万能抗氧化剂——硫辛酸的生物学功能及研究应用

万能抗氧化剂——硫辛酸的生物学功能及研究应用
万能抗氧化剂——硫辛酸的生物学功能及研究应用

探添加剂探

万能抗氧化剂——硫辛酸的主物学功能

及研究应用

?作者:刘敏张海涛孙广文

?单位:1.广东恒兴饲料实业股份有限公司;2.农业农村部华南水产与畜禽饲料重点实验室

摘要:硫辛酸是一种功能强大的天然抗氧化剂,广泛存在于动植物体内。在过去的几十年,硫辛酸作为人类疾病治疗药物被广泛的应用。硫辛酸在畜牧业中的研究相对较多,而在水产饲料营养领域的研究较少,发展潜力巨大。本文综述了硫辛酸多方面的重要功能及相关的研究进展。

关键词:硫辛酸;生物学功能;研究应用

[中图分类号]S816.7[文献标识码]A[文章编号]1005-8613(2019)06-0032-05

硫辛酸(lipoic acid,LA)又称为二硫辛酸(Thiocticacid),是线粒体中经酶促反应由正辛酸转化而来的一种天然的二疏基化合物(徐畅,2018)。a-硫辛酸(Alpha-lipoic acid,ALA)是硫辛酸的氧化态,二氢硫辛酸(Dihy_ drolipoic acid,DHLA)是硫辛酸的还原态(郭娟等,2018)。硫辛酸有R和S两种构型。天然的硫辛酸是白色的晶体,只有R构型,也只有R构型的硫辛酸能够发挥辅酶的功能,而人工合成的硫辛酸是由等比例的R构型和S构型组成的混合体,是呈淡黄色的粉末状物质,极易溶于脂类溶剂(徐畅,2018)。

正常情况下,人体能够从脂肪酸和半胱氨酸中合成a-硫辛酸,但数量有限,且a-硫辛酸的性质决定其易被破坏与消

耗,是一种条件必需营养素,随

着年龄的增加其生物合成能力

降低(李艳,2014)。a-硫辛酸极

易被组织吸收、代谢和排泄(赵

世文,2018)。植物中硫辛酸含量

最高的是菠菜,其次是西兰花和

西红柿,再次是豌豆、甘蓝和米

糠;动物中硫辛酸含量较高的是

肾脏和肝脏(Goraca等,2011)o

1硫辛酸的抗氧化功能

正常生理情况下,机体内氧

化系统和自身抗氧化防御系统

处于动态平衡状态,两者失去平

衡则引起氧化应激。氧化应激起

作用的主要是氧自由基。氧自由

基超过正常范围会损伤机体内

蛋白质、脂肪和核酸等生物大分

子,直接影响细胞的增殖、分化

和正常代谢等,从而导致机体代

谢紊乱、组织受损和疾病发生。

机体内抗氧化系统主要包活内

源与外源抗氧化酶(超氧化物歧

化酶SOD、过氧化氢酶CAT、谷

胱甘肽过氧化物酶GSH-Px和

硫氧还蛋白还原酶等)与非酶抗

氧化剂(谷胱甘肽GSH、维生素

C、维生素E和还原型辅酶n

-NADPH等)(李艳,2014)o a-

硫辛酸分子结构中有一个二硫

键,a-硫辛酸一旦进入细胞内

部,其二硫键即被多种酶还原,

生成二氢硫辛酸。a-硫辛酸和

二氢硫辛酸发挥作用的位点是

其硫醇基团,二者之间能形成有

效的氧化还原电位,这个特点使

得a-硫辛酸及二氢硫辛酸成

为潜在的天然抗氧化剂(徐畅

等,2018)o

1.1硫辛酸可直接清除活性

?32?

天然抗氧化剂的研究

天然抗氧化剂的研究现状 小组成员:莫娟兰,程小运,韦玲玲,李志宁,梁天贤,谢宏波,覃治达。 目录 中文文摘 [1].Liposomes和micelles结构对天然抗氧化剂稳定性的影响. [2].天然抗氧化剂对抗晶状体氧化损伤作用的实验研究 [3].大豆异黄酮的UV/vis的抗氧化作用 [4].天然抗氧化剂防止精炼油酸败的研究 英文文摘 [a].Antioxidant Activity of Wheat Germ Extracts [1] Liposomes和micelles结构对天然抗氧化剂稳定性的影响 儿茶素等类黄酮类物质广泛存在于茶叶、葡萄、柑橘、柿等多种天然植物中,它具有抗氧化、降血脂、消炎抗癌等多种功效,其保健功能已得到全世界医学界和食品营养界的公认,国内外很多学者对儿茶素等类黄酮类物质的自动氧化及抗氧化机理进行了详细而深入的研究。儿茶素类天然抗氧化剂在发挥其天然抗氧化保健作用的同时,其自身往往氧化成低活性甚至没有活性的氧化产物,特别是在天然植物原料加工过程中,这些天然抗氧化剂发生的自动氧化对其活性损失很大,因此,了解影响儿茶素自动氧化的因素,并寻找避免儿茶素自动氧化的方法以期提高其活性是医学界和食品营养界一直关注的课题。脂质体(Liposomes)和胶束体(micelles)类双亲和结构自发现以来,引起了科技界的高度重视,特别是脂质体结构的缓释性和靶向性在医药上的用途更为广泛,国外八十年代开始投入大量人力和财力进行研究,于九十年代开发出了脂质体靶向抗癌药物面市;我国九十年代引起重视并投入一定的经费开始研究,但到目前国内尚无一例成功开发上市的脂质体靶向药物。本试验试图将脂质体(Liposomes)和胶束体(micelles)类双亲和结构技术在儿茶素等类黄酮类物质。 [2] 天然抗氧化剂对抗晶状体氧化损伤作用的实验研究 目的:探讨五味子乙素(SchB)、水飞蓟宾(SIB)、没食子酸丙酯(PG)、阿魏酸钠(SF)和沙棘总黄酮(TFH)5种天然抗氧化剂对抗实验性晶状体氧化损伤的作用。 方法:将40只健康新西兰白兔麻醉后,无菌操作摘出80只眼球,游离出透明晶状体。将实验分成8组:(1)对照组,(2)Fenton组,(3)白内停组(PS),(4)五味子乙素组(SchB),(5)水飞蓟宾组(SIB),(6)没食子酸丙酯组(PG),(7)阿魏酸钠组(SF),(8)沙棘总黄酮组(TFH)。所配制的各组培养液,除对照组外,均含有Fenton反应液,并分别含有白内停或上述5种天然抗氧化剂。将晶状体随机分为8组分别放入培养液中,在37℃、5% cO2、95%空气的二氧化碳培养箱中温育。24 h后取出晶状体并在冰浴中做匀浆,测定晶状体总蛋白和可溶性蛋白、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、谷胱甘肽(SGH)、总抗氧化能力(TAO)、维生素(Vit c)和丙二醛(MDA)。结果以x±s表示,用SPSS统计软件包行t检验。探讨Fenton氧化损伤和5种抗氧化剂作用下对晶状体上述指标的影响。 结果:(1)各组总蛋白无差异。Fenton可溶性蛋白显著性低于其他组。对照组可溶性蛋白占总蛋白的90.74%,Fenton组仅占26.71%(丢失了71%),阿魏酸钠组可溶性蛋白占49.85%,是Fenton组的1.91倍,且高于白内停组(P<0.01)。(2)Fenton组SOD和GSH-Px活性分别丧失43.92%和49.22%。对照组、五味子乙素组、水飞蓟宾组、没食子酸丙酯组和阿魏酸钠组的SOD和GSH-Px活性均高于Fenton组,其中阿魏酸钠作用最强(P<0.01)。白内停没有提高SOD活性的作用仅有轻微增强GSH-Px活性的作用;(3)Fenton反应使晶状体中GSH和Vit c 分别丢失77.88%和80.95%,各种单体均显示较强的保护作用,且明显优于白内停滴眼液(P

α-硫辛酸在糖尿病领域中的临床应用

α-硫辛酸在糖尿病领域中的临床应用 α-硫辛酸在糖尿病领域中的临床应用 中国医科大学第一临床医院刘赫刘国良 α-硫辛酸(Alpha Lipoic Acid ,LA) 是一种独特的氧化-还原双向的氧化应激的强效抑制剂,LA 不仅可清除体内的多种反应性氧自由基(ROS) ,而且还能还原人体内的抗氧化系统,增强机体的抗氧化能力。氧化应激不仅是健康机体走向衰老,而且是许多疾病过程中的致病环节,特别是反应性氧自由基将随血糖的增高,而呈正相关的增高,因此α2硫辛酸在糖尿病的治疗中,将占有重要位置。 1 糖尿病面临的挑战多个循证医学结果告诉我们,死亡率与其它几个严重疾病相比,至今唯独糖尿病不仅未降还在上升,其致死的主要原因是心脑血管并发症。著名的DCCT 研究结果提示,6 年半的研究,看到了胰岛素强化疗法显著地改善着微血管并发症,使微血管病变减少发生达35 % ,神经病变减少达76 % ,但未见到大血管并发症的改善〔1〕;同样U KPDS 结果,也见到微血管并发症减少约1/ 3 ,但也未见到大血管并发症的改观。这些著名的里程碑式的研究,应该说在推动糖尿病事业的发展方面,将给人类带来极大的启迪;但我们也不得不重新审视当前的糖尿病治疗方案,还未能做到使糖尿病的死亡率趋向下降。这种严峻的现实,应该说是对人类的一次挑战,有必要促使人们重新思考今天或未来的糖尿病治疗策略。 2 自由基与自由基损伤自由基是指含有未配对电子的原子、原子团或分子。在生物体中主要指反应性氧自由基(ROS) ,是指由氧诱发的自由基:如超氧阳离子(O -2 ) 、羟自由基(OH·) 、单线态氧1O2 等非脂性自由基;还有氧自由基与多聚不饱和脂肪酸作用后生成的中间代谢产物,如烷自由基(L - ) 、烷氧(LO- ) 、烷过氧基(LOO- ) 等属于脂性自由基;此外还有氮中的自由基:如一氧化(NO·) 、过氧亚硝基阴离子(ONOO- ) ,半醌类自由基(黄素类蛋白) 、辅酶Q的单电子还原(或氧化) 型等。自由基是正常代谢、衰老或疾病等状态下,所有细胞在能量代谢过程中,都会伴随ATP 的产生,在线粒体电子转移过程而产生的高反应性分子结构的副产品。当ROS 的生成超出了生理范围和机体的抗氧化防卫能力时,就会造成细胞的损伤,此即为自由基损伤,也称为氧化应激,是任何组织损伤的一个主要的病理机制。可致DNA 损伤,引起突变、凋亡、坏死等。据有关专家估计DNA 的氧化损伤频率可高达: 10000 次/ 每个基因组·每个细胞·每天〔2〕。蛋白质也是其攻击的主要目标,引起氨基酸残基的修饰、交联、肽链断裂、蛋白应质性,改变了蛋白质的功能。对脂质的损伤,特别是膜脂质的氧化,可引起细胞的多种损伤:膜结构的破坏、核酸的损伤等。因此,一个来源于细胞线粒体代谢过程中的副产品———自由基,又成了主要攻击、损伤细胞、细胞膜、核内DNA、线粒体内DNA 的伤害因子。具估计每人每年可以产生1000 克自由基〔2〕,并伴随年龄增长和疾病状态而产生增多,使之氧化应激成为机体衰老和疾病过程中的伤害原头。氧化应激存在一切疾病过程的始终,既是疾病的起因又是后果。 3 氧化应激是引起胰岛素抵抗、糖尿病和心血管疾病的“共同土壤”〔3〕氧化应激做为源头去伤害β细胞引起或加重糖尿病,伤害肌肉及脂肪细胞去加重胰岛素抵抗,伤害内皮细胞促成内皮细胞功能障碍,引发动脉粥样硬化等心血管并发症。 311 α-硫辛酸与β细胞保护自由基来源于细胞线粒体,同时细胞线粒体又是自由基主要攻击对象,所以氧化应激可以损伤β细胞。更糟糕的是,在各种细胞中,β细胞又是抗氧化能力相当差的。在高糖、高脂的背景下,促使线粒体ROS 增加, 通过升高NF2κB、p35MAPκ、JNκ/ SAPκ、Hex2osamines ,增强内质网病理性应激,促进β细胞凋亡,也可通过IRS22 丝氨酸/ 苏氨酸磷酸化导致β细胞凋亡〔4〕。事实上,在当今糖尿病治疗理念上,在实现血糖尽早达标的同时,更越来越看重对β细胞的早期保护,最大限度的去延缓β细胞的衰竭进程。正如所说,糖尿病程的本质,就是β细胞衰减的进程。如果我们能去早期截断氧

浅谈生物刺激素

浅谈生物刺激素 生物刺激素的分类与作用 近几年来,全球农资市场上有一个比较时尚的新名词——生物刺激素。或许有些人对它有所了解,亦或许有些人仅听过这个名字而已。其实,它离我们并不遥远。在过去的十多年里,农资圈的朋友们一定听说过这些产品:土壤改良剂、生长调节剂、生物活性物质、植物助长剂、植物保护素等等,其实这些产品都在不同程度或者不同方面体现出了生物刺激素产品的某些功能或特性。那么,到底什么是生物刺激素呢?它是肥料吗?或是农药吗? 答案:均不是。生物刺激素比较权威的一个定义是欧洲生物刺激素产业联盟在2012年7月给出的。联盟给了这样一个定义:植物生物刺激素是一种包含某些成分和微生物的物质,这些成分和微生物在施用于植物或者根围时,其功效是对植物的自然进程起到刺激作用,包括加强/有益于营养吸收、营养功效、非生物胁迫抗力及作物品质,而与营养成分无关。由此可知,生物刺激素既不是农药,更不是传统肥料,它的靶标是农作物本身,它可以提高肥料利用率或增强农药药效,改善作物的生理生化状态,提高抗逆性,改善作物品质和产量提高。欧洲生物刺激素产业联盟成立于2011年6月,意大利世科姆总部的全球肥料市场总监Sandro Secco先生是欧洲生物刺激素产业联盟六位理事之一。 在2011年7月,美国的企业也成立了一个生物刺激素联盟,目前已有15家企业加入。其中意大利世科姆-奥克松集团旗下的分支机构Sipcam Agro USA, Inc. 亦是成员之一。该联盟对于生物刺激素是这样描述的:一个生物刺激素是一种材料,当应用到植物、种子、土壤或栽培基质中,再和已有的施肥计划相结合,增强了植物对养分的利用效率,或者以直接或间接方式提供改善植物生长或抗逆反应。而我们中国农用生物刺激物产业联盟(成立于2012年12月)对于生物刺激素也有类似的诠释:是指适用土壤和农作物后,能改善土壤生态、激发作物潜能、增强作物系统抗性,从而提高产量、品质和农业生产效率的一类物质。 综上,生物刺激素是有别于常规化肥的,也是不同于植物保护剂的,在作物的生长过程中,它是作为对营养和植物保护剂的协同角色,三者协同作用,维持作物生长健康、有活力。 在国外,生物刺激素产品通常被分为八大类:腐植酸类物质、复合有机物质、有益化学元素、非有机矿物(包含亚磷酸盐)、海藻提取物、甲壳素和壳聚糖衍生物、抗蒸腾剂、游离氨基酸类等。各类在不同方面的特性有所不同。详情如下:

α-硫辛酸—护肤美容的明珠

α-硫辛酸α-lopoic acid—护肤美容的明珠 彭冠杰1,汪小源2 (1、广州欣浪生化有限公司,广州 510006, 2、广州美尔生物科技有限公司,广州 510006) 摘要:介绍化妆品产品的抗氧化剂,对比α-硫辛酸的抗氧化机理以及性能,描述α-硫辛酸在 化妆品中的出色性能和缺陷,同时提出水溶性的包合硫辛酸能够保持强大的抗氧化性并且解决硫辛酸本身存在的气味、变色等缺陷。 关键词:抗氧化,抗自由基,包合硫辛酸 一抗氧化在化妆品中的重大意义 人体生理活动本身会产生大量自由基(或活性氧),日光照射、污染、情绪紧张等也会加剧自由基的生成。人体组织、细胞的衰老从某一角度讲就是一个氧化过程。事实上,许多保健品具有一定的延缓衰老作用,就是因为保健品含有抗氧化剂,如:α-硫辛酸、白藜芦醇等。 国外化妆品对于抗氧化非常重视,几乎就是抗衰老的同义词,可见抗氧化对皮肤的重要性。一些我们耳熟能详的名字,如;SOD、维生素C、谷胱甘肽、辅酶Q、α-硫辛酸、维生素E 等都是抗氧化剂。 1 自由基或活性氧加快皮肤的老化,而抗氧化剂可以清除自由基。抗氧化对于皮肤抗衰老的意义甚至远远大于保湿对于皮肤的意义。 2 糖化作用使皮肤中的胶原蛋白交联,抗氧化是抗糖化的基础。 3 抗氧化也是使皮肤美白的重要基础,所以许多抗氧化性能优异的原料同样是好的美白原料,如:α-硫辛酸、白藜芦醇,维生素C的各种衍生物也同时用于抗皱和美白。 二具有神奇的多面性的物质—α-硫辛酸 性能都是其结构决定,不同于其它抗氧化剂(绝大部分抗氧剂为多酚结构中H含羟基-OH),α-硫辛酸的抗氧化性(还原性)是因为独特的双硫健结构和硫氢结构。

抗氧化剂的临床应用及其研究进展

国际药学研究杂志2009年12月第36卷第6期?465? 抗氧化剂的临床应用及其研究进展 汪颖h,杜丽娜2,金义光2 (1.首都医科大学附属复必医院,北京100038;2.军事医学科学院放射与辐射医学研究所,北京100850) 摘要:众所周知,活性氧(ROS)与许多疾病的发生相关,如癌症及各种类型的炎症,目前已有一些抗氧化剂在大众保健和疾病预防方面取得了良好效果,但作为治疗药物应用于临床的很少。由于ROS生成很普遍,而且人体自身有很强的抗氧化能力,在抗氧化剂的临床试验中很难获得具有统计学差异的结果。抗氧化剂若要应用于临床,应满足以下要求:药物递送至指定区域、临床试验中合理设置评价指标以及建立新方法以阐明抗氧化剂作用机制。尽管如此,抗氧化剂的临床价值已广泛认可,对人类健康有重要意义。本文回顾了一些重要的抗氧化剂并探讨了为何目前临床应用如此之少。 关键词:活性氧;抗氧化剂;临床应用 中图分类号:R963;R916.2文献标识码:A文章编号:16740440(2009)06硝65旬2 l抗氧化剂类药物 1.1依达拉奉 依达拉奉(edaravone,3-甲基一1一苯基-2一吡唑啉-5.酮)是第一个用于治疗脑梗死的药物,可猝灭自由基。脑缺血时产生活性氧(ROS)如羟氧自由基OH?,而且,缺血再灌注可引发花生四烯酸级联反应,0H?的水平随之增加。ROs可氧化细胞膜中的不饱和脂肪酸,导致细胞受损和脑功能紊乱。依达拉奉为静脉注射用药,脑梗死患者发病24h内首次用药,之后每天给药2次。该药可清除ROS,保护细胞膜免受氧化损害,能有效减轻脑水肿,减少神经元死亡,有助于维持大脑正常功能。这也是首批批准用于自由基清除的药物之一。目前,该药用于治疗肌萎缩性脊髓侧索硬化(ALS)的临床试验正在进行,由于其主要作用是减轻脑功能受损的程度,获得明显有效性结果的可能性不大,但脑梗死、ALs及其他脑部疾病患者对临床结果仍可抱有希望。 1.2依布硒啉 依布硒啉(ebselen)疗效独特,具有类似谷胱甘肽过氧化物酶的活性,能有效保护脑梗死或蛛网膜下腔出血患者的大脑功能。但批准其用于上述疾病很困难,目前正考虑对其进行角膜损伤治疗的临床试验。 收稿日期:2009明旬2 作者简介(+通讯作者):汪颖,女,医师,研究方向:重症医学,E.mail:buHerny-5643358@hotmail.com1.3类黄酮 类黄酮广泛分布于具有抗氧化活性的植物和其他物质中,可用于肿瘤和心血管疾病的预防。但人体对类黄酮吸收普遍较差,在人体内可能只有极少或没有抗氧化作用。 1.4超氧化物歧化酶(SOD) 目前人们对抗氧化酶(尤其是sOD)的临床应用兴趣很高。目前已合成了重组cu—SOD、zn-SOD和Mn—sOD,但血浆半衰期都很短。为改善这一缺陷,已设计了大量结构修饰的SOD,如:聚乙二醇化SOD、聚蔗糖化SOD、透明质酸化SOD和白蛋白化SOD,以延长SOD的血浆半衰期。它们已被用于治疗缺血再灌注损伤或炎症反应,但体内试验中这类药物未表现出显著性差异,也未见有关soD对慢性炎症或自身免疫性疾病有效的人体双盲临床试验的文献报道,仅重组Cu—SOD和zn.SOD注射剂对早产儿有效。 1.5还原型谷胱甘肽(GSH) 在氧化还原反应中琉基化合物非常重要,包括GsH、过氧化物还原酶(peroxiredoxin)和Ⅳ一乙酰半胱氨酸,特别是GSH广泛应用于疾病治疗。但GSH不易穿过细胞膜,为此合成了酯化GSH,如GSH乙酯、甲酯和二乙基酯。静脉注射GsH已用于治疗慢性肝病,在日本GSH滴眼液已用于治疗白内障。尽管此药副作用较小,但疗效尚不清楚。 1.6Ⅳ一乙酰半胱氨酸 Ⅳ一乙酰半胱氨酸是实验室中最常用的抗氧剂,

迷迭香天然抗氧化剂产业化项目可行性研究报告

迷迭香天然抗氧化剂产业化项目可行性 研究报告 第一章总论 一、项目提出的背景及必要性 1.1.1. 本项目是国家确保食品安全的战略性项目 化学合成抗氧剂作为食品添加剂,是世界在20世纪及之前的普遍选择。由于化学合成抗氧化剂对人体肝、脾、肺等器官均有较大的毒、副作用,在二十世纪中期,曾造成影响较大的中毒事件,世界卫生组织(FAO/WHO)、欧共体儿童保护组织(HACSG)、英国生物工业协会(BIBRA)等一些机构和组织对化学合成抗氧化剂的安全性问题进行了广泛的研究。研究表明,化学合成抗氧化剂对人体肝、脾、肺等器官均有较大的毒、副作用。一直延续到2010年的麦当劳“麦乐鸡事件”就是使用化学合成抗氧化剂导致食品安全问题的延续。但由于世界性市场大流通的需要,人们一时找不到没有毒副作用的抗氧化剂来取代它们,为此,各国相关机构对现行抗氧化剂进行了严格、细致的毒理学研究和评价,制定了详细的使用标准,来减少化学合成抗氧化剂对人的毒副作用。但世界各国及相关机构,出于对人类健康的关注,均希望找到一种对人类没有毒副作用的天然抗氧化剂来确保食品安全。 从植物中提取的天然植物成分,由于其安全、无毒或基本无毒,受到了人们的广泛欢迎,成为研究开发的热点。从20世纪以来,国外相继研究开发了从茶叶、山嵛菜、西红柿、葡萄籽、甘草、烤烟及迷迭香等植物中提取对人体无毒害的天然抗氧化剂。这一发现也导致目前北欧国家禁止使用化学合成抗氧化剂,发达国家--欧盟、美国、日本等严格限制使用对人体有毒、副作用的化学合成抗氧化剂,而寻求并鼓励推广天然抗氧化剂,同时还限制或禁止使用了化学合成抗氧化剂的食品进口。 研究发现,在众多的天然抗氧化剂中,迷迭香天然抗氧化剂,不仅具有很好的抗氧化性,而且对人体还有很好的保健作用,更难得目前只有迷迭香天然抗氧化剂具有高效、稳定、耐高温的特点,这一发现,推动了世界各国对迷迭香天然抗氧化剂的研究开发。迷迭香抗氧化剂成为世界发达国家竞相开发的目标。

茶叶中天然抗氧化剂茶多酚的提取方法及应用研究进展

茶叶中天然抗氧化剂茶多酚的提取方法与应用研究进展 1引言 1.1研究目的和意义 由于人们生产、生活需求的不断扩大,天然产物有效成分的提取分离与应用研究获得了前所未有的发展。绿色天然提取物茶多酚,在绿色的二十一世纪极具发展潜力。据有关专业人士介绍,目前,茶多酚在全球年消耗量约1800吨,其中,美国约700吨,西欧500吨,日本500吨,其他国家和地区约400吨。近年来除欧美国家需求逐年增加外,东南亚、南亚等消费量也有较快增长。因此,当前茶多酚的市场前景广阔,有关专家预计,未来几年,国内外茶多酚需求量将迅速从目前的1800吨攀升至2100吨以上,其市场规模可达十几亿元。我国是世界茶叶生产大国之一,每年约有70万吨茶叶,其中有约15万吨茶片、茶末,可供提取2.3吨食品级茶多酚。因此开发天然抗氧化剂茶多酚将有充足的资源保证。自从新世纪对茶多酚类开展系统研究以来,茶多酚的许多功能被陆续发现。大量的研究表明,茶多酚不仅是一种天然的无毒的抗氧化剂,而且也是一种理想的天然药物,具有清除自由基和抗氧化等生物活性。 1.2国内外研究现状 我国对茶多酚的研究开始于五六十年代,而专业研究开始于七十年代,目前我国对茶多酚的研究在国际上处与领先水平。国内生产的茶多酚含量大于89%,咖啡碱小于2%。当前茶多酚已被广泛应用于食品工业与医药行业。由于茶多酚具有生物活性的特性,不断地对茶多酚进行研究,不断地出现新的研究成果。王玉春在茶多酚的提取方法及应用研究进展一文中就茶多酚提取的各种方法的基本流程及各自得优缺点和茶多酚的用途做一综述。曹群在茶多酚的提取方法研究中对现如今对茶多酚的提取方法进行简单的归纳,并比较各种提取工艺的优缺点。李俊华在茶多酚的提取工艺研究中经过对茶多酚的性质及现有提取方法利弊的分析,确定采用超临界二氧化碳萃取技术对茶叶中的茶多酚进行了萃取研究,结果表明超临界二氧化碳萃取技术是可行的,并探讨了其较佳的提取工艺参数。王艳在天然抗氧化剂—茶多酚提取、分离和纯化方法一文对其性质、结构和组成做了简单的介绍,重点介绍了茶多酚的主要提取、分离和纯化方法。王学松在茶叶中茶多酚的提取方法研究一文中综述了从茶叶中提取茶多酚的方法、特点以及改

α-硫辛酸

硫辛酸 这是一种既可以溶于水,也可以溶于脂肪的全能营养素。可以到达身体的每一个部位。并且,与Q10一样,可以直接给细胞充电,帮助细胞释放能量。 硫辛酸由于参与每个细胞的能量释放工作,在产生三磷酸腺昔过程中起关键作用。因而可以使细胞的活力恢复,所以,在几乎每一种慢性疾病的康复都扮演重要的角色。 硫辛酸是一种很有价值的抗衰老营养素,对女人来说,是改善皮肤、延缓衰老的一个帝王级的营养补充,更是抗癌的先锋。因为它独特的大小和化学结构,硫辛酸是既能渗透到身体的脂溶性部分(如维生素E),也是可以渗透到身体的水溶性部分(如维生素C)的抗氧化剂。这使得硫辛酸能遍布全身,在身体的各个部位发挥抗氧化作用,而大多数抗氧化剂只能保护身体的独立的某个区域。 硫辛酸的抗氧化能力比维生素E高20倍,并有利于维生素C 、A、B的循环利用。 硫辛酸可预防糖基化反应。糖基化反应的意思是说糖分子结合血液、细胞膜、神经组织等的重要蛋白质。糖基化反应是发生灾难性的“制革作用”,就像在制革过程中,将柔软的牛皮变成硬皮革一样。无论是血管、神经、或者肌肉,糖基化将使得组织迅速老化。只要3周,硫辛酸营养补剂能逆转糖尿病的周围神经病。硫辛酸改善了进人神经的血液流动,然后提高了神经传导。因此建议每一个糖尿病人都使用,同时,硫辛酸可以降低糖尿病人的并发症。 硫辛酸更能对癌症患者有很好的支持。因为它在有氧新陈代谢中的作用,补充硫辛酸营养补剂,能够使得到达心脏的氧增加了72%,到达肝脏的氧增加了128%。由于癌是厌氧生长,加强癌症患者的有氧新陈代谢就像是在吸血鬼身上照射日光,而使得癌细胞无法生长。静脉注射硫辛酸,在短短一小时内,帮助那些由于食物中毒而造成肝脏坏死的病人完全恢复。硫辛酸更可以帮助乙型、丙型肝炎患者免于换肝,而逐渐恢复。 硫辛酸增加了体内其他抗氧化剂的可获得的量,如谷胱甘肽。 硫辛酸可以帮助身体内四个重要的抗氧化剂再生:维生素C、E、谷胱苷肽、Q10。这个作用,有着非常的意义,如果你在帮助病人的时候,同时使用这几种营养,效果将达到极至。 硫辛酸是一种完美的抗氧化剂。这种“完美的”抗氧化剂具有以下的作用: .中和自由基。 .被身体细胞迅速吸收、快速利用。 .能加强其他抗氧化剂的作用。 .能集中在细胞和细胞膜的内外。 .促进正常基因表达。 .螯合金属离子,或将有毒金属排出体外。 硫辛酸通过使血糖进人细胞起到了改善胰岛素功效的作用。从而帮助糖尿病病人的康复。对于过胖和过瘦的二型糖尿病患者来说,是个福音,每天500毫克的剂量,是葡萄糖的燃烧运用渐趋改善。并对于由于糖尿病所引起的神经病变,有显著的作用。 硫辛酸在对爱滋病的治疗中,也帮助抗氧化剂的再生,以及增加重要的T淋巴细胞,这几乎是帮助爱

抗氧化剂的作用机理研究进展

抗氧化剂的作用机理研究进展 摘要:食品抗氧化剂的作用比较复杂。BHA和BHT等酚型抗氧化剂可能与油脂氧化所产生的过氧化物结合,中断自动氧化反应链,阻止氧化。抗坏血酸、异抗坏血酸及其钠盐因其本身易被氧化,因而可保护食品免受氧化。另一些抗氧化剂可能抑制或破坏氧化酶的活性,借以防止氧化反应进行。研究食品抗氧化剂的作用机理并合理使用抗氧化剂不仅可延长食品的贮存期,给生产者、经销者带来良好的经济效益,也给消费者提供可靠的商品。 关键词:抗氧化剂作用机理自由基现状前景展望 食品的变质,除了受微生物的作用而发生腐败变质外,还会和空气中的氧气发生氧化反应。食品氧化不仅会使油脂或含油脂食品氧化酸败(哈败),还会引起食品发生退色、褐变、维生素破坏,从而使食品腐败变质,降低食品的质量和营养价值,氧化酸败严重时甚至产生有毒物质,危及人体健康。防止食品氧化变质,在食品的加工和储运环节中,除采取低温、避光、隔绝氧气以及充氮密封包装等物理的方法还可以配合使用一些安全性高、效果大的食品抗氧化剂以防止食品发生氧化变质。 1 食品抗氧化剂的定义 食品抗氧化剂是指防止或延缓食品氧化,提高食品稳定性和延长食品储藏期的食品添加剂。具有抗氧化作用的物质有很多,但可用于食品的抗氧化剂应具备以下条件:①具有优良的抗氧化效果; ②本身及分解产物都无毒无害;③稳定性好,与食品可以共存,对食品的感官性质(包括色、香、味等)没有影响;④使用方便,价格便宜。[1] 2 食品抗氧化剂的分类 目前,对食品抗氧化剂的分类,按来源可分为人工合成抗氧化剂和天然抗氧化剂(如茶多酚、植酸等)。按溶解性可分为油溶性、水活性和兼溶性三类。油溶性抗氧化剂有BHA、BHT等;水溶性抗氧化剂有维生素C、茶多酚等;兼溶性抗氧化剂有抗坏血酸棕榈酸酯等。按作用方式可分为自由基吸收剂、金属离子螯合剂、氧清除剂、过氧化物分解剂、酶抗氧化剂、紫外线吸收剂或单线态氧淬灭剂等。[2] 3 食品抗氧化剂的作用机理 由于抗氧化剂种类较多,抗氧化的作用机理也不尽相同,归纳起来,主要有以下几种: 一是抗氧化剂可以提供氢原子来阻断食品油脂自动氧化的连锁反应,从而防止食品氧化变质; 二是抗氧化剂自身被氧化,消耗食品内部和环境中的氧气从而使食品不被氧化; 三是抗氧化剂通过抑制氧化酶的活性来防止食品氧化变质。 四是将能催化及引起氧化反应的物质封闭,如络合能催化氧化反应的金属离子等。[3]

抗氧化因子与天然抗氧化剂研究综述

万方数据

万方数据

万方数据

万方数据

万方数据

抗氧化因子与天然抗氧化剂研究综述 作者:乔凤云, 陈欣, 余柳青, QIAO Feng-yun, CHEN Xin, YU Liu-qing 作者单位:乔凤云,QIAO Feng-yun(浙江大学,生命科学学院,杭州,310029;中国水稻研究所,杭州 ,310006), 陈欣,CHEN Xin(浙江大学,生命科学学院,杭州,310029), 余柳青,YU Liu- qing(中国水稻研究所,杭州,310006) 刊名: 科技通报 英文刊名:BULLETIN OF SCIENCE AND TECHNOLOGY 年,卷(期):2006,22(3) 被引用次数:9次 参考文献(22条) 1.Hallwell B Free Radical and antioxidation 1990 2.Wu G;Fang Y Z;Yang S Glutathione metabolism in antimals:nutritional regulation and physiologyical signi-ficance 2003 3.Jacob;Robert A The integrated antioxidant system 1995(05) 4.Arora A;Nair M G;Strasburg G M Antioxidant activities of isoflavones and their metabolites in a liposomel system 1998 5.Kameoka S;Leavitt P;Chang C Expression of antioxidant proteins in human intestinal Caco-2 cells treated with dietary flavonoids[外文期刊] 1999 6.句海松抗氧化剂研究进展 1990(12) 7.Ng T B;Liu F;Wang Z T Antioxidative activity of nature products from plants[外文期刊] 2000(08) 8.Morel I;Cillard J;Lescoat G Antioxidant and free radical scavenging activities of the iron chelators pyoverdin and hydroxypyrid-4-ones in iron-loaded hepatocyte cultures:comparison of their mechanism of protection with that of desferrioxamine 1992(05) 9.Ozturk G;Erol D D;Uzbay T Synthesis of 4(1H)-pyridinone derivatives and investi-gation of analgesic and anti-inflammatory activities 2001(04) 10.Huang D R;Proctor G R;Driscoll S D Pyridones as potential antitumor agents Ⅱ:4-pyridones and bioisosteres of 3-acetoxy-2-pyridone 1980(03) 11.Cragg L;Hebbel R P;Miller W The iron chelator L1 potentiates oxidative DNA damage in iron-loaded liver cells 1998(02) 12.Sadrzadeh S M;Nanji A A;Price P L The oral iron chelator,1,2-dimethyl-3-hydroxypyrid -4-one reduces hepatic-free iron,lipid peroxidation and fat accumulation in chronically ethanol-fed rats 1994(02) 13.Helliwell B;Jello M C Gutteridge Free Radicals in Biology and Medicine 1985 14.Wickens;Andrew P Ageing and the free radical theory[外文期刊] 2001(03) 15.Vimala S & Adenan MI Malaysian tropical forest medicinal plants:a source of natural antioxidants 1999 16.Loliger Free Radicals and food additive 1991 17.Hudson B J F Food Antioxidants.Elsevier 1990 18.LOLIGER Free Radicals and Food Additive 1991 19.Arora A;Byrem T M;Nair M G Modulation of liposomeal membrane fluidity by flavonoids and

Alpha硫辛酸

Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases Marilia Brito Gomes1* and Carlos Antonio Negrato2 α-硫辛酸作为潜在治疗糖尿病和其它慢性疾病多功能成分,α-硫辛酸的化学名为:(± -5-[3-(1,2-二硫杂环戊烷)]-戊酸,是天然存在的物质,其主要功能作为氧化代谢的不同酶,1937年Snell发现ALA,1951年Reed分离到ALA。1959年德国首次用于临床治疗毒鹅膏急性中毒,这是一种分布于欧洲的蘑菇,通常食用后会引起中毒死亡。然而很快同一作者叙述用于治疗神经病变的症状。当今认为ALA或它的还原形式二氢硫辛酸(DHLA)具有许多生化功能,如作为生物抗氧化剂、金属络合剂,还原其它抗氧化剂如维生素C,维生素E和谷胱甘肽(GSH)的氧化形式,调制一些信号传导通路,如胰岛素和NFκB。有证据表明ALA有改善失调的内皮功能和减少运动训练后的氧化应激,它也保护性抑制动脉粥样硬化的发展。现已经假定ALA以上提到的这些作用可能成为许多很大流行病意义的慢性疾病潜在的治疗药物,同样有经济意义和社会影响,如糖尿病及并发症,高血压,阿尔茨海默病,唐氏综合征,认知缺陷和某些肿瘤 目前作为食物补充物的ALA在患者医学和营养处置方面的应用不断增长。 生物合成、生物化学特性,吸收和生物利用度 ALA是通常食物的一种成分,如存于蔬菜(菠菜,卷心菜和番茄)和肉类(主要内脏),在许多食物补充物中也有ALA存在。在植物的动物的线粒体通过辛酸和半胱氨酸(作为硫的供体)的酶反应合成ALA, 作为含硫的物质,认为ALA是一巯基成分。哺乳类细胞可以通过线粒体硫辛酸合成酶(LASY) 的作用合成ALA,在不同的临床状态下可以下调该酶的活性。 ALA存在两种对映体(光学异构),R和S型,对于线粒体氧化代谢酶,R型是主要的辅助因子,因为它加入到与赖氨酸残端(硫辛酰胺)氨基有联系的酰胺键.,R-ALA作为以下酶的辅酶, 在两个关键性的氧化脱羧反应中起作用,即在丙酮酸脱氢酶(PDH)复合体和α-酮戊二酸脱氢酶复合体中,丙酮酸脱氢酶是由3种酶组成的多种酶的复合物,通过3步催化不可逆丙酮酸氧化脱羧化成为乙酰辅酶A(acetyl-CoA),它是三羧酸循环的一个成分。硫辛酸可以接受酰基与丙酮酸的乙酰基,形成一个硫酯键,然后将乙酰基转移到辅酶A分子的硫原子上。形成辅基的二氢硫辛酰胺可再经二氢硫辛酰胺脱氢酶(需要NAD+)氧化,重新生成氧化型硫辛酰胺。α-硫辛酸含有双硫五元环结构,电子密度很高,具有显著的亲电子性和与自由基反应的能力,因此它具有抗氧化性。丙酮酸脱氢酶、α-酮酸脱氢酶分支链(KGDH)。以上其它酶也催化其它α-酮酸的氧化脱羧化如α-酮戊二酸盐, valine, 亮氨酸,异亮氨酸。R-ALA也是甘氨酸裂解系统降解甘氨酸为丙酮酸的辅酶。 ALA(以R,S的混合物存在)的吸收和生物利用度已进行研究,两种对映体的绝对生物利用度不超过40%,随食物的摄取而降低。因此ALA必须在进食前30min摄取。某些研究已经表明:R-ALA 在一些代谢通路比S-ALA有更强的生物活性。ALA口服后被胃肠道吸收并转运到不同器官,因为它容易通过血脑屏障如脑。独立于最初来源(食物或营养补充物),在肝脏ALA还原为DHAL 并代谢成不同产物,如二去甲硫辛酸盐和四去甲硫辛酸盐和肾排泄。一些系统已经于ALA的细胞转运有关,如钠依赖转运,通过SLC5A6基因产生跨膜蛋白,该蛋白也位移其它维生素和辅酶。这两种转运体也应答ALA小肠摄取。 抗氧化特性 目前认为ALA和它的还原形式DHLA是强大的天然抗氧化剂,具有清除多种活性氧能力。值得注意的是没有提出两者一致的特殊清除能力,如在实验研究(意味环境对于证实它的清除能力可能是重要因素的实验研究水相和膜相ALA与DHLA的清除能力不同。 这些结果在表1中显示,由于它们有两型特性(在细胞膜和细胞浆抗氧化作用)ALA/DHLA有一些超过其它抗氧化剂如维生素E和C的重要优点。ALA/DHLA可以使其它抗氧化剂,如维生素E和C,还原/氧化型谷胱甘肽(GSH/GSSG) 再生。谷胱甘肽是含谷氨酸、半胱氨酸和甘氨酸的

抗氧化剂的研究和应用

抗氧化剂的研究和应用 摘要:食品在加工和贮藏过程中,将会一系列化学生物变化,其中氧化反应尤为突出,它将造成油脂及富脂食品色、香、味与营养价值等方面的劣化。因此,防止食品的氧化一直是食品工业中的关键性问题。在食品抗氧化剂的发展中有数百计的天然活合成化合物进行过抗氧化功能和安全性评价,然而目前符合安全和抗氧化功能要求,主要有以下几个品种:BHA(丁基羟基茴香醚)、BHT(二丁基羟基甲苯)、PG(没食子酸炳酯)、TBHQ(叔丁基对苯二酚)、生育酚、抗坏血酸等,其中前五种为国际广泛使用,可满足大部分食品的需要。防止和减缓食品的氧化,添加食品抗氧化剂是一种简单,经济而又理想的方法。 关键词:抗氧化剂、油脂、酸败、复合使用 一、前言 抗氧化剂(oxidation inhibitor)是能减缓或防止氧化作用的物质。氧化是一种使电子自物质转移至氧化剂的化学反应,过程中可生成自由基,进而启动链反应、摧毁细胞。抗氧化剂则能去除自由基,终止连锁反应,氧化其本身、抑制其他氧化反应。食品抗氧化剂是能阻止或延缓食品氧化变质、提高食品稳定性和延长贮存期的食品添加剂。氧化不仅会使食品中的油脂变质,而且还会使食品退色、变色和破坏维生素等,从而降低食品的感官质量和营养价值,甚至产生有害物质,引起食物中毒。在酶和某些金属的催化作用下,食品中所含易于氧化的成分与空气中的氧反应,将发生反应生成一系列能引起食品酸败的物质,如醛、酮、醛酸、酮酸等。氧化可导致食品中的脂酸败,还会导致食品褪色、褐变、维生素受到破坏食品等,从而降低质量和营养价值,人或动物误食这类食品有时甚至发生中毒。油脂和富脂食品中加入适量的抗氧化剂,可有效抑制微生物的生长繁殖,从而有效防止油脂因空气中的氧化作用而引起的变质。 二、抗氧化剂的分类 1.脂溶性抗氧化剂

硫辛酸治疗糖尿病周围神经病变临床效果分析

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 硫辛酸治疗糖尿病周围神经病变临床效果分析 硫辛酸治疗糖尿病周围神经病变临床效果分析 [摘要] 目的探讨硫辛酸治疗糖尿病周围神经病变的临床效果,评价其临床应用价值。 方法选择 2 型糖尿病周围神经病变患者 124 例,随机分为研究组和对照组各 62 例。 对照组口服降糖药或注射胰岛素、甲钴胺,研究组在对照组基础上再加以硫辛酸注射液(600mg/d)静脉滴注。 3 周为1 个疗程。 然后评价治疗效果。 结果研究组患者治疗总有效率达 96. 77%,明显高于对照组的总有效率 36. 9%。 结论硫辛酸治疗糖尿病周围神经病变其临床疗效显著,无明显不良反应。 [关键词]硫辛酸;药物治疗;甲钴胺;糖尿病周围神经病变 [中图分类号]R4 [文献标识码]A [文章编号] 1674-0742(2019) 06(b) -0094-02 糖尿病神经病变(Diabetic Neuropathy, DN)是糖尿病长期并发症中最常见之一。 病变可累及周围神经与中枢神经。 该病变症状出现早,危害大,严重影响患者的生活质量。 目前认为慢性持续性高血糖是糖尿病神经病变和神经性疼痛的 1 / 5

主要致病机制。 对该病至今尚缺乏特异性病因疗法。 但采取积极的治疗措施,可明显改善糖尿病神经病变患者症状。 为了探讨硫辛酸治疗糖尿病周围神经病变临床效果,该研究选取大冶铁矿医院2019 年 7 月―2019 年 11 月间收治的糖尿病周围神经病变患者,剔除有脑血管意外等其他疾病所致的周围神经病变共 124 例分为 2 组,一组采用综合治疗,一组在综合治疗基础上再加用硫辛酸治疗,效果较好,现报道如下。 1 资料与方法 1. 1 一般资料 124 例糖尿病周围神经病变患者男 7 2 例,女 52 例,年龄42―78 岁,平均(62. 34. 6)岁;糖尿病史10―20 年,平均(14. 83. 8)年。 患者符合(1999) WHO 糖尿病诊断标准。 糖尿病周围神经病变病程 5 个月―12 年,平均病程为(4. 12_3)年。 考虑到目前还缺乏统一的糖尿病神经病变诊断标准,该院采用简化的诊断标准: ①糖尿病证据: ②有感觉运动或自主神经病变的临床表现且除外其他原因引起的神经肌肉病变;③神经电生理检查有异常。 患者随机分为研究组和对照组各 62 例。 1. 2 治疗方案治疗过程中两组都用口服降糖药和(或)注射胰岛素控制血糖,静脉推注甲钴胺 500 g/d。

硫辛酸的工艺流程简介新(1)

硫辛酸的简介 1.概述 1)产品简介 药物名称:硫辛酸 英文名::thioctic acid 别名:DL-α-硫辛酸;阿尔法硫辛酸;类脂酸;DL-硫辛酸;α-硫辛酸 结构式: CAS登记号:62-46-41077-28-7 分子式:C8H13O2S2 分子量:206.3182 熔点:58-63℃ 沸点:362.5°C at 760 mmHg 闪点:173°C 蒸汽压:3.07E-760mmHg at 25°C 性状:浅黄色澄明液体 用途:硫辛酸(Thioctic Acid)又名二硫辛酸,属于维生素 B 类化合物,是人体内不可缺少的抗氧化剂,具有极高的医用价 值及抗衰老潜能。其制剂在临床上主要用于治疗糖尿病的微 血管病变。自1989年硫辛酸作为一种高效的抗氧化剂被认 识后,日益受到人们的青睐,成为提高生活质量、抵抗衰老、 延长寿命不可或缺药品。

资料来源:化化网、百度搜索 2)生产方法的选择及生产流程的确定 常见的硫辛酸生产工艺有6,8-二氯辛酸乙酯法、Baryer-Villiger氧化方法、普林斯反应方法、环己酮和乙烯基乙醚法等,现简介如下: (1)6 , 8 - 二氯辛酸乙酯法 以 6, 8 - 二氯辛酸乙酯为起始原料,经过环合反应、碱性水解、盐酸酸化等反应合成外消旋A-硫辛酸。合成路线如下: 6 , 8 - 二氯辛酸乙酯法-硫辛酸合成路线1 工艺特点:此路线的总收率接近50%,产品纯度为99% ,工业化成本相对较低,是一条值得推广的工艺路线。 (2)Baryer-Villiger氧化方法 以环己酮为起始原料, 经烯胺化、加成、过氧化、取代、氧化共 5 步反应得到最终产物,总收率为25%。合成路线如下:

生物刺激素与激素的区别

加耐特背后的故事(三)-生物刺激素与激素的区别 说到激素,很多人都是谈之生变,农户问到也是选择避而远之。生物刺激素作为一种新的概念肥,它对植物生长所起到很多作用跟激素大同小异,不少人也怀疑它是否应该归于激素一类,其实不然,虽然生物刺激素的概念仍需进一步明晰,但可以明确的是:生物刺激素绝对不等于激素。生物刺激素类产品正成为当前化肥提质增效、进而实现健康、环保农业的一类重要产品。下面我们就来说说两者的区别 植物激素 是指植物细胞接受特定环境信号诱导产生的、低浓度时可调节植物生理反应的活性物质。 人工合成的具有植物激素活性的物质称为植物生长调节剂。已知的植物激素主要有以下6类:生长素、赤霉素、细胞分裂素、脱落酸和乙烯、芸苔素内酯。些植物激素可通过人工合成,如吲哚乙酸,一些不可通过人工合成,但可通过生物提取,如赤霉素。人工合成和提取的物质与生物体自身分泌植物激素来源上有所不同,因此也可称为外源植物激素。它们在细胞分裂与伸长、组织与器官分化、开花与结实、成熟与衰老、休眠与萌发以及离体组织培养等方面,分别或相互协调地调控植物的生长、发育与分化 生物刺激素 目前国内对生物刺激素主要分为五大类:腐植酸类、微生物类、植物提取物(包括海藻酸)、动物水解物(氨基酸)、无机及人工合成产品。 虽然植物自身可以合成所需的各种氨基酸,但是受不良气候和病虫害、药害等各种逆境影响,有些氨基酸的合成受到限制或是合成功能减弱,就需要通过根部或是叶面外源的补充来调节植物达到各种生理平衡,促使植物生长达到最佳状态,这也是我们使用氨基酸类生物刺激素的目的 两者区别:生物刺激素不等同于激素,激素成分较为单一,用量小,效果来的快,但遇到恶劣天下效果会大打折扣,生物刺激素成分较为复杂,生产工艺也更高,用量大,效果比激素来的稍满但是稳定,总的来说就是生物刺激素更像中药、激素像西药。合理使用才能发挥两者的最佳作用。

相关文档
最新文档