遗传算法

遗传算法
遗传算法

遗传算法

摘要:遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。遗传算法经过不断的发展和改进,又发展出许多新的进化算法,如模拟退火算法,免疫遗传算法,粒子群优化算法等等。

关键字:遗传算法;进化率;寻优方法;组合优化

1、遗传算法的发展及历史

遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。美国Michigan大学的Ho11and教授及其学生受到生物模拟技术的启发,创造出了一种基于生物遗传和进化机制的适合于复杂系统优化的自适应概率优化技术——遗传算法。

1967年,Holland的学生Bagley在其博士论文中首次提出了“遗传算法”一词,他发展了复制、交叉、变异、显性、倒位等遗传算子,在个体编码上使用双倍体的编码方法。Holland教授用遗传算法的思想对自然和人工自适应系统进行了研究,提出了遗传算法的基本定理——模式定理(Schcma Theorem),并于1975年出版了第一本系统论述遗传算法和人工自适应系统的专著《Adaptation in Natural and Artificial Systems》。

20世纪80年代,Holland教授实现了第一个基于遗传算法的机器学习系统,开创了遗传算法的机器学习的新概念。1975年DeJong基于遗传算法的思想在计算机上进行了大量的纯数值函数优化计算实验,建立了遗传算法的工作框架,得到了一些重要且具有指导意义的结论。1989年Goldberg出版了专著《Genetic Algorithm in Search Optimization and Machine Learning》,系统地总结了遗传算法的主要研究成果,全面完整地论述了遗传算法的基本原理及其应用。

1991年,Davis出版了《Handbook of Genetic Algorithms》一书,介绍了遗传算法在科学计算、工程技术和社会经济中的大量实例。

1992年,Koza将遗传算法应用于计算机程序的优化设计及自动生成,提出了遗传编程(Genetic Programming,简称GP)的概念。

在控制系统的离线设计方面遗传算法被众多的使用者证明是有效的策略。例如,Krishnakumar和Goldberg以及Bramlette和Cusin已证明使用遗传优化方法在太空应用中导出优异的控制器结构比使用传统方法如LQR和Powell(鲍威尔)的增音机设计所用的时间要少(功能评估)。Porter和Mohamed展示了使用本质结构分派任务的多变量飞行控制系统的遗传设计方案。与此同时,另一些人证明了遗传算法如何在控制器结构的选择中使用。

从遗传算法的整个发展过程来看,20世纪70年代是兴起阶段,20世纪80年代是发展阶段,20世纪90年代是高潮阶段。遗传算法作为一种实用、高效、鲁棒性强的优化技术,发展极为迅速,已引起国内外学者的高度重视。

2、遗传算法的计算步骤及关键

2.1 需求分析

1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数。

2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。

3.测试数据

输入初始变量后用f(x)=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值。

2.2 遗传算法的计算步骤

(1)初始化

选择一个群体,即选择一个串或个体的集合x i (i=1,2,3……n)。这个初始的群体也就是问题假设解的集合。一般取n=30—60。

通常以随机方法产生串或个体的集合x i (i=1,2,3……n)问题的最优解将通过这些初始假设解进化而求出。

(2)选择

根据适者生存原则选择下一代的个体。在选择时,以适应度为选择原则。适应度准则体现了适者生存,不适应者淘汰的自然法则。给出目标函数f ,则f(x i )称为个体x i 的适应度。以

n 为选中x i 是下一代个体的次数。

显然,从上式可知:

①适应度较高的个体,繁殖下一代的数目较多。

②适应度较小的个体,繁殖下一代的数目较少;

甚至被淘汰。这样,就产生了对环境适应能力较强的后代。从问题求解角度来讲,就是选择出和最优解较接近的中间解。

(3)交叉

对于选中用于繁殖下一代的个体,随机地选择两个个体的相同位置 ,按交叉概率P 。在选中位置实行交换。这个过程反映了随机信息交换;目的在于产生新的基因组合,也即产生新的个体。交叉时,可实行单点交叉或多点交叉。 例如有个体S1=100101 S2=01011选择它们的左边3位进行交叉操作,则有S1=010101 S2=100111一般而言,交叉概率P ,取值为0.25—0.75。

(4)变异

根据生物遗传中基因变异的原理,以变异概率Pm 对某些个体的某些位执行变异。在变异时,对执行变异的串的对应位求反,即把1变为0,把0变为1。变异概率Pm 与生物变异极小的情况一致,所以,Pm 的取值较小,一般取0.01-0.2。

例如有个体S=101011,对其的第1,4位置的基因进行变异,则有S'=101011单靠变异不能在求解中得到好处。但是,它能保证算法过程不会产生无法进化的单一群体。因为在所有的个体一样时,交叉是无法产生新的个体的,这时只能靠变异产生新的个体。也就是说,变异增加了全局优化的特质。

(5)全局最优收敛

当最优个体的适应度达到给定的阈值,或者最优个体的适应度和群体适应度不∑

==n j j i i x f x f x P 1)

()()(选中

再上升时,则算法的迭代过程收敛,算法结束。否则,用经过选择、交叉、变异得到的新一代群体取代上一代群体,并返回到第2步即选择操作处继续循环执行。

2.3 遗传算法的关键

遗传算法在应用中最关键的问题有如下3个:

(1)串的编码方式

它本质是问题编码。一般把问题的各种参数用二进制编码,构成子串;然后把子串拼接构成“染色体”串。串长及编码形式对算法收敛影响极大。

(2)适应函数的确定

适应函数也称对象函数,这是问题求解品质的测量函数;往往也称为问题的“环境”。一般可以把问题的模式函数作为对象函数;但有时需要另行构造。

(3)遗传算法自身参数设定

遗传算法自身参数有3个,即群体大小n ,交叉概率和变异概率。群体大小n 太小时难以求出最优解,太大则增长收敛时间。一般n=30-160。交叉概率太小时难以向前搜索,太大则容易破坏高适应值的结构。一般取Pc=0.25-0.75。变异概率太小时难以产生新的基因结构,太大使遗传算法成了单纯的随机搜索。一般取Pm=0.01-0.2。

3、遗传算法的程序设计

遗传算法具有“生成+检测”的迭代过程的搜索算法。基本处理流程如图1所示。

1、遗传算法的基本流程描述如下: (1)编码:将解空间的解数据进行二进制编码,表达为遗传空间的基因型串(即染色体)结构数据,如将数据9编码为“1001”;

(2)初始化种群:定义整数作为染色体的个数,并且随机产生个染色体作为初始种群;

(3)评估种群中个体适应度:评价函数对种群中的每个染色体求得其个体适应度;

(4)选择:选择把当前群体中适应度较高的个体按某种规则或者模型遗传到下一编码 初始化种群 评估种群中个体适应度 选择 交叉

变异 演化

代种群中,这里所用的规则是:染色体在种群中被选择的可能性与其个体的适应度的大小成正比;

(5)交叉:定义参数Pc作为交叉操作的概率,由(4)选择得到的两个个体以概率Pc交换各自的部分染色体,得到新的两个个体;

(6)变异:定义参数Pm作为变异操作的概率,由(5)得到每个个体中的每个基因值都以概率Pm进行变异;

(7)演化:经过选择、交叉和变异操作,得到一个新的种群,对上述步骤经过给定的循环次数(maxgeneration)的种群演化,遗传算法终止。

2、类型定义

int popsize; //种群大小

int maxgeneration; //最大世代数

double pc; //交叉率

double pm; //变异率

struct individual

{

char chrom[chromlength+1];

double value;

double fitness; //适应度

};

int generation; //世代数

int best_index;

int worst_index;

struct individual bestindividual; //最佳个体

struct individual worstindividual; //最差个体

struct individual currentbest;

struct individual population[POPSIZE];

3、函数声明

void generateinitialpopulation();

void generatenextpopulation();

void evaluatepopulation();

long decodechromosome(char *,int,int);

void calculateobjectvalue();

void calculatefitnessvalue();

void findbestandworstindividual();

void performevolution();

void selectoperator();

void crossoveroperator();

void mutationoperator();

void input();

void outputtextreport();

3、程序的各函数的简单算法说明如下:

(1)void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。

(2) void calculateobjectvalue();计算适应度函数值。根据给定的变量用适应度函数计算然后返回适度值。

(3)选择函数selectoperator()

在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个体就被选出,即适应度为fi的个体以fi/∑fk的概率继续存在;显然,个体适应度愈高,被选中的概率愈大。但是,适应度小的个体也有可能被选中,以便增加下一代群体的多样性。

(4)染色体交叉函数crossoveroperator()

这是遗传算法中的最重要的函数之一,它是对个体两个变量所合成的染色体进行交叉,而不是变量染色体的交叉,这要搞清楚。首先用rand ()函数产生随机概率,若小于交叉概率,则进行染色体交叉,同时交叉次数加1。这时又要用rand()函数随机产生一位交叉位,把染色体的交叉位的后面部分交叉即可;若大于交叉概率,则进行简单的染色体复制即可。

(5)染色体变异函数mutation()

变异是针对染色体字符变异的,而不是对个体而言,即个体变异的概率是一样。随机产生比较概率,若小于变异概率,则1变为0,0变为1,同时变异次数加1。

(6)long decodechromosome(char *,int,int) 本函数是染色体解码函数,它将以数组形式存储的二进制数转成十进制数,然后才能用适应度函数计算。

(7)void findbestandworstindividual()本函数是求最大适应度个体的,每一代的所有个体都要和初始的最佳比较,如果大于就赋给最佳。

(8)void outputtextreport () 输出种群统计结果

输出每一代的种群的最大适应度和平均适应度,最后输出全局最大值

4、源代码

本程序在VC++环境下运行。

#include

#include

#include

#include

#define POPSIZE 500

#define maximization 1

#define minimization 2

#define cmax 100

#define cmin 0

#define length1 10

#define length2 10

#define chromlength length1+length2 //染色体长度

int functionmode=maximization;

int popsize; //种群大小

int maxgeneration; //最大世代数

double pc; //交叉率

double pm; //变异率

struct individual {

char chrom[chromlength+1];

double value;

double fitness; //适应度

};

int generation; //世代数

int best_index;

int worst_index;

struct individual bestindividual; //最佳个体

struct individual worstindividual; //最差个体

struct individual currentbest;

struct individual population[POPSIZE];

//函数声明

void generateinitialpopulation();

void generatenextpopulation();

void evaluatepopulation();

long decodechromosome(char *,int,int);

void calculateobjectvalue();

void calculatefitnessvalue();

void findbestandworstindividual();

void performevolution();

void selectoperator();

void crossoveroperator();

void mutationoperator();

void input();

void outputtextreport();

void generateinitialpopulation( ) //种群初始化

{ int i,j;

for (i=0;i

{ for(j=0;j

population[i].chrom[j]=(rand()%10<5)?'0':'1'; }

population[i].chrom[chromlength]='\0';

}

}

void generatenextpopulation() //生成下一代

{ selectoperator(); crossoveroperator();

mutationoperator();

}

void evaluatepopulation() //评价个体,求最佳个体

{ calculateobjectvalue();

calculatefitnessvalue();

findbestandworstindividual(); }

long decodechromosome(char *string ,int point,int length) //给染色体解码{ int i;

long decimal=0; char*pointer;

for(i=0,pointer=string+point;i

if(*pointer-'0')

{decimal +=(long)pow(2,i); }

return (decimal);

}

void calculateobjectvalue() //计算函数值

{ int i;

long temp1,temp2;

double x1,x2;

for (i=0; i

temp1=decodechromosome(population[i].chrom,0,length1);

temp2=decodechromosome(population[i].chrom,length1,length2);

x1=4.096*temp1/1023.0-2.048;

x2=4.096*temp2/1023.0-2.048;

population[i].value=100*(x1*x1-x2)* (x1*x1-x2)+(1-x1)*(1-x1); } }

void calculatefitnessvalue()//计算适应度

{

int i=0;

double temp;

for(i=0;i

{

if(functionmode==maximization)

{if((population[i].value+cmin)>0.0)

{temp=cmin+population[i].value;}

else {temp=0.0; }

}

else if (functionmode==minimization) {

if(population[i].value

{temp=cmax-population[i].value;}

else{ temp=0.0;}

}

population[i].fitness=temp;

}

}

void findbestandworstindividual( ) //求最佳个体和最差个体

{

int i;

double sum=0.0;

bestindividual=population[0];

worstindividual=population[0];

for (i=1;i

if (population[i].fitness>bestindividual.fitness){

bestindividual=population[i];

best_index=i;

}

else if (population[i].fitness

worstindividual=population[i];

worst_index=i;

}

sum+=population[i].fitness;

}

if (generation==0){

currentbest=bestindividual;

}

else{

if(bestindividual.fitness>=currentbest.fitness){ currentbest=bestindividual;

}

}

}

void performevolution() //演示评价结果

{

if (bestindividual.fitness>currentbest.fitness){ currentbest=population[best_index];

}

else{

population[worst_index]=currentbest;

}

}

void selectoperator() //比例选择算法

{

int i,index;

double p,sum=0.0;

double cfitness[POPSIZE];

struct individual newpopulation[POPSIZE];

for(i=0;i

{sum+=population[i].fitness;}

for(i=0;i

cfitness[i]=population[i].fitness/sum;

}

for(i=1;i

cfitness[i]=cfitness[i-1]+cfitness[i];

}

for (i=0;i

{

p=rand()%1000/1000.0;

index=0;

while (p>cfitness[index])

{

index++;

}

newpopulation[i]=population[index];

}

for(i=0;i

population[i]=newpopulation[i];

}

}

void crossoveroperator() //交叉算法

{

int i,j;

int index[POPSIZE];

int point,temp;

double p;

char ch;

for (i=0;i

index[i]=i;

}

for (i=0;i

{ point=rand()%(popsize-i);

temp=index[i];

index[i]=index[point+i];

index[point+i]=temp;

}

for (i=0;i

{ p=rand()%1000/1000.0;

if (p

point=rand()%(chromlength-1)+1;

for (j=point; j

{

ch=population[index[i]].chrom[j];

population[index[i]].chrom[j]=population[index[i+1]].chrom[j];

population[index[i+1]].chrom[j]=ch;

}

}

}

}

void mutationoperator() //变异操作

{ int i,j; double p;

for (i=0;i

{ for(j=0;j

{ p=rand()%1000/1000.0;

if (p

}

}

}

}

void input() //数据输入

{ printf("初始化全局变量:\n");

printf(" 种群大小(50-500):");

scanf("%d", &popsize);

if((popsize%2) != 0)

{ printf( " 种群大小已设置为偶数\n");

popsize++;};

printf(" 最大世代数(1-300):");

scanf("%d", &maxgeneration);

printf(" 交叉率(0.2-0.99):");

scanf("%f", &pc);

printf(" 变异率(0.001-0.1):");

scanf("%f", &pm);

}

void outputtextreport()//数据输出

{

int i;

double sum;

double average;

sum=0.0;

for(i=0;i

{sum+=population[i].value;}

average=sum/popsize;

printf("当前世代=%d\n当前世代平均函数值=%f\n当前世代最高函数值=%f\n",generation,average,population[best_index].value);

}

void main() //主函数

{ int i;

printf("本程序为求函数y=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)的最大值\n 其中-2.048<=x1,x2<=2.048\n");

generation=0;

input();

generateinitialpopulation();

evaluatepopulation();

while(generation

{ generation++;

generatenextpopulation();

evaluatepopulation();

performevolution();

outputtextreport();

}

printf("\n");

printf(" 统计结果: ");

printf("\n");

printf("\n");

printf("最大函数值等于:%f\n",currentbest.fitness); printf("其染色体编码为:");

for (i=0;i

{

printf("%c",currentbest.chrom[i]);

}

printf("\n");

}

5、运行结果

自适应遗传算法讲解学习

自适应遗传算法

自适应遗传算法 一.主要流程: 1. 参数的初始化。设定遗传种群规模N ,阵元数M ,信源数P 等。 2. 编码。采用十进制编码方法。 3. 初始种群的产生。随机数生成。 4. 适应度函数的评价。选取 ()() R P ΘA )tr f = (1) 其中, H 1H )(A A A A P A -= (2) P A 是A 的投影矩阵,A 是阵列流型。 ∑==L i L 1 H 1XX R ) (3) R )是数据协方差矩阵的最大似然估计。 5. 选择。比例选择方法与精英选择方法结合使用,在当代种群中选择优良个体遗传到下一代。既保证了种群的多样性,也使最优个体得以保留。 1)比例选择方法(赌轮盘法):每个个体被选中的概率与它的适应度函数值大小成正比,即适应度函数越高的个体被选中的概率也就越高。 2)精英选择方法:让种群中适应度函数值最高的个体不进行配对交叉,直接复制到下一代中。但是容易陷入局部最优解,全局搜索能力差。 6. 交叉。按照概率P c 对种群中个体两两配对,进行交叉操作。本文中选取算数交叉的方式。 算数交叉:是由两个个体的线性组合来产生新的个体,假设第t 代的两个个体为A (t)、B (t),则算数交叉后产生的新个体是

()()()()t t t A B A αα-+=+11 (4) ()()()()t t t B A B αα-+=+11 (5) 其中,α选取(0,1)之间的随机数。 交叉概率:使交叉概率随着遗传代数的增长,逐渐减小,目的是进化前期注重交叉运算,全局搜索能力强。 2.02cos *4.0+?? ? ??*=πK T P c (6) 其中,T 是进化代数,K 是总进化次数。 7. 变异。按照概率P m 对种群个体进行变异。本文中选取均匀变异的方式。 均匀变异:如某基因座上的基因值为X k ,其取值范围为[Umin,Umax],对其进行变异后的值为 )U -r(U +U =X min max min k (7) 其中,r 选取[0,1]之间的随机数。 变异概率:使变异概率随着遗传代数的增长,逐渐增加,目的是进化后期注重变异运算,局部搜索能力强。 005.02sin *045.0+?? ? ??*=πK T P m (8) 其中,T 是进化代数,K 是总进化次数。 8. 终止条件判断。若已达到设定的最大遗传代数,则迭代终止,输出最优解;若不满足终止条件,则返回第4步,进行迭代寻优过程。

4遗传算法与函数优化

第四章遗传算法与函数优化 4.1 研究函数优化的必要性: 首先,对很多实际问题进行数学建模后,可将其抽象为一个数值函数的优化问题。由于问题种类的繁多,影响因素的复杂,这些数学函数会呈现出不同的数学特征。除了在函数是连续、可求导、低阶的简单情况下可解析地求出其最优解外,大部分情况下需要通过数值计算的方法来进行近似优化计算。 其次,如何评价一个遗传算法的性能优劣程度一直是一个比较难的问题。这主要是因为现实问题种类繁多,影响因素复杂,若对各种情况都加以考虑进行试算,其计算工作量势必太大。由于纯数值函数优化问题不包含有某一具体应用领域中的专门知识,它们便于不同应用领域中的研究人员能够进行相互理解和相互交流,并且能够较好地反映算法本身所具有的本质特征和实际应用能力。所以人们专门设计了一些具有复杂数学特征的纯数学函数,通过遗传算法对这些函数的优化计算情况来测试各种遗传算法的性能。 4.2 评价遗传算法性能的常用测试函数 在设计用于评价遗传算法性能的测试函数时,必须考虑实际应用问题的数学模型中所可能呈现出的各种数学特性,以及可能遇到的各种情况和影响因素。这里所说的数学特性主要包括: ●连续函数或离散函数; ●凹函数或凸函数; ●二次函数或非二次函数; ●低维函数或高维函数; ●确定性函数或随机性函数; ●单峰值函数或多峰值函数,等等。 下面是一些在评价遗传算法性能时经常用到的测试函数: (1)De Jong函数F1: 这是一个简单的平方和函数,只有一个极小点f1(0, 0, 0)=0。

(2)De Jong 函数F2: 这是一个二维函数,它具有一个全局极小点f 2(1,1) = 0。该函数虽然是单峰值的函数,但它却是病态的,难以进行全局极小化。 (3)De Jong 函数F3: 这是一个不连续函数,对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值 30),,,,(543213-=x x x x x f 。

第三章-遗传算法的理论基础

第三章 遗传算法的理论基础 遗传算法有效性的理论依据为模式定理和积木块假设。模式定理保证了较优的模式(遗传算法的较优解)的样本呈指数级增长,从而满足了寻找最优解的必要条件,即遗传算法存在着寻找到全局最优解的可能性。而积木块假设指出,遗传算法具备寻找到全局最优解的能力,即具有低阶、短距、高平均适应度的模式(积木块)在遗传算子作用下,相互结合,能生成高阶、长距、高平均适应度的模式,最终生成全局最优解。Holland 的模式定理通过计算有用相似性,即模式(Pattern)奠定了遗传算法的数学基础。该定理是遗传算法的主要定理,在一定程度上解释了遗传算法的机理、数学特性以及很强的计算能力等特点。 3.1 模式定理 不失一般性,本节以二进制串作为编码方式来讨论模式定理(Pattern Theorem)。 定义3.1 基于三值字符集{0,1,*}所产生的能描述具有某些结构相似性的0、1字符串集的字符串称作模式。 以长度为5的串为例,模式*0001描述了在位置2、3、4、5具有形式“0001”的所有字符串,即(00001,10001) 。由此可以看出,模式的概念为我们提供了一种简洁的用于描述在某些位置上具有结构相似性的0、1字符串集合的方法。 引入模式后,我们看到一个串实际上隐含着多个模式(长度为 n 的串隐含着2n 个模式) ,一个模式可以隐含在多个串中,不同的串之间通过模式而相互联系。遗传算法中串的运算实质上是模式的运算。因此,通过分析模式在遗传操作下的变化,就可以了解什么性质被延续,什么性质被丢弃,从而把握遗传算法的实质,这正是模式定理所揭示的内容 定义3.2 模式H 中确定位置的个数称作该模式的阶数,记作o(H)。比如,模式 011*1*的阶数为4,而模式 0* * * * *的阶数为1。 显然,一个模式的阶数越高,其样本数就越少,因而确定性越高。 定义3.3 模式H 中第一个确定位置和最后一个确定位置之间的距离称作该模式的定义距,记作)(H δ。比如,模式 011*1*的定义距为4,而模式 0* * * * *的定义距为0。 模式的阶数和定义距描述了模式的基本性质。 下面通过分析遗传算法的三种基本遗传操作对模式的作用来讨论模式定理。令)(t A 表示第t 代中串的群体,以),,2,1)((n j t A j =表示第t 代中第j 个个体串。 1.选择算子 在选择算子作用下,与某一模式所匹配的样本数的增减依赖于模式的平均适值,与群体平均适值之比,平均适值高于群体平均适值的将呈指数级增长;而平均适值低于群体平均适值的模式将呈指数级减少。其推导如下: 设在第t 代种群)(t A 中模式所能匹配的样本数为m ,记为),(t H m 。在选择中,一个位串 j A 以概率/j j i P f f =∑被选中并进行复制,其中j f 是个体)(t A j 的适应度。假设一代中群体 大小为n ,且个体两两互不相同,则模式H 在第1+t 代中的样本数为:

遗传算法经典MATLAB代码资料讲解

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法% % 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]% % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其 中 b 是[0,1023] 中的一个二值数。% % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解 基本原理: 遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概 率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 运用遗传算法工具箱: 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。 以GATBX为例,运用GATBX时,要将GATBX解压到Matlab下的toolbox文件夹里,同时,set path将GATBX文件夹加入到路径当中。 这块内容主要包括两方面工作:1、将模型用程序写出来(.M文件),即目标函数,若目标函数非负,即可直接将目标函数作为适应度函数。2、设置遗传算法的运行参数。包括:种群规模、变量个数、区域描述器、交叉概率、变异概率以及遗传运算的终止进化代数等等。

遗传算法的计算性能的统计分析

第32卷 第12期2009年12月 计 算 机 学 报 CH INESE JOURNA L OF COMPU TERS Vol.32No.12 Dec.2009 收稿日期:2008210219;最终修改稿收到日期:2009209227.本课题得到国家自然科学基金(60774084)资助.岳 嵚,男,1977年生,博士研究生,主要研究方向为进化算法.E 2mail:yueqqin@si https://www.360docs.net/doc/8714695232.html,.冯 珊,女,1933年生,教授,博士生导师,主要研究领域为智能决策支持系统. 遗传算法的计算性能的统计分析 岳 嵚 冯 珊 (华中科技大学控制科学与工程系 武汉 430074) 摘 要 通过对多维解析函数的多次重复计算并对计算结果进行统计分析来讨论遗传算法的可靠性和可信度,结果表明:遗传算法的计算结果具有一定的稳定性,可以通过采用多次重复计算的方法提高计算结果的可信度,并用以评价算法及其改进的实际效果.关键词 遗传算法;计算可靠性;置信区间 中图法分类号TP 18 DOI 号:10.3724/SP.J.1016.2009.02389 The Statistical Analyses for Computational Performance of the Genetic Algorithms YU E Qin FENG Shan (Dep artment of Contr ol Science and Eng ineering ,H uazhong University of Science and T ech nology ,W u han 430074) Abstr act In this paper,the author s discuss the reliability of the GAs by reiteratively computing the multi 2dimensional analytic functions and statistical analysis of the results.The analysis re 2sults show that the GAs have certain stability;it could improve the reliability by reiteratively computation and estimates the effects of improvements. Keywor ds genetic algorithms;computational stability;confidence interval 1 遗传算法的随机性 遗传算法是将生物学中的遗传进化原理和随机优化理论相结合的产物,是一种随机性的全局优化算法[1].遗传算法作为一种启发式搜索算法,其计算结果具有不稳定性和不可重现性;遗传算法的进化过程具有有向随机性,整体上使种群的平均适应度不断提高.现在学术界对遗传算法中的某些遗传操作的作用机制还不十分清楚,遗传算法的许多性能特点无法在数学上严格证明.遗传算法的计算过程会受到各种随机因素的影响,如随机产生的初始种群和随机进行的变异操作等,尤其初始种群对计算结果影响较大.但另一方面,大量的实算结果表明,遗传算法的计算结果具有一定的规律性,在统计意义上具有一定的可靠性,这样就可以对待求解问题 进行多次重复计算后取平均值的方法,提高遗传算 法在实际计算中的准确性和可信度. 包括遗传算法在内的启发式搜索算法主要用于解决大型的复杂优化问题,这些问题一般难以使用传统的优化算法解决.遗传算法对这类问题的计算结果也难达到精确的最优解.这给对用遗传算法解决实际工程优化问题的计算结果的评价带来了困难,在实际工程计算中也难以评价遗传算法及其改进型的计算效果的优劣. 为了分析遗传算法的计算性能,本文采用的计算对象是一个复杂的多维解析函数.使用这类函数评价遗传算法计算性能的好处是可以事先通过其他方法求得最优解,这样便于评价遗传算法及其改进型的计算效果.本文从统计学角度对多次重复计算的结果进行分析,试图得到遗传算法的稳定性和可信度方面的相关结论,通过分析遗传算法及其改进

matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。还好用遗传算法的工箱予以实现了,期间也遇到了许多问题。借此与大家分享一下。 首先,我们要熟悉遗传算法的基本原理与运算流程。 基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。 Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 其次,运用遗传算法工具箱。 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS 就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

遗传算法的计算性能的统计分析

遗传算法遗传算法的计算性能的统计分析 岳嵚冯珊 (华中科技大学控制科学与工程系) 摘要:本文通过对多维解析函数的多次重复计算并对计算结果的进行统计分析来讨论遗传算法的可靠性和可信度,结果表明:遗传算法的计算结果具有一定的稳定性,可以通过采用多次重复计算的方法提高计算结果的可信度,并用以评价算法及其改进的实际效果。 关键词:遗传算法;计算可靠性;置信区间 分类号:TP18 1遗传算法的随机性 遗传算法是将生物学中的遗传进化原理和随机优化理论相结合的产物,是一种随机性的全局优化算法[1]。遗传算法作为一种启发式搜索算法,其计算结果具有不稳定性和不可重现性;遗传算法的进化过程具有有向随机性,整体上使种群的平均适应度不断提高。现在学术界对遗传算法中的某些遗传操作的作用机制还不十分清楚,遗传算法的许多性能特点无法在数学上严格证明。遗传算法的计算过程会受到各种随机因素的影响,如随机产生的初始种群和随机进行的变异操作等,尤其初是始种群对计算结果影响较大。但另一方面,大量的实算结果表明,遗传算法的计算结果具有一定的规律性,在统计意义上具有一定的可靠性,这样就可以对待求解问题进行多次重复计算后取平均值的方法,提高遗传算法在实际计算中的准确性和可信度。 包括遗传算法在内的启发式搜索算法主要用于解决大型的复杂优化问题,这些问题一般难以使用传统的优化算法解决。遗传算法对这类问题的计算结果也难达到精确的最优解。这给对用遗传算法解决实际工程优化问题的计算结果的评价带来了困难,在实际工程计算中也难以评价遗传算法及其改进型的计算效果的优劣。 为了分析遗传算法的计算性能,本文采用的计算对象是一个复杂的多维解析函数。使用这类函数评价遗传算法计算性能的好处是可以事先通过其他方法求得最优解,这样便于评价遗传算法及其改进型的计算效果。本文从统计学角度对多次重复计算的结果进行分析,试图得到遗传算法的稳定性和可信度方面的相关结论,通过分析遗传算法及其改进型求解解析问题的计算效果,再把所得到的相关结论推广应用到复杂的工程实际问题中去。 遗传算法在实际使用中有多种形式的变型,经典遗传算法是遗传算法的最简单的形式,但是经典遗传算法并不理想。本文使用的是粗粒度并行遗传算法。粗粒度并行遗传算法是遗传算法的一个重要改进型。它具有比经典遗传算法更好的计算性能。 2算例、实验方法和实验结果 2.1算例 本文所使用的算例是Deb 函数: ]10,10[,)]4cos(10[10)(12?∈??+=∑=i n i i i Deb x n x x x f i π(1) Deb 函数是一个高维的非凸函数,该函数在点(9.7624,9.7624,…,9.7624)上取得最大

遗传算法基本理论实例

目录 _ 一、遗产算法的由来 (2) 二、遗传算法的国内外研究现状 (3) 三、遗传算法的特点 (5) 四、遗传算法的流程 (7) 五、遗传算法实例 (12) 六、遗传算法编程 (17) 七、总结 ......... 错误!未定义书签。附录一:运行程序.. (19)

遗传算法基本理论与实例 一、遗产算法的由来 遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。20世纪40年代以来,科学家不断努力从生物学中寻求用于计算科学和人工系统的新思想、新方法。很多学者对关于从生物进化和遗传的激励中开发出适合于现实世界复杂适应系统研究的计算技术——生物进化系统的计算模型,以及模拟进化过程的算法进行了长期的开拓性的探索和研究。John H.Holland教授及其学生首先提出的遗传算法就是一个重要的发展方向。 遗传算法借鉴了达尔文的进化论和孟德尔、摩根的遗传学说。按照达尔文的进化论,地球上的每一物种从诞生开始就进入了漫长的进化历程。生物种群从低级、简单的类型逐渐发展成为高级复杂的类型。各种生物要生存下去及必须进行生存斗争,包括同一种群内部的斗争、不同种群之间的斗争,以及生物与自然界无机环境之间的斗争。具有较强生存能力的生物个体容易存活下来,并有较多的机会产生后代;具有较低生存能力的个体则被淘汰,或者产生后代的机会越来越少。,直至消亡。达尔文把这一过程和现象叫做“自然选择,适者生存”。按照孟德尔和摩根的遗传学理论,遗传物质是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体上,每个基因有特殊的位置并控制生物的某些特性。不同的基因组合产生的个体对环境的适应性不一样,通过基因杂交和突变可以产生对环境适应性强的后代。经过优胜劣汰的自然选择,适应度值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传和变异的

人工智能之遗传算法论文含源代码

30维线性方程求解 摘要:非线性方程组的求解是数值计算领域中最困难的问题,大多数的数值求解算法例如牛顿法的收敛性和性能特征在很大程度上依赖于初始点。但是对于很多高维的非线性方程组,选择好的初始点是一件非常困难的事情。本文采用了遗传算法的思想,提出了一种用于求解非线性方程组的混合遗传算法。该混合算法充分发挥了遗传算法的群体搜索和全局收敛性。选择了几个典型非线性方程组,考察它们的最适宜解。 关键词:非线性方程组;混合遗传算法;优化 1. 引言遗传算法是一种通用搜索算法,它基于自然选择机制和自然遗传规律来模拟自然界的进化过程,从而演化出解决问题的最优方法。它将适者生存、结构化但同时又是 随机的信息交换以及算法设计人的创造才能结合起来,形成一种独特的搜索算法,把一些解决方案用一定的方式来表示,放在一起成为群体。每一个方案的优劣程度即为适应性,根据自然界进化“优胜劣汰”的原则,逐步产生它们的后代,使后代具有更强的适应性,这样不断演化下去,就能得到更优解决方案。 随着现代自然科学和技术的发展,以及新学科、新领域的出现,非线性科学在工农业、经济政治、科学研究方面逐渐占有极其重要的位置。在理论研究和应用实践中,几乎绝大多数的问题都最终能化为方程或方程组,或者说,都离不开方程和方程组的求解。因此,在非线性问题中尤以非线性方程和非线性方程组的求解最为基本和重要。传统的解决方法,如简单迭代法、牛顿法、割线法、延拓法、搜索法、梯度法、共轭方向法、变尺度法,无论从算法的选择还是算法本身的构造都与所要解决的问题的特性有很大的关系。很多情况下,算法中算子的构造及其有效性成为我们解决问题的巨大障碍。而遗传算法无需过多地考虑问题的具体形式,因为它是一种灵活的自适应算法,尤其在一些非线性方程组没有精确解的时候,遗传算法显得更为有效。而且,遗传算法是一种高度并行的算法,且算法结构简单,非常便于在计算机上实现。本文所研究的正是将遗传算法应用于求解非线性方程组的问题。 2. 遗传算法解非线性方程组为了直观地观察用遗传算法求解非线性方程组的效果,我们这里用代数非线性方程组作为求解的对象问题描述:非线性方程组指的是有n 个变量(为了简化讨论,这里只讨论实变量方程组)的方程组 中含有非线性方程。其求解是指在其定义域内找出一组数能满足方程组中的每 个方程。这里,我们将方程组转化为一个函数则求解方程组就转化为求一组值使得成立。即求使函数取得最小值0 的一组数,于是方程组求解问题就转变为函数优化问题 3. 遗传算子 遗传算子设计包括交叉算子、变异算子和选择算子的设计。

遗传算法基本理论与方法

摘要:基本遗传算法的操作是以个体为对象,只使用选择、交叉和变异遗传算子,遗传进化操作过程的简单框架。模式定理和积木块假设是解释遗传算法有效性的理论基础,理论分析与实际应用都表明基本的遗传算法不能处处收敛于全局最优解,因此基本遗传算法有待进一步改进。 关键词:遗传算法;遗传算法的改进 1.标准遗传算法 基本遗传算法包括选择、交叉和变异这些基本遗传算子。其数学模型可表示为: sag=(c,e,p0,n,φ,г,ψ,t) 其中c为个体的编码方法;e为个体适应度评价函数;p0为初始种群;n为种群大小;φ为选择算子;г为交叉算子;ψ为变异算子;t为遗传运算终止条件; 2 遗传算法基本方法及其改进 2.1编码方式 编码方式决定了个体的染色体排列形式,其好坏直接影响遗传算法中的选择算子、交叉算子和变异算子的运算,也决定了解码方式。 二进制编码 二进制编码使用的字符号{0,1}作为编码符号,即用一个{0,1}所组成的二进制符号串构成的个体基因型。二进制编码方法应用于遗传算法中有如下优点: 1)遗传算法中的遗传操作如交叉、变异很容易实现,且容易用生物遗传理论来解释; 2)算法可处理的模式多,增强了全局搜索能力; 3)便于编码、解码操作; 4)符合最小字符集编码原则; 5)并行处理能力较强。 二进制编码在存着连续函数离散化的映射误差,不能直接反应出所求问题的本身结构特征,不便于开发专门针对某类问题的遗传运算算子。 2.2初始种群的设定 基本遗传算法是按随机方法在可能解空间内产生一个一定规模的初始群体,然后从这个初始群体开始遗传操作,搜索最优解。初始种群的设定一般服从下列准则:1)根据优化问题,把握最优解所占空间在整个问题空间的分布范围,然后,在此分布范围内设定合适的初始群体。 2)先随机生成一定数目的个体,然后从中挑出最好的个体加入到初始群体中。该过程不断迭代,直到初始群体中个体数目达到了预先确定的种群大小。 2.3选择算子的分析 选择算子的作用是选择优良基因参与遗传运算,目的是防止有用的遗传信息丢失,从而提高全局收敛效率。常用的遗传算子: (1)轮盘赌选择机制 轮盘赌选择也称适应度比例选择,是遗传算法中最基本的选择机制,每个个体被选择进入下一代的概率为这个个体的适应度值占全部个体适应度值之和的比例。但是轮盘赌选择机制选择误差较大,不是所有高适应度值的个体都能被选中,适应度值较低但具有优良基因模式的个体被选择的概率也很低,这样就会导致早熟现象的产生。 (2)最优保存选择机制 最优保存选择机制的基本思想是直接把群体中适应度最高的个体复制到下一代,而不进行配对交叉等遗传操作。具体步骤如下: 1)找出当前群体中适应度值最高和最低的个体的集合;

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

matlab遗传算法工具箱函数及实例讲解(转引) 核心函数:? (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数?【输出参数】? ?pop--生成的初始种群?【输入参数】? ?num--种群中的个体数目? ?bounds--代表变量的上下界的矩阵? ?eevalFN--适应度函数? ?eevalOps--传递给适应度函数的参数? ?options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如? precision--变量进行二进制编码时指定的精度? F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)? (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts.? ?termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs ,mutOps)--遗传算法函数?【输出参数】? x--求得的最优解? endPop--最终得到的种群?

bPop--最优种群的一个搜索轨迹?【输入参数】? bounds--代表变量上下界的矩阵? evalFN--适应度函数? evalOps--传递给适应度函数的参数? startPop-初始种群? opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。如[1e-6 termFN--终止函数的名称,如['maxGenTerm']? termOps--传递个终止函数的参数,如[100]? selectFN--选择函数的名称,如['normGeomSelect']? selectOps--传递个选择函数的参数,如[0.08]? xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']? xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]? mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']? mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]?注意】matlab工具箱函数必须放在工作目录下?【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0=x=9?【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08?【程序清单】?

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

详解MATLAB在最优化计算中的应用(pdf版) 第1章 MATLAB语言基础1 1.1 MATLAB简介1 1.1.1 MATLAB的产生与发展1 1.1.2 MATLAB语言的优势1 1.2 MATLAB入门2 1.2.1 MATLAB工作环境2 1.2.2 MATLAB中的数据类型8 1.2.3 MATLAB语言中的常量与变量11 1.2.4 MATLAB中的矩阵13 1.2.5 符号运算20 1.2.6 关系与逻辑运算22 1.3 MATLAB中的矩阵运算22 1.3.1 矩阵的代数运算22 1.3.2 矩阵的关系与逻辑运算25 1.3.3 矩阵分析25 1.4 MATLAB中的图形功能28 1.4.1 二维图形29 1.4.2 三维图形33 1.5 MATLAB工具箱的使用35 1.5.1 MATLAB工具箱的特点35

1.5.2 MATLAB工具箱的使用方法35 1.6 本章小结37 第2章 MATLAB程序设计38 2.1 MATLAB程序设计方法38 2.1.1 MATLAB中的控制结构38 2.1.2 MATLAB中的M脚本文件和M函数文件46 2.1.3 MATLAB程序的调试53 2.2 MATLAB扩展编程55 2.2.1 调用MATLAB引擎56 2.3 本章小结73 第3章最优化计算问题概论74 3.1 引言74 3.1.1 最优化问题的提出74 3.1.2 最优化理论和方法的产生与发展75 3.2 最优化问题的典型实例76 3.2.1 资-源利用问题76 3.2.2 分派问题77 3.2.3 投资决策问题79 3.2.4 多目标规划问题80 3.3 最优化问题的数学描述81 3.3.1 最优化问题三要素81 3.3.2 最优化问题分类82

第七章遗传算法应用举例

第七章 遗传算法应用举例 遗传算法提供了一种求解非线性、多模型、多目标等复杂系统优化问题的通用框架,它不依赖于问题具体的领域。随着对遗传算法技术的不断研究,人们对遗传算法的实际应用越来越重视,它已经广泛地应用于函数优化、组合优化、自动控制、机器人学、图象处理、人工生命、遗传编码、机器学习等科技领域。遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等多方面的应用取得了成功。本章通过一些例子,介绍如何利用第五章提供的遗传算法通用函数,编写MATLAB 程序,解决实际问题。 7.1 简单一元函数优化实例 利用遗传算法计算下面函数的最大值: ()sin(10) 2.0[1,2]f x x x x π=?+∈-, 选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25。 下面为一元函数优化问题的MA TLAB 代码。 figure(1); fplot ('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线 % 定义遗传算法参数 NIND= 40; % 个体数目(Number of individuals) MAXGEN = 25; % 最大遗传代数(Maximum number of generations) PRECI = 20; % 变量的二进制位数(Precision of variables) GGAP = 0.9; % 代沟(Generation gap) trace=zeros (2, MAXGEN); % 寻优结果的初始值 FieldD = [20;-1;2;1;0;1;1]; % 区域描述器(Build field descriptor) Chrom = crtbp(NIND, PRECI); % 初始种群 gen = 0; % 代计数器 variable=bs2rv(Chrom,FieldD); % 计算初始种群的十进制转换 ObjV = variable.*sin (10*pi*variable)+2.0; % 计算目标函数值 while gen < MAXGEN, FitnV = ranking (-ObjV); % 分配适应度值(Assign fitness values) SelCh = select ('sus', Chrom, FitnV , GGAP); % 选择 SelCh = recombin ('xovsp',SelCh,0.7); % 重组 SelCh = mut(SelCh); % 变异 variable=bs2rv(SelCh,FieldD); % 子代个体的十进制转换 ObjVSel =variable.*sin(10*pi*variable)+2.0; % 计算子代的目标函数值 [Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV ,ObjVSel); % 重插入子代的新种群 gen = gen+1; % 代计数器增加 % 输出最优解及其序号,并在目标函数图象中标出,Y 为最优解,I 为种群的序号 [Y,I]=max(ObjV),hold on; plot (variable (I),Y , 'bo'); trace (1,gen)=max (ObjV); %遗传算法性能跟踪

基于数据挖掘的遗传算法

基于数据挖掘的遗传算法 xxx 摘要:本文定义了遗传算法概念和理论的来源,介绍遗传算法的研究方向和应用领域,解释了遗传算法的相关概念、编码规则、三个主要算子和适应度函数,描述遗传算法计算过程和参数的选择的准则,并且在给出的遗传算法的基础上结合实际应用加以说明。 关键词:数据挖掘遗传算法 Genetic Algorithm Based on Data Mining xxx Abstract:This paper defines the concepts and theories of genetic algorithm source, Introducing genetic algorithm research directions and application areas, explaining the concepts of genetic algorithms, coding rules, the three main operator and fitness function,describing genetic algorithm parameter selection process and criteria,in addition in the given combination of genetic algorithm based on the practical application. Key words: Data Mining genetic algorithm 前言 遗传算法(genetic algorithm,GAs)试图计算模仿自然选择的过程,并将它们运用于解决商业和研究问题。遗传算法于20世界六七十年代由John Holland[1]发展而成。它提供了一个用于研究一些生物因素相互作用的框架,如配偶的选择、繁殖、物种突变和遗传信息的交叉。在自然界中,特定环境限制和压力迫使不同物种竞争以产生最适应于生存的后代。在遗传算法的世界里,会比较各种候选解的适合度,最适合的解被进一步改进以产生更加优化的解。 遗传算法借助了大量的基因术语。遗传算法的基本思想基于达尔文的进化论和孟德尔的遗传学说,是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法。生物在自然界的生存繁殖,显示对其自然环境的优异自适应能力。受其启发,人们致力于对生物各种生存特性的机制研究和行为模拟。通过仿效生物的进化与遗传,根据“生存竞争”和“优胜劣汰”的原则,借助选择、交叉、变异等操作,使所要解决的问题从随机初始解一步步逼近最优解。现在已经广泛的应用于计算机科学、人工智能、信息技术及工程实践。[2]在工业、经济管理、交通运输、工业设计等不同领域,成功解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。遗传算法作为一类自组织于自适应的人工智能技术,尤其适用于处理传统搜索方法难以解决的复杂的和非线性的问题。 1.遗传算法的应用领域和研 究方向 1.1遗传算法的特点 遗传算法作为一种新型、模拟生物进化过程的随机化搜索方法,在各类结 构对象的优化过程中显示出比传统优 化方法更为独特的优势和良好的性能。 它利用其生物进化和遗传的思想,所以 它有许多传统算法不具有的特点[3]: ※搜索过程不直接作用在变量上,而是 作用于由参数集进行了编码的个体 上。此编码操作使遗传算法可以直接 对结构对象进行操作。 ※搜索过程是从一组解迭代到另一组 解,采用同时处理群体中多个个体的 方法,降低了陷入局部最优解的可能 性,易于并行化。

遗传算法简介及代码详解

遗传算法简述及代码详解 声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。 遗传算法基本内容 遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。 遗传学与遗传算法中的基础术语比较 染色体:又可以叫做基因型个体(individuals) 群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数 量叫做群体大小。 初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。适应度(fitness):各个个体对环境的适应程度 优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。 遗传算法的准备工作: 1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding) 2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。非常重要的过程。 遗传算法基本过程为: 1) 编码,创建初始群体 2) 群体中个体适应度计算 3) 评估适应度 4) 根据适应度选择个体 5) 被选择个体进行交叉繁殖 6) 在繁殖的过程中引入变异机制 7) 繁殖出新的群体,回到第二步

相关文档
最新文档