农产品质量,预防设施土壤中砷含量超标等具有很重要的意义。由环保部牵头制定的《全国土壤环境保护“十二五”规划》已进入国务院审批程序,国家发改委批准了“‘十二五’重金属污染防治规划”,将“土壤与场地污染治理与修复”列入“十二五”社会发展科技领域国家科技计划项目指南。 依据标准:1997年12月8日,国家环境部发布GB/T 17135-1997 《土壤质量总砷的测定硼氢化钾-硝酸银分光光度法》。 检测方法简介: 土壤样品经氧化分解后,使不同形式的砷转化为可溶态砷离子,硼氢化钾(钠)在酸性的溶液中产生新生态氢,使五价砷还原为三价砷,三价砷还原成气态砷化氢,再用硝酸-硝酸银-聚乙烯醇-一算溶液为吸收液,银离子被砷化氢还原成单质银,使溶液成黄色,在400nm 分光光法测定。(10mm光程) 赛默飞世尔科技有限公司(ThermoFisher)的紫外可见分光光度计产品完全能够满足上述检测需要,并且可以为客户提供方法建立的工作,以方便有此需求的客户快速使用仪器,达到单位检测要求。请您联系赛默飞世尔科技有限公司(8008105118,4006505118),或者咨询我们当地的代理商。

食品中铅镉砷的测定国标

食品中铅的测定: 第一法石墨炉原子吸收光谱法 3 原理 试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收nm 共振线, 在一定浓度范围,其吸收值与铅含量成正比,与标准系列比较定量。 4 试剂和材料 硝酸:优级纯。 过硫酸铵。 过氧化氢(30%)。 高氯酸:优级纯。 硝酸(1+1):取50 mL 硝酸慢慢加入50 mL 水中。 硝酸(mol/L):取mL 硝酸加入50 mL 水中,稀释至100 mL。 硝酸(l mo1/L):取mL 硝酸加入50 mL 水中,稀释至100 mL。 磷酸二氢铵溶液(20 g/L):称取g 磷酸二氢铵,以水溶解稀释至100 mL。 混合酸:硝酸十高氯酸(9+1)。取9 份硝酸与1 份高氯酸混合。 铅标准储备液:准确称取g 金属铅(%),分次加少量硝酸(),加热溶解,总量不超过37 mL,移入1000 mL 容量瓶,加水至刻度。混匀。此溶液每毫升含mg 铅。 铅标准使用液:每次吸取铅标准储备液mL 于100 mL 容量瓶中,加硝酸()至刻度。如此经多次稀释成每毫升含ng,ng,ng,ng,ng 铅的标准使用液。 5 仪器和设备 原子吸收光谱仪,附石墨炉及铅空心阴极灯。 马弗炉。 天平:感量为1 mg。 干燥恒温箱。 瓷坩埚。 压力消解器、压力消解罐或压力溶弹。 可调式电热板、可调式电炉。 6 分析步骤 试样消解(可根据实验室条件选用以下任何一种方法消解) 湿式消解法:称取试样1 g~5 g(精确到g)于锥形瓶或高脚烧杯中,放数粒玻璃珠,加10 mL 混合酸(),加盖浸泡过夜,加一小漏斗于电炉上消解,若变棕黑色,再加混合酸,直至冒白烟,消化液呈无色透明或略带黄色,放冷,用滴管将试样消化液洗入或过滤入(视消化后试样的盐分而定)10 mL~25 mL 容量瓶中,用水少量多次洗涤锥形瓶或高脚烧杯,洗液合并于容量瓶中并定容至刻度,混匀备用;同时作试剂空白。 测定 仪器条件:根据各自仪器性能调至最佳状态。参考条件为波长nm,狭缝nm~nm,灯电流5 mA~7 mA,干燥温度120 ℃,20 s;灰化温度450 ℃,持续15 s~20 s,原子化温度:1700 ℃~2300 ℃,持续4 s~5 s,背景校正为氘灯或塞曼效应。 标准曲线绘制:吸取上面配制的铅标准使用液ng/mL(或μg/L),ng/mL(或μg/L),ng/mL(或μg/L),ng/mL(或μg/L),ng/mL(或μg/L)各10 μL,注入石墨炉,测得其吸光值并求得吸光值与浓度关系的一元线性回归方程。 试样测定:分别吸取样液和试剂空白液各10 μL,注入石墨炉,测得其吸光值,代入标准系列的一元线性回归方程中求得样液中铅含量。

测定砷含量的几种方法

此处介绍银盐法、氢化物原子荧光光度法、氢化物发生原子吸收光谱法。 一、银盐法 1.原理 样品经消化后,以碘化钾、氯化亚锡将高价砷还原为三价砷,然后与锌粒和酸产生的新生态氢生成砷化氢,经银盐溶液吸收后,形成红色胶态物,在510nm处比色,与标准系列比较定量。最低检出量为0.2mg/kg。 2.适用范围 标准方法(GB/T5009.11-1996),适用于各类食品中总砷的测定。 3.试剂 除另有规定,所用的试剂为分析纯试剂,水为蒸馏水或同等纯度水。 (1)硝酸。 (2)硫酸。 (3)盐酸。 (4)硝酸+高氯酸混合液(4+1):量取80ml硝酸,加20ml高氯酸,混匀。(5)硝酸镁溶液(150g/L):称取15g硝酸镁〖Mg(NO3)2·6H2O〗溶于水中,并稀释至100ml。 (6)氧化镁。 (7)碘化钾溶液(150g/L):称取15g碘化钾溶于水中,并稀释至100ml,储于棕色瓶中。 (8)酸性氯化亚锡溶液:称取40.0g氯化亚锡(SnCl2·2H2O),加盐酸溶解并稀释至100.0ml,加入数颗金属锡粒。 **氯化亚锡(SnCl2)又称二氯化锡,白色或半透明晶体,带二个分子结晶水(SnCl2·2H2O)的是无色针状或片状晶体,溶于水、乙醇和乙醚。氯化亚锡试剂不稳定,在空气中被氧化成不溶性氯氧化物,失去还原作用,为了保持试剂具有稳定的还原性,在配制时,加盐酸溶解为酸性氯化亚锡溶液,并加入数粒金属锡粒,使其持续反应生成氯化亚锡及新生态氢,使溶液具有还原性。 氯化亚锡在本实验的作用为将As5+还原为As3+;在锌粒表面沉积锡层以抑制产生氢气作用过猛。 (9)盐酸溶液(1+1):量取50ml盐酸,小心倒入50ml水中,混匀。 (10)乙酸铅溶液(100g/L)。 (11)乙酸铅棉花:用100g/L乙酸铅溶液浸透脱脂棉后,压除多余溶液,并使疏松,在100℃以下干燥后,储存于玻璃瓶中。 **乙酸铅棉花塞入导气管中,是为吸收可能产生的硫化氢,使其生成硫化铅而滞留在棉花上,以免吸收液吸收产生干扰,硫化物和银离子生成灰黑色的硫化银,但乙酸铅棉花要塞得不松不紧为宜。 (12)无砷锌粒。 不同形状和规格的无砷锌粒,因其表面积不同,与酸反应的速度就不同,这样生成的氢气气体流速不同,将直接影响吸收效率和测定结果。一般认为蜂窝状锌粒3g,或大颗粒锌粒5g均可获得良好结果。也有人认为大小颗粒的锌粒混合使用则效果满意。一般确定标准曲线与试样均用同一规格的锌粒为宜。 (13)氢氧化钠溶液(200g/L)。 (14)硫酸溶液(6+94):量取6.0ml硫酸,小心倒入94ml水中,混匀。 (15)二乙氨基二硫代甲酸银-三乙醇胺-三氯甲烷溶液:称取0.25g二乙氨基二硫代甲酸银〖(C2H5)2NCS2Ag〗置于乳钵中,加少量三氯甲烷研磨,移入100ml

石脑油中砷含量的测定

石脑油中砷含量测定法 李芬 (质量监督检察科) 摘要:建立了一种原子荧光法测定石脑油中砷含量的新方法。对仪器的工作条件以及实验条件分别进行了优化。用该方法测定石脑油中砷含量的检出限为0.02 ug/L,相对标准偏差小于1.3%,加标回收率为97.1%~102.0%。该方法灵敏度高,测定结果准确可靠,可广泛应用于石脑油样品中砷含量的测定。 关键词:石脑油砷原子荧光 1.前言 砷是石油加工过程中的一种毒物,极易与贵金属催化剂Pt、Pd 等形成化合物致使其活性降低,甚至导致催化剂永久性中毒而失活。当石脑油作为重整原料时,含有10-9数量级的砷化物就可使重整催化剂中毒而失活,因此石脑油中砷含量是一项极其重要的质量指标。准确测定石脑油中的砷含量,对于指导油品脱砷、延长催化剂的使用寿命具有重要作用。 目前石脑油中砷含量的分析方法主要有电量法[1]、分光光度法[2-4]、原子吸收光谱法[5]等,但这些方法存在回收率偏低、氢化物发生不完全、测量结果重复性差、灵敏度低等特点。原子荧光光谱法是目前测定砷元素最灵敏的方法之一,已在环境[6]、食品[7]、地矿[8]等领

域得到了广泛应用。本方法采用氢化物发生与原子荧光光谱法联用技术,对石脑油样品的预处理条件进行优化,建立了原子荧光光谱法测定石脑油中砷含量的方法。 2. 原理 2.1仪器原理 原子荧光光度计是利用硼氢化钾或硼氢化钠作为还原剂,将样品溶液中的待分析元素还原为挥发性共价气态氢化物(或原子蒸汽),然后借助载气将其导入原子化器,在氩-氢火焰中原子化而形成基态原子。基态原子吸收光源的能量而变成激发态,激发态原子在去活化过程中将吸收的能量以荧光的形式释放出来,此荧光信号的强弱与样品中待测元素的含量成线性关系,因此通过测量荧光强度就可以确定样品中被测元素的含量。 2. 2方法原理 用一定比例的优级纯盐酸溶液萃取石脑油中的砷化物,转移酸溶液至容量瓶中,加入硫脲溶液,并控制其酸度,将砷五价预还原为砷三价。在选定的仪器条件下,以盐酸为载流、硼氢化钾溶液为还原剂,发生砷氢化反应。以氩气为载气将砷化氢携入石英炉原子化器中进行原子化,转化为原子态砷。以砷特种空心阴极灯作激发光源,使砷原子发射出荧光,其荧光强度在一定范围内与砷含量成正比。检测砷元素的荧光强度,并与砷标准溶液校正曲线比较,计算得到样品砷含量。 3.材料与方法 3.1仪器及工作条件

土壤中砷含量的测定

土壤中砷含量的测定(二乙基二硫代氨基甲酸银分光光度法)

砷不是生物所必需的元素,但砷在自然界分布广,尤其是砷的用途多,主要用于制造砷酸和砷的化合物、应用于熔剂砷合金,杀虫剂、除草剂和其他农药,在医药、木材防腐、制革、制乳白色玻璃、军用毒药及烟火方面也有广泛用途。因此砷进入农田和生态系统的可能性很大.元素砷毒性极低,而砷的化合物均有剧毒,三价砷化合物比其他砷化物毒性更强,如As2O3(砒霜)毒性最大。工业生产中大部分是三价砷的化合物,因此, 土壤砷污染是当今全球十分严重的环境与健康问题之一。本实验主要讲诉了测定土壤砷的一系列步骤及方法。 关键词 砷土壤采样分析方法

第一章土壤样品的采集与处理··························· 1.1 土壤样品的采集······························ 1.2 土壤样品的处理与贮存························第二章土壤砷含量的测定······························· 2.1采用原理···································· 2.2仪器、试剂及其配制方法······················· 2.3分析步骤···································· 2.4校准曲线的绘制······························ 2.5结果计算···································· 2.6结论········································主要参考文献···········································致谢·················································附录···················································

砷的测定法

砷的测定法 1 范围 本标准规定了本公司牙膏、化妆品、蜡制品、香料中总砷的测定。 本标准适用于本公司牙膏、化妆品、蜡制品、香料中总砷的检测。 2 引用标准 本标准等同采用GB7917.2—87。 3 二乙氨基二硫代甲酸银分光光度法 3.1 方法提要 经灰化或消解后的试样,在碘化钾和氯化亚锡的作用下,样液中五价砷被还原为三价。三价砷与新生态氢生成砷化氢气体。通过用乙酸铅溶液浸泡的棉花去除硫化氢干扰,然后与溶于三乙醇胺一氯仿中的二乙氨基二硫代甲酸银作用,生成棕红色的胶态银,比色定量。钴、镍、汞、银、铂、铬和钼可干扰砷化氢的发生,但正常情况下,化妆品中含量不会产生干扰。锑对测定有明显干扰. 3.2 试剂 3.2.1 去离子水或同等纯度的水:将一次蒸馏水经离子交换净水器净化,贮存于全玻璃瓶或聚乙烯瓶中。 注:试剂的配制,提纯和分析步骤中均用此水。 3.2.2 硝酸(密度1.42g/ml):分析纯。 3.2.3 硫酸(密度1.84g/ml):分析纯。 3.2.4 硫酸(1+1)。 3.2.5 硫酸(1mol/L)。 3.2.6 氢氧化钠(20%)。 3.2.7 酚酞指示剂(0.1g乙醇溶液):称取0.1g酚酞,溶于50ml95%乙醇,加水至100ml。 3.2.8 氧化镁:分析纯。 3.2.9 硝酸镁(10%)。 3.2.10 盐酸(1+1)。 3.2.11 碘化钾(15%)。 3.2.12 氯化亚锡溶液(40%):称取40g氯化亚锡(分析纯),溶于40ml浓盐酸(分析纯)中,加水至100ml溶液中,可放入金属锡粒数颗。 3.2.13 无砷锌粒:10~20目。 3.2.14 乙酸铅溶液(10%)。 3.2.15 乙酸铅棉花:将脱脂棉浸入10%乙酸铅溶液,2h后取出,晾干,并使膨松。 3.2.16 二乙氨基二硫代甲酸银(DDC—Ag)溶液:称取0.25gDDC—Ag,用少许氯仿溶解。加入1.0ml 三乙醇胺,再用氯仿稀释至100ml。必要时可过滤。置于棕色瓶内,于冰箱中存放。 3.2.17 氯仿:分析纯。 3.2.18 三乙醇胺。

土壤中砷的处理

土壤中砷的处理 1 引言 砷是一类广泛存在于土壤中的具有致癌作用的类金属元素,主要来源于含砷农药、化肥的施用及含砷污水灌溉等.据雷鸣等(2008)的调查,湖南郴州、衡阳等地稻田砷污染较严重,土壤砷含量最高达245 mg·kg-1,导致大米砷含量超标,造成严重的健康威胁和巨大的经济损失.同时,砷作为一种变价元素,不同价态毒性及生物有效性有较大差异,如三价砷生物毒性是五价砷的60~100倍.此外,水分可通过改变土壤氧化还原电位、铁锰氧化物等变价元素的价态而影响砷的生物有效性及其环境风险,如淹水导致As(Ⅴ)向As(Ⅲ)转化,提高了土壤中As(Ⅲ)的含量;同时,土壤水分会影响水稻籽粒中砷含量,灌浆期后湿润灌溉可显著降低糙米中砷含量.研究表明,稻田土壤水分含量可影响并改变土壤溶液及稻米中砷含量,而控制土壤水分含量是解决稻田土壤砷污染问题的有效途径之一,并揭示出水分是影响砷毒性的主要因素之一,尤其是在稻田土壤上.因此,需对二者作用关系进行系统探讨. 土壤酶是土壤的重要组成成分,土壤中所有生物化学过程的发生都得益于土壤酶的作用.酶促反应动力学是研究酶催化反应速度及各种因素(如污染物等)影响的方法,其结果不仅可显示土壤酶总量的高低,而且还可以反映酶与底物、重金属污染物等之间结合的紧密程度和作用过程,从而能深入探讨污染物与酶作用机理,故被认为是一种理想的研究手段.目前,国内外学者对砷的土壤酶效应进行了研究,发现有激活、抑制和无关3种作用,如As(Ⅴ)会抑制碱性磷酸酶及芳基硫酸酯酶活性,而As(Ⅲ)则不敏感;砷能激活土壤脲酶活性.对不同水分下土壤酶作用机理的研究也有零星报道,如Zhang等(2009a;2009b)发现,土壤脱氢酶活性及酶促最大反应速度均随水分含量升高而增加;高水分含量增强了磷酸酶与底物亲和力,提高了最大反应速度;淹水对土壤脲酶动力学参数无显著影响(隽英华等,2011).但目前对不同水分条件下砷与酶作用机理的研究则鲜见报道.因此,本文拟采用室内模拟培养试验的方法,从酶动力学角度研究水分对砷与土壤碱性磷酸酶关系的影响,揭示砷对碱性磷酸酶的作用受水分影响的机理,以期为稻田土壤砷污染的准确监测和保护修复提供依据. 2 材料与方法 2.1 供试土壤 供试土壤为采自江苏省中国科学院常熟农业生态试验站的水稻土(底潜铁聚水耕人为土,Endogleyic Fe-accumuli-Stagnic Anthrosols).采样时,先去除0~5 cm表层土,采用五点法取5~20 cm土样,混匀风干,过1 mm尼龙筛备用.常规方法测定土壤基本化学性质(鲍士旦,1997),结果为有机质47.69 g·kg-1,pH=6.93(水土比2.5:1),全氮3.1 g·kg-1,全磷0.61 g·kg-1,全钾18.02 g·kg-1,碱解氮10.66 mg·kg-1,速效磷11.74 mg·kg-1,速效钾112.90 mg·kg-1,阳离子交换量26.20 cmol·kg-1,游离氧化铁2.43 g·kg-1,总砷8.70 mg·kg-1,有效砷(0.5 mol·L-1 NaHCO3)0.32 mg·kg-1. 2.2 试验方案 向600 g土样中添加不同浓度的As(Ⅴ)(Na3AsO4·12H2O,AR)溶液,使As(Ⅴ)含量分别为0、25、50、100、200、400 mg·kg-1,并调节土壤含水量为最大持水量(WHC)的35%、65%、110%,

72 土壤中总砷的测定原子荧光法GBT22105.2-2008演示教学

新项目试验报告 项目名称:土壤中总砷的测定 原子荧光法 GB/T 22105.1-2008 项目负责人:杨刚 项目负责人: 审批日期:

一、新项目概述 砷(As)是人体非必需元素,元素砷的毒性较低,而砷的化合物均有剧毒,砷通过呼吸道、消化道和皮肤接触进入人体,如摄入量超过排泄量,砷就会在人体多数器官中蓄积,从而引起砷中毒。砷还有致癌作用,能引起皮肤癌。在一般情况下,土壤、水、空气、植物和人体都含有微量的砷,对人体不会构成危害。但是工业生产中大部分是三价砷的化合物,因此,土壤砷污染是当今全球十分严重的环境与健康问题之一。 GB/T 22105的部分规定了土壤中总砷的原子荧光光谱测定方法。 本部分方法检出限为0.01mg/kg。 二、检测方法与原理 检测方法:原子荧光法 原理:样品中的砷经加热消解后,加入硫脲使五价砷还原为三价砷,再加入硼氢化钾将其还原为砷化氢,由氩气导入石英原子化器进行原子化分解为原子态砷,在特制砷空心阴极灯的发射光激发下产生原子荧光,产生的荧光强度与试样中被测元素含量成正比,与标准系列比较,求得样品中砷的含量。 三、主要仪器和试剂 1.仪器 1.1 氢化物发生原子荧光剂。 1.2 砷空心阴极灯。 1.3 水浴锅。 2.试剂 2.1 盐酸:1.19 g/ml,优级纯 2.2 硝酸:1.42 g/ml,优级纯 2.3 氢氧化钾:优级纯

2.4 硼氢化钾:优级纯 2.5 硫脲:分析纯 2.6 抗坏血酸:分析纯 2.7 三氧化二砷:优级纯 2.8(1+1)王水:取1份硝酸和3份盐酸混合均匀,然后用水稀释一倍。 2.9 还原剂(1%硼氢化钾+0.2%氢氧化钾溶液):称取0.2g氢氧化钾放入烧杯中,用少量水溶解,称取1g硼氢化钾,放入氢氧化钾溶液中溶解后用水稀释至100ml,此溶液用时现配。 2.10 载液:(1+9)盐酸溶液 2.11 硫脲溶液(5%):称取10g硫脲,溶解于200ml水中,摇匀。用时现配。 2.12 抗坏血酸(5%):称取10g抗坏血酸,溶解于200ml水中,摇匀。用时现配。 2.13 砷标准贮备液:称取0.6600g三氧化二砷(在105℃烘2h)于烧杯中,加入10ml 10% 氢氧化钠溶液,加热溶解,冷却后移入500ml容量瓶中,并用水稀释至刻度,摇匀。此溶液砷浓度为1.00mg/ml。 2.14 砷标准中间溶液:吸取10.00ml砷标准贮备液注入100ml容量瓶中,用(1+9)盐酸溶液稀释至刻度,摇匀。此溶液砷浓度为100ug/ml。 2.15 砷标准工作溶液:吸取1.00ml砷标准中间溶液注入100ml容量瓶中,用(1+9)盐酸溶液稀释至刻度,摇匀。此溶液砷浓度为1.00ug/ml。 四、采样要求和/或样品预处理技术 从野外采回的土壤样品要及时放在样品盘上,摊成薄薄的一层,置于室内通风处自然风干,严禁暴晒。风干过程中药经常翻动。将风干土壤剔除石块,用木棍或塑料碾压。压碎的土壤要最终通过0.149mm孔径筛。 五、检测步骤

食品中总砷的测定方法

食品中总砷的测定方法 1 主题内容与适用范围 本标准规定了各类食品中总砷的测定方法。 本标准适用于各类食品中总砷的测定。 其最低检出浓度:银盐法(测定用样品相当5g)为0.2mg/kg;砷斑法(测定用样品相当2g)为0.25mg/kg;硼氢化物还原比色法(测定用样品相当5g)为 0.05mg/kg。 第一篇银盐法(第一法) 2 原理 样品经消化后,以碘化钾、氯化亚锡将高价砷还原为三价砷,然后与锌粒和酸产生的新生态氢生成砷化氢,经银盐溶液吸收后,形成红色胶态物,与标准系列比较定量。 3 试剂 除特别注明外,所用试剂为分析纯,水为去离子水。 3.1 硝酸。 3.2 硫酸。 3.3 盐酸。 3.4 氧化镁。 3.5 无砷锌粒。 3.6 硝酸—高氯酸混合溶液(4+1):量取80mL硝酸,加20mL高氯酸,混匀。 3.7 硝酸镁溶液(150g/L):称取15g硝酸镁[Mg(NO 3) 2 ·6H 2 O],溶于水中, 并稀释至100mL。 3.8 碘化钾溶液(150g/L):贮存于棕色瓶中。 3.9 酸性氯化亚锡溶液:称取40g氯化亚锡(SnCl 2·2H 2 O),加盐酸溶解并 稀释至100mL,加入数颗金属锡粒。 3.10 盐酸(1+1):量取50mL盐酸,加水稀释至100mL。 3.11 乙酸铅溶液(100g/L)。 3.12 乙酸铅棉花:用乙酸铅溶液(100g/L)浸透脱脂棉后,压除多余溶液,并使疏松,在100℃以下干燥后,贮存于玻璃瓶中。 3.13 氢氧化钠溶液(200g/L)。 3.14 硫酸(6+94):量取6.0mL硫酸,加于80mL水中,冷后再加水稀释至100mL。 3.15 二乙基二硫代氨基甲酸银—三乙醇胺—三氯甲烷溶液:称取0.25g二 乙基二硫代氨基甲酸银[(C 2H 5 ) 2 NCS 2 Ag],置于乳钵中,加少量三氯甲烷研磨,移 入100mL量筒中,加入1.8mL三乙醇胺,再用三氯甲烷分次洗涤乳钵,洗液一并移入量筒中,再用三氯甲烷稀释至100mL,放置过夜。滤入棕色瓶中贮存。 3.16 砷标准溶液:准确称取0.1320g在硫酸干燥器中干燥过的或在100℃干燥2h的三氧化二砷,加5mL氢氧化钠溶液(200g/L),溶解后加25mL硫酸(6+94),移入1000mL容量瓶中,加新煮沸冷却的水稀释至刻度,贮存于棕色玻塞瓶中。此溶液每毫升相当于0.10mg砷。 3.17 砷标准使用液:吸取1.0mL砷标准溶液,置于100mL容量瓶中,加1mL 硫酸(6+94),加水稀释至刻度,此溶液每毫升相当于1.0μg砷。

实验九 土壤中总砷测定

实验报告 课程名称:环境监测实验实验类型:综合实验 实验项目名称:土壤中总砷测定 实验地点:环资B座实验日期:2018年11月01、08日 一、实验目的和要求(必填) 1.掌握固体样品预处理的方法 2.熟悉二乙基二硫代氨基甲酸银分光光度法测定砷的方法 二、实验内容和原理(必填) 环境中神主要来自于农药、制革、冶炼、染科化工等工业废水,有三价和五价两种价态,其中三自上五价毒性更大。砷的测定方法有可见光分光光度法,原子吸收分光光度法和原子荧光光度法等,目物最常用的是二乙基二硫代氨基甲酸银分光光度法。 氢化物-原子荧光光谱法: 将砷的酸性溶液在发生器中与还原剂发生氢化反应并生成砷的氢化物,砷的氢化物进入原子化器即解离而成为砷原子,砷原子受到光源特征辐射线的照射后产生砷原子荧光,荧光信号到达检测器转变为电信号,经电子放大器放大后由读数装置读出结果。 微波消解/原子荧光法 1.适用范围:本标准规定了测定土壤和沉积物中汞、砷、硒、铋、锑的微波消解/原子荧 光法。本标准适用于土壤和沉积物中汞、砷、硒、铋、锑的测定。 2.检出线:当取样品量为0.5g时,本方法测定汞的检出限为0.002mg/kg,测定下限为 0.008mg/kg;测定砷、硒、铋和锑的检出限为0.01mg/kg,测定下限为0.04mg/kg。 3.方法原理:样品经微波消解后试液进入原子荧光光度计,在硼氢化钾溶液还原作用下, 生成砷化氢、铋化氢、锑化氢和硒化氢气体,汞被还原成原子态。在氩氢火焰中形成基态原子,在元素灯(汞、砷、硒、铋、锑)发射光的激发下产生原子荧光,原子荧光强度与试液中元素含量成正比。 硼氢化钾硝酸银分光光度法 1.主题内容与适用范围:本标准规定了测定土壤中总砷的硼氢化钾硝酸银分光光度法。 2.检出限:本标准方法的检出限为0.2 mg/kg (按称取0.5 g试样计算)。 3.干扰:能形成共价氢化物的锑、铋、锡、硒和碲的含量为砷的20倍时可用二甲基甲酰 胺-乙醇胺浸渍的脱脂棉除去,否则不能使用本方法。硫化物对测定有正干扰,在试样氧化分解时,硫化物已被硝酸氧化分解,不再有影响。试剂中可能存在的少量硫化物,可用乙酸铅脱脂棉吸收除去。 4.原理:通过化学氧化分解试样中以各种形式存在的砷,使之转化为可溶态砷离子进入溶

相关文档
最新文档