中考二次函数的存在性问题全总结(解析版)

中考二次函数的存在性问题全总结(解析版)
中考二次函数的存在性问题全总结(解析版)

中考二次函数的存在性问题全总结

【典例分析】

【考点1】二次函数与相似三角形问题

【例1】已知抛物线23y ax bx =++与x 轴分别交于(3,0)A -,(1,0)B 两点,与y 轴交于点C .

(1)求抛物线的表达式及顶点D 的坐标; (2)点F 是线段AD 上一个动点. ①如图1,设AF k AD =

,当k 为何值时,2

CF AD =1

. ②如图2,以A ,F ,O 为顶点的三角形是否与ABC ?相似?若相似,求出点F 的坐标;若不相似,请说明理由.

【答案】(1)2

23y x x =--+,D 的坐标为(1,4)-;(2)

①1

2

k =;②以A ,F ,O 为顶点的三角形与ABC ?

相似,F 点的坐标为618,

55??

- ???

或(2,2)-.

【解析】(1)将A 、B 两点的坐标代入二次函数解析式,用待定系数法即求出抛物线对应的函数表达式,可求得顶点D(1,4)-;

(2)①由A 、C 、D 三点的坐标求出AC 32=DC 2=

,AD 5=,可得ΔACD 为直角三角形,若

1

CF AD 2

=

,则点F 为AD 的中点,可求出k 的值; ②由条件可判断DAC OBC ∠∠=,则OAF ACB ∠∠=,若以A ,F ,O 为顶点的三角形与ΔABC 相似,可分两种情况考虑:当AOF ABC ∠∠=或AOF CAB 45∠∠?==时,可分别求出点F 的坐标. 【详解】(1)Q 抛物线2

y ax bx 3=++过点A(3,0)-,B(1,0),

933030a b a b -+=?∴?++=?,解得:12a b =-??=-?

∴抛物线解析式为2y x 2x 3=--+;

()2

2y x 2x 3x 14=--+=-++Q , ∴顶点D 的坐标为(1,4)-;

(2)①Q 在Rt ΔAOC 中,OA 3=,OC 3=,

222AC OA OC 18∴=+=,

()D 1,4-Q ,()C 0,3,()A 3,0-,

222CD 112∴=+=, 222AD 2420∴=+=,

222AC CD AD ∴+=,

ΔACD ∴为直角三角形,且ACD 90∠?=,

1

CF AD 2

=

Q , ∴F 为AD 的中点,

AF 1

AD 2

=, 1k 2

∴=;

②在Rt ΔACD 中,DC 21

tan ACD AC 3

32∠===, 在Rt ΔOBC 中,OB 1

tan OCB OC 3

∠=

=, ACD OCB ∠∠∴=, OA OC =Q ,

OAC OCA 45∠∠?∴==,

FAO ACB ∠∠∴=,

若以A ,F ,O 为顶点的三角形与ΔABC 相似,则可分两种情况考虑: 当AOF ABC ∠∠=时,ΔAOF ΔCBA ∽,

OF BC ∴P ,

设直线BC 的解析式为y kx b =+,

03k b b +=?∴?=?,解得:33k b =-??=?

∴直线BC 的解析式为y=3x+3-,

∴直线OF 的解析式为y=3x -,

设直线AD 的解析式为y=mx+n ,

430k b k b -+=?∴?-+=?,解得:26

k b =??=?, ∴直线AD 的解析式为y=2x 6+,

263y x y x =+?∴?=-?,解得:65

185x y ?

=-????=??,

618F ,55??

∴- ???

当AOF CAB 45∠∠?==时,ΔAOF ΔCAB ∽,

CAB 45∠?=Q ,

OF AC ∴⊥,

∴直线OF 的解析式为y=x -,

26y x y x =-?∴?=+?,解得:22

x y =-??=?, ()F 2,2∴-,

综合以上可得F 点的坐标为618,

55??

- ???

或(2,2)-. 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、相似三角形的判定与性质和直角三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.

【变式1-1】如图,抛物线2y 2ax x c =++经过(1,0)A -,B 两点,且与y 轴交于点(0,3)C ,抛物线与

直线1y x =--交于A ,E 两点. (1)求抛物线的解析式;

(2)坐标轴上是否存在一点Q ,使得AQE ?是以AE 为底边的等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,说明理由.

(3)P 点在x 轴上且位于点B 的左侧,若以P ,B ,C 为顶点的三角形与ABE ?相似,求点P 的坐标.

【答案】(1)2y x 2x 3=-++;(2)存在,()40Q ,或()04-,,理由见解析;(3)3

p 05?? ???,

或9p 02??- ???

,. 【解析】(1)将A 、C 的坐标代入2

y 2ax x c =++求出a 、c 即可得到解析式;

(2)先求出E 点坐标,然后作AE 的垂直平分线,与x 轴交于Q ,与y 轴交于Q',根据垂直平分线的性质可知Q 、与A 、E ,Q'与A 、E 组成的三角形是以AE 为底边的等腰三角形,设Q 点坐标(0,x),Q'坐标(0,y),根据距离公式建立方程求解即可;

(3)根据A 、E 坐标,求出AE 长度,然后推出∠BAE=∠ABC=45°,设()p 0m ,

,由相似得到PB AB

BC AE

=或PB AE

BC AB

=,建立方程求解即可.

【详解】(1)将(1,0)A -,(0,3)C 代入2

y 2ax x c =++得:

203a c c -+=??=?,解得1

3

a c =-??

=? ∴抛物线解析式为2y 23=-++x x (2)存在,理由如下:

联立y 1x =--和2y x 2x 3=-++,

2

y 123x y x x =--??=-++?,解得10x y =-??=?或4

5x y =??=-?

∴E 点坐标为(4,-5),

如图,作AE 的垂直平分线,与x 轴交于Q ,与y 轴交于Q',

此时Q 点与Q'点的坐标即为所求, 设Q 点坐标(0,x),Q'坐标(0,y), 由QA=QE ,Q'A= Q'E 得:

()()()

22

1405--=-++x x ()()

()()

22

22

010045++-=

-++y y 解得4x =,4y =

故Q 点坐标为()40,

或()04-, (3)∵(1,0)A -,()45E -,

∴()

2

2145=52=

--+AE

当2230x x -++=时,解得1x =-或3 ∴B 点坐标为(3,0), ∴3OB OC ==

∴45ABC ∠=?,4AB =,32BC =,

由直线1y x =--可得AE 与y 轴的交点为(0,-1),而A 点坐标为(-1,0) ∴∠BAE=45°

设()p 0m ,

则3m BP =-, ∵PBC ?和ABE ?相似 ∴

PB AB BC AE =或PB AE BC AB =,即3252=或52432

=

解得3

5m =

或92

m =-, ∴3p 05

?? ???

或9p 02

??- ???

,. 【点睛】本题考查二次函数的综合问题,是中考常见的压轴题型,熟练掌握待定系数法求函数解析式,等腰三角形的性质,以及相似三角形的性质是解题的关键.

【变式1-2】如图,已知抛物线1

(2)()y x x m m

=-

+-(m >0)与x 轴相交于点A ,B ,与y 轴相交于点C ,且点A 在点B 的左侧.

(1)若抛物线过点(2,2),求抛物线的解析式;

(2)在(1)的条件下,抛物线的对称轴上是否存在一点H ,使AH+CH 的值最小,若存在,求出点H 的坐标;若不存在,请说明理由;

(3)在第四象限内,抛物线上是否存在点M ,使得以点A ,B ,M 为顶点的三角形与△ACB 相似?若存在,求出m 的值;若不存在,请说明理由.

【答案】(1)211242

y x x =-

++;(2)点H 的坐标为(1,3

2);(3)当m=222+时,在第四象限内

抛物线上存在点M ,使得以点A ,B ,M 为顶点的三角形与△ACB 相似. 【解析】 分析:

(1)把点(2,2)代入1

(2)()?(0)y x x m m m

=-

+->中,解出m 的值即可得到抛物线的解析式; (2)由(1)中所得解析式求出点A 、B 、C 的坐标,由题意可知,点A 、B 关于抛物线的对称轴对称,这样连接BC 与对称轴的交点即为所求的点H ,根据B 、

C 的坐标求出直线BC 的解析式即可求得点H 的坐标;

(3)由解析式1

(2)()?(0)y x x m m m

=-

+->可得点A 、B 、C 的坐标分别为(-2,0)、(m ,0)和(0,2),如下图,由图可知∠ACB 和∠ABM 是钝角,因此存在两种可能性:①当△ACB ∽△ABM ,②△ACB ∽△MBA ,分这两种情况结合题中已知条件进行分析解答即可. 详解:

(1)把点(2,2)代入抛物线, 得2=()()1

222m m

-

+-. 解得m=4.

∴抛物线的解析式为()()2111

y x 2x 4x x 2442

=-+-=-++. (2)令211

y x x 2042

=-

++=,解得12x 2x 4=-=,. 则A (-2,0),B (4,0).

对称轴x=-121124=???- ???. ∵ 211

y x x 242

=-++中当x=0时,y=2,

∴点C 的坐标为(0,2).

∵点A 和点B 关于抛物线的对称轴对称,

∴连接BC 与对称轴的交点即为点H ,此时AH+CH 的值最小, 设直线BC 的解析式为y=kx+b ,

把B (4,0),C (0,2)代入得:402k b b +=??=? ,解得:1

22k b ?

=-???=? ,

∴直线BC 的解析式为y=1

x 22

-

+. ∵当x=1时,y=1122-?+=3

2

.

∴点H 的坐标为(1,3

2

).

(3)假设存在点M ,使得以点A ,B ,M 为顶点的三角形与△ACB 相似. 如下图,连接AC ,BC ,AM ,BM ,过点M 作MN ⊥x 轴于点N ,

由图易知,∠ACB 和∠ABM 为钝角, ①当△ACB ∽△ABM 时,有

AC AB =AB

AM

,即2AB AC?AM =. ∵A (-2,0),C (0,2),即OA=OC=2, ∴∠CAB=∠BAM=o 45.

∵MN ⊥x 轴,∴∠BAM=∠AMN=45°, ∴AN=MN.

∴可设M 的坐标为:(x ,-x-2)(x >0), 把点M 的坐标代入抛物线的解析式,得:-x-2=()()1

x 2x m m

-+-. 化简整理得:x=2m ,

∴点M 的坐标为:(2m ,-2m-2). ∴()()

)22

2m 22m 222m 1++--=+.

∵2AB AC?AM =,AC=22AB=m+2, ∴())2

m 22222m 1+=+. 解得:m=222±. ∵m >0, ∴m=222+.

②当△ACB ∽△MBA 时,有

AB MA =CB

BA

,即2AB CB?MA =. ∵∠CBA=∠BAM ,∠ANM=∠BOC=o 90, ∴△ANM ∽△BOC ,∴MN AN =CO

BO

. ∵BO=m ,设ON=x , ∴

2MN x +=2m ,即MN=2

m

(x+2).

令M (x ,()2

x 2m

-

+)

(x >0), 把M 点的坐标代入抛物线的解析式,

得()2x 2m -

+=()()1

x 2x m m

-+-.

解得x=m+2.即M (m+2,()2

m 4m

-+).

∵2AB CB?MA =,CB=2m 4AN m 4+=+,,MN=()2

m 4m

+, ∴()()()2

2

2

22

4m 4m 2m 4?m 4m ++=+++

. 化简整理,得16=0,显然不成立.

综上所述,当m=222+时,在第四象限内抛物线上存在点M ,使得以点A ,B ,M 为顶点的三角形与△ACB 相似.

点睛:本题是一道二次函数和几何图形综合的题目,解题的要点有以下两点:(1)“知道点A 、B 是关于抛物线的对称轴对称的,连接BC 与对称轴的交点即为所求的点H”是解答第2小题的关键;(2)“能根据题意画出符合要求的图形,知道∠ACB 和∠ABM 为钝角,结合题意得到存在:①当△ACB ∽△ABM ,②△ACB ∽△MBA 这两种可能情况”是解答第3小题的关键. 【考点2】二次函数与直角三角形问题

【例2】如图,抛物线()20y ax bx c a =++≠的顶点坐标为()2,1-,图象与y 轴交于点()0,3C ,与x 轴

交于A 、B 两点.

()1求抛物线的解析式;

()2设抛物线对称轴与直线BC 交于点D ,连接AC 、AD ,求ACD V 的面积;

()3点E 为直线BC 上的任意一点,过点E 作x 轴的垂线与抛物线交于点F ,问是否存在点E 使DEF V 为

直角三角形?若存在,求出点E 坐标,若不存在,请说明理由.

【答案】(1)2

2

(2)143y x x x =--=-+ ;(2)2;(3)见解析. 【解析】(1)可设抛物线解析式为顶点式,把C 点坐标代入可求得抛物线解析式;

(2)由抛物线解析式可求得A 、B 坐标,利用待定系数法可求得直线BC 解析式,利用对称轴可求得D 点坐标,则可求得AD 2、AC 2和CD 2,利用勾股定理的逆定理可判定△ACD 为直角三角形,则可求得其面积; (3)根据题意可分∠DFE=90°和∠EDF=90°两种情况,当∠DFE=90°时,可知DF ∥x 轴,则可求得E 点纵坐标,代入抛物线解析式可求得E 点坐标;当∠EDF=90°时,可求得直线AD 解析式,联立直线AC 和抛物线解析式可求得点E 的横坐标,代入直线BC 可求得点E 的坐标. 【详解】解:()1∵抛物线的顶点坐标为()2,1-, ∴可设抛物线解析式为()2

(2)10y a x a =--≠,

把()0,3C 代入可得2

(02)13a --=,解得1a =,

∴抛物线解析式为22(2)143y x x x =--=-+;

()2在243y x x =-+中,令0y =可得2430x x -+=,解得1x =或3x =,

∴()1,0A ,()3,0B ,

设直线BC 解析式为3y kx =+,把()3,0B 代入得:330k +=,解得1k =-, ∴直线BC 解析式为3y x =-+,

由()1可知抛物线的对称轴为2x =,此时231y =-+=, ∴()2,1D ,

∴22AD =,210AC =,28CD =, ∵222AD CD AC +=,

∴ACD V 是以AC 为斜边的直角三角形, ∴11

222222

ACD S AD CD =

?==V ; ()3由题意知//EF y 轴,则90FED OCB ∠=∠≠o ,

∴DEF V 为直角三角形,分90DFE ∠=o 和90EDF ∠=o 两种情况, ①当90DFE ∠=o 时,即//DF x 轴,则D 、F 的纵坐标相同, ∴F 点纵坐标为1,

∵点F 在抛物线上,

∴2431x x -+=,解得22x =E 的横坐标为22 ∵点E 在直线BC 上,

∴当22x =312y x =-+=-22x =-312y x =-+=+ ∴E 点坐标为(22,12或(22,12-; ②当90EDF ∠=o 时, ∵()1,0A ,()2,1D , ∴直线AD 解析式为1y x =-, ∵直线BC 解析式为3y x =-+, ∴AD BC ⊥,

∴直线AD 与抛物线的交点即为E 点,

联立直线AD 与抛物线解析式有2431x x x -+=-,解得1x =或4x =, 当1x =时,32y x =-+=,当4x =时,31y x =-+=-, ∴E 点坐标为()1,2或()4,1-,

综上可知存在满足条件的点E ,其坐标为(

22,12或(22,12+或()1,2或()4,1-. 【点睛】考查了待定系数法求函数解析式,利用已知的顶点坐标,列出方程组,可以求出函数解析式.

【变式2-1】如图,经过x 轴上(10)(30)A B -,,

,两点的抛物线2(1)4y m x m =--(0m <)交y 轴于点C ,设抛物线的顶点为D ,若以DB 为直径的⊙G 经过点C ,求解下列问题:

(1)用含m 的代数式表示出C D ,的坐标; (2)求抛物线的解析式;

(3)能否在抛物线上找到一点Q ,使BDQ △为直角三角形?如能,求出Q 点的坐标,若不能,请说明理由。

【答案】(1)点C 的坐标为(03)C m ,-,点D 的坐标为(14)m -,;(2)

抛物线的解析式为2y x 2x 3=-++;(3)满足题意的Q 点有三个:(03),

、3924??

- ???,和 11524?? ???

, 【解析】 【试题分析】

(1)()2

14y m x m =--是顶点式,则顶点D 的坐标为()03C m -,

,当x=0,则y=-3m,即点C 的坐标为()03C m -,;

(2)连接CD 、 BC ,过点D 作DE y ⊥轴于E ,如图①所示:根据直径所对的圆周角是直角,得

90DCB ∠=? ,出现“一线三等角模型”,得DEC COB V V ∽根据相似三角形的性质 得:

DE EC

CO OB

=

133

m m -=-即

,解得1m =-,则抛物线的解析式为2

23y x x =-++. (3)分三种情况分类讨论:90BQD ∠=? (图①)显然Q 与C 点重合,点Q 坐标为()03Q ,

;DBQ ∠=90?(图②)作QF y ⊥轴于F ,DH x ⊥轴于H ,

根据两角对应相等,两三角形相似,得Rt Rt DHB BFQ V V ∽,DH HB

BF FQ

=,则??DH FQ BF HB =,由于点Q 坐标()

223k k k -++,,则()

()242323k k k --=-,解得:3

2

k =- 由32k =-

得Q 坐标: 3924Q ??

-- ???

;BDQ ∠=90?(图③)延长DQ 交y 轴于M ,作DE y ⊥轴于E ,DH x ⊥轴于H ,同理可证:DEM DHB V V ∽,则

DE EM DH HB =,即142EM =,得1

2

EM =,点M 的坐标为702?? ???

,,设DM 所在的直线解析式为y=kx+b,用待定系数法,把M 702?

? ???

,和D (1,4)代入得:

724

b k b ?=?

?

?+=? 解得:17,22k b == 则直线DM 的解析式为1722y x =

+ ,把17

22

y x =+代入223y x x =-++得:22310x x -+=,解得,12x =

,最后把12x =代入1722y x =+ 得154y =

,点Q 的坐标为11524??

???

, 综上述,Q 点有三个:()03,

、3924??

- ???

,和 11524?? ???

, 【试题解析】

(1)∵y ()2

14m x m =--是顶点式

∴点D 的坐标为()1

4m -, 当x=0时,y= -3m

点C 的坐标为()03C m -,

(2) 连接CD 、 BC ,过点D 作DE y ⊥轴于E ,如图①所示: ∵BD 是⊙G 的直径 ∴∠DCB=090 ∴∠ECD+∠BCO=090 ∵∠ECD+∠EDC=090 ∴∠BCO=∠EDC

∵∠DEC=∠BOC=090∴ DEC COB V V ∽ DE EC CO OB ∴

= 133

m

m -∴=- 21m ∴= 1m =± ∵0m <∴1m =-

∴抛物线的解析式为223y x x =-++

(3)能在抛物线上找到一点Q ,使△BDQ 为直角三角形

很明显,点C 即在抛物线上,又在⊙G 上,90BCD ∠=?,这时Q 与C 点重合

点Q 坐标为()03Q ,

如图②,若DBQ ∠为90?,作QF y ⊥轴于F ,

DH x ⊥轴于H

同理可证:Rt Rt DHB BFQ V V ∽ ∴

DH HB

BF FQ

= ∴??DH FQ BF HB =

∵点Q 坐标(

)

2

23k k k -++,

∴()

()2

42323k k k --=-

化简得:22390k k --=,解得:3k =(不合题意,舍去),3

2

k =- 由32k =-

得Q 坐标: 3924Q ??

-- ??

?, 若BDQ ∠为90?,如图③,延长DQ 交y 轴于M ,

作DE y ⊥轴于E ,DH x ⊥轴于H ,同理可证:DEM DHB V V ∽ ∴

DE EM

DH HB

=

142EM =

,得12EM =,点M 的坐标为702??

???

, 设DM 所在的直线解析式为y=kx+b,把M 702?

? ???

,和D (1,4)代入得:

724

b k b ?=?

?

?+=? 解得:17,22k b == ∴直线DM 的解析式为1722y x =+ ,把17

22

y x =+代入223y x x =-++得:22310x x -+= 解为:1x =(不合题意,舍去),1

2

x =,

把12x =

代入1722y x =+ 得154y =

,点Q 的坐标为11524??

???

, 综合上述,满足题意的Q 点有三个:()03,

、3924??

- ???

,和 11524?? ???

【方法点睛】本题目是一道二次函数的综合题,涉及到顶点坐标,与坐标轴的交点,一线三等角证相似,并且多次运用相似三角形的对应边成比例,直角三角形的确定(3种情况分类讨论),难度较大.

【变式2-2】已知抛物线221y x x m =-+-与x 轴只有一个交点,且与y 轴交于A 点,如图,设它的顶

点为B .

(1)求m 的值;

(2)过A 作x 轴的平行线,交抛物线于点C ,求证:△ABC 是等腰直角三角形;

(3)将此抛物线向下平移4个单位后,得到抛物线y ',且与x 轴的左半轴交于E 点,与y 轴交于F 点,

如图.请在抛物线y'上求点P,使得△EFP是以EF为直角边的直角三角形?

【答案】(1)m = 2;(2)证明见解析;(3)满足条件的P点的坐标为(10

3

13

9

)或(

7

3

20

9

-).

【解析】

试题分析:(1)根据抛物线与x轴只有一个交点可知△的值为0,由此得到一个关于m的一元一次方程,解此方程可得m的值;

(2)根据抛物线的解析式求出顶点坐标,根据A点在y轴上求出A点坐标,再求C点坐标,根据三个点的坐标得出△ABC为等腰直角三角形;

(3)根据抛物线解析式求出E、F的坐标,然后分别讨论以E为直角顶点和以F为直角顶点P的坐标.试题解析:(1)∵抛物线y=x2-2x+m-1与x轴只有一个交点,

∴△=(-2)2-4×1×(m-1)=0,

解得,m=2;

(2)由(1)知抛物线的解析式为y=x2-2x+1=(x-1)2,易得顶点B(1,0),

当x=0时,y=1,得A(0,1).

由1=x2-2x+1,解得,x=0(舍)或x=2,所以C点坐标为:(2,1).

过C作x轴的垂线,垂足为D,则CD=1,BD=x D-x B=1.

∴在Rt△CDB中,∠CBD=45°,2.

同理,在Rt△AOB中,AO=OB=1,于是∠ABO=45°,2.

∴∠ABC=180°-∠CBD-∠ABO=90°,AB=BC,

因此△ABC是等腰直角三角形;

(3)由题知,抛物线C′的解析式为y=x2-2x-3,

当x=0时,y=-3;

当y=0时,x=-1或x=3,

∴E(-1,0),F(0,-3),即OE=1,OF=3.

第一种情况:若以E点为直角顶点,设此时满足条件的点为P1(x1,y1),作P1M⊥x轴于M.

∵∠P1EM+∠OEF=∠EFO+∠OEF=90°,

∴∠P1EM=∠EFO,得Rt△EFO∽Rt△P1EM,

则11 3

PM OE

EM OF

==,即EM=3P1M.∵EM=x1+1,P1M=y1,

∴x1+1=3y1①

由于P1(x1,y1)在抛物线C′上,则有3(x12-2x1-3)=x1+1,

整理得,3x12-7x1-10=0,解得,

x1=10

3

,或x2=-1(舍去)

把x1=10

3

代入①中可解得,

y1=13

9

∴P1(10

3

13

9

).

第二种情况:若以F点为直角顶点,设此时满足条件的点为P2(x2,y2),作P2N⊥y轴于N.

同第一种情况,易知Rt △EFO ∽Rt △FP 2N , 得

21

3

FN OE P N OF ==,即P 2N=3FN . ∵P 2N=x 2,FN=3+y 2, ∴x 2=3(3+y 2)②

由于P 2(x 2,y 2)在抛物线C′上, 则有x 2=3(3+x 22-2x 2-3),

整理得3x 22-7x 2=0,解得x 2=0(舍)或x 2=

7

3

. 把x 2=

10

3代入②中可解得, y 2=?209.

∴P 2(73

,?209).

综上所述,满足条件的P 点的坐标为:(103,139)或(73

,?20

9). 【考点3】二次函数与等腰三角形问题

【例3】如图,已知:二次函数y =x 2+bx+c 的图象与x 轴交于A ,B 两点,其中A 点坐标为(﹣3,0),

与y 轴交于点C ,点D (﹣2,﹣3)在抛物线上. (1)求抛物线的表达式;

(2)抛物线的对称轴上有一动点P ,求出PA+PD 的最小值;

(3)若抛物线上有一动点M ,使△ABM 的面积等于△ABC 的面积,求M 点坐标.

(4)抛物线的对称轴上是否存在动点Q ,使得△BCQ 为等腰三角形?若存在,求出点Q 的坐标;若不存在,说明理由.

【答案】(1)y =x 2+2x ﹣3;(2)32(3)点M 的坐标为(﹣17,3),(﹣7,3),(﹣2,﹣3);(4)存在;点Q 的坐标为(﹣16),(﹣16),(﹣1,0),(﹣1,﹣6),(﹣1,﹣1). 【解析】(1)由点A ,D 的坐标,利用待定系数法即可求出抛物线的表达式;

(2)利用二次函数图象上点的坐标特征可求出点B 的坐标,连接BD ,交抛物线的对称轴于点P ,由抛物线的对称性及两点之间线段最短可得出此时PA+PD 取最小值,最小值为线段BD 的长度,再由点B ,D 的坐标,利用两点间的距离公式可求出PA+PD 的最小值;

(3)利用二次函数图象上点的坐标特征可求出点C 的坐标,设点M 的坐标为(x ,x 2+2x-3),由△ABM 的面积等于△ABC 的面积可得出关于x 的一元二次方程,解之即可求出点M 的坐标;

(4)设点Q 的坐标为(-1,m ),结合点B ,C 的坐标可得出CQ 2,BQ 2,BC 2,分BQ=BC ,CQ=CB 及QB=QC 三种情况,找出关于m 的一元二次(或一元一次)方程,解之即可得出点Q 的坐标. 【详解】解:(1)将A (﹣3,0),D (﹣2,﹣3)代入y =x 2+bx+c ,得:

930423b c b c -+??-+-?==,解得:2

3

b c =??

=-?, ∴抛物线的表达式为y =x 2+2x ﹣3. (2)当y =0时,x 2+2x ﹣3=0, 解得:x 1=﹣3,x 2=1, ∴点B 的坐标为(1,0).

连接BD ,交抛物线的对称轴于点P ,如图1所示.

∵PA=PB,

∴此时PA+PD取最小值,最小值为线段BD的长度.

∵点B的坐标为(1,0),点D的坐标为(﹣2,﹣3),

∴BD22

(21)(30)

--+--2

∴PA+PD的最小值为2.

(3)当x=0时,y=x2+2x﹣3=﹣3,

∴点C的坐标为(0,﹣3).

设点M的坐标为(x,x2+2x﹣3).

∵S△ABM=S△ABC,

∴|x2+2x﹣3|=3,即x2+2x﹣6=0或x2+2x=0,

解得:x1=﹣17,x2=﹣7,x3=﹣2,x4=0(舍去),

∴点M的坐标为(﹣17,3),(﹣7,3),(﹣2,﹣3).

(4)设点Q的坐标为(﹣1,m).

∵点B的坐标为(1,0),点C的坐标为(0,﹣3),

∴CQ2=(﹣1﹣0)2+[m﹣(﹣3)]2=m2+6m+10,BQ2=(﹣1﹣1)2+(m﹣0)2=m2+4,BC2=(0﹣1)2+(﹣3﹣0)2=10.

分三种情况考虑(如图2所示):

二次函数-平行四边形存在性问题

专题:二次函数中的平行四边形存在性问题 类型一:已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足) 1.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C. ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式; ⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A、B、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 类型:已知两个定点,再找两个点构成平行四边形 1.已知,如图抛物线2 3(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A、B 两点,A 点在B 点左侧。点B 的坐标为(1,0),OC=30B. (1)求抛物线的解析式; (2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值: (3)若点E 在x 轴上,点P 在抛物线上。是否存在以A、C、E、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.

2、练习如图,抛物线:c bx x y ++=22 1与x 轴交于A、B(A 在B 左侧),顶点为C(1,﹣2)。(1)求此抛物线的关系式;并直接写出点A、B 的坐标; (2)求过A、B、C 三点的圆的半径; (3)在抛物线上找点P,在y 轴上找点E,使以A、B、P、E 为顶点的四边形是平行四边形,求点P、E 的坐标。 1.如图,抛物线2 23y x x =--与x 轴交A、B 两点(A 点在B 点左侧),直线l 与抛物线交于A、C 两点,其中C 点的横坐标为2. (1)求A、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 抛物线上的动点,在x 轴上是否存在点F,使A、C、F、G 这样的四个点为顶点的四边形是平行 四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

中考数学二次函数存在性问题 及参考答案

中考数学二次函数存在性问题 及参 考答案
一、二次函数中相似三角形的存在性问题 1.如图,把抛物线 向左平移 1 个单位,再向下平移 4 个单位,得到抛物线 . 所得抛物线与 轴交于 A,B 两点(点 A 在点 B 的左边),与 轴交于点 C,顶点为 D. (1)写出 的值;(2)判断△ACD 的形状,并说明理由; (3)在线段 AC 上是否存在点 M,使△AOM∽△ABC?若存在,求出点 M 的坐标;若不存在, 说明理由.
2.如图,已知抛物线经过 A(﹣2,0),B(﹣3,3)及原点 O,顶点为 C. (1)求抛物线的解析式; (2)若点 D 在抛物线上,点 E 在抛物线的对称轴上,且 A、O、D、E 为顶点的四边形是平行 四边形,求点 D 的坐标; (3)P 是抛物线上的第一象限内的动点,过点 P 作 PM x 轴,垂足为 M,是否存在点 P, 使得以 P、M、A 为顶点的三角形△BOC 相似?若存在,求出点 P 的坐标;若不存在,请说明 理由.
1 / 13

二、二次函数中面积的存在性问题 3.如图,抛物线 与双曲线 相交于点 A,B.已知点 B 的坐标为(-2,-2),点 A 在第一象限内,且 tan∠AOX=4.过点 A 作直线 AC∥ 轴,交抛物线于另一点 C. (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积; (3)在抛物线上是否存在点 D,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点 D 的坐标;若不存在,请你说明理由.
4.如图,抛物线 y=ax2+c(a>0)经过梯形 ABCD 的四个顶点,梯形的底 AD 在 x 轴上, 其中 A(-2,0),B(-1, -3). (1)求抛物线的解析式;(3 分) (2)点 M 为 y 轴上任意一点,当点 M 到 A、B 两点的距离之和为最小时,求此时点 M 的坐
2 / 13

二次函数的存在性问题(面积)及答案

图12-2 x C O y A B D 1 1 二次函数的存在性问题(面积问题) 1、[08云南双柏]已知:抛物线y =ax 2 +bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴 的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

二次函数中和角有关的存在性问题

二次函数中与角有关的存在性问题 与角有关的存在性问题包括相等角的存在性、二倍角或半角的存在性,其他倍数关系角的存在性等,解决这类问题我们通常利用以下知识点去构造相关角: ①平行线的同位角、内错角相等;②等腰三角形的等边对等角;③相似三角形对应角相等;④全等三角形对应角相等;⑤三角形的外角定理等。 然后利用解直角三角形、相似三角形边的比例关系作为计算工具去计算求解,难度相对较大,需要同学们灵活运用,融会贯通。 【类型一 相等角的存在性问题】 (一).利用平行线、等腰三角形构造相等角 例1 如图,直线33+-=x y 与x 轴、y 轴分别交于A ,B 两点,抛物线c bx x y ++-=2 与直线y =c 分别交y 轴的正半轴于点C 和第一象限的点P ,连接PB ,得BOA PCB ≌△△(O 为坐标原点)。若抛物线与x 轴正半轴交点为点F ,设M 是点C ,F 间抛物线上的一点(包括端点),其横坐标为m . (1)直接写出点P 的坐标和抛物线的解析式. (2)求满足POA MPO ∠=∠的点M 的坐标.

(二).利用相似三角形构造相等角 例2 如图,抛物线c bx x y ++=2 2 1与x 轴交于A 、B 两点,与y 轴交于点C ,其对称轴交 抛物线于点D ,交x 轴于点E ,已知OB=OC=6. (1)求抛物线的解析式及点D 的坐标; (2)连接BD ,F 为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标; 解:(1)因为OB=OC=6,所以B (6,0),C ()6,0-, 将 B 、 C 点 坐 标 代 入 解 析 式 , 得 ()822 162212 2--=--= x x x y , 所以点D 的坐标为(2,—8) (2)如图1,过F 作FG ⊥x 轴于点G ,设?? ? ?? --6221, F 2x x x ,则FG=62212--x x ,AG=x +2,当EDB FAB ∠=∠时,且B ED GA ∠=∠F , 所以BDE FAG ∽△△,所以 FG AG EB DE = ,即2622 12482=--+=x x x , 当点F 在x 轴上方时,则有12422 --=+x x x ,解得x=—2(舍去)或x=7,此时F 点的坐标为?? ? ??297,; 当点F 在x 轴下方时,则有)(12422 ---=+x x x ,解得x=—2(舍去)或x=5,此时F 点的坐标为??? ? ?-275, ,,综上可知点F 的坐标为??? ?? 297,或?? ? ? ?-275, .

(完整版)二次函数中的存在性问题(答案)

二次函数中的存在性问题姓名 1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由. 2.已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式; (2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由. 3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C. (1)求此抛物线的解析式; (2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

4.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3). (1)求直线AC及抛物线的解析式; (2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积; (3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C. (1)求直线BC的解析式; (2)求抛物线的顶点及对称轴; (3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由; (4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

二次函数(存在性问题)

函数图象中点的存在性问题(强化训练) 切入点一:利用基本图形来作图(充分利用图形的特殊性质),并描述作图方法 切入点二:做好数据准备,计算尽量利用相似、数形结合(交轨法) 切入点三:紧扣不变量,善于使用前题所采用的方法或结论 切入点四:在题目中寻找多解的信息(不重不漏) 1.1因动点产生的平行四边形问题 1. 如图1,直线L:y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线G:y=ax2+bx+c 与x轴的另一交点为A,顶点为P,且对称轴是直线x=2. (1)该抛物线G的解析式为; (2)将直线L沿y轴向下平移个单位长度,能使它与抛物线G只有一个公共点; (3)若点E在抛物线G的对称轴上,点F在该抛物线上,且以点A、B、E、F为顶点的四边形为平行四边形,求点E与点F坐标并直接写出平行四边形的周长. (4)连接AC,得△ABC.若点Q在x轴上,且以点P、B、Q为顶点的三角形与△ABC相似,求点Q 的坐标.

2. 在平面直角坐标系xOy中,已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3). (1)求此二次函数的表达式; (2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°?若存在,求出点P的坐标;若不存在,请说明理由; (3)点K为抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

-几何图形在二次函数中的存在性问题探解

---几何图形在二次函数中的存在性问题探解 二次函数是初中数学的重要内容,更是中考的重要考点之一,它以丰富的知识内涵,深远的知识综合,深厚的数学思想,灵活的解题方法,奇趣的知识背景等深深吸引着命题老师,更深刻启迪着每位同学.下面就把几何图形在二次函数中的存在性问题介绍给大家,供学习时借鉴. 一、.三角形的存在性 1.1 等腰三角形的存在性 例1 (2017年淮安)如图1-1,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=2x +bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式; (2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图1-2、1-3供画图探究). 分析: 第一问考查的是待定系数法确定函数的解析式,思路有几个待定系数,解答时就需要确定几个点的坐标; 第二问探析等腰三角形的存在性,解答时,要做到一先一后,先清楚动点的位置与特点,后对等腰三角形进行科学分类,一是按边分类,一是按角分类; 第三问探求三角形面积的最大值,这是二次函数的看家本领,只需将三角形的面积适当分割,恰当表示,最后将三角形面积最大问题转化为二次函数的最值问题求解即可. 解: (1)因为直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,所以B (3,0),C (0,3), 所以{c =39a+3b+c =0,解得{c =3b =4-,所以抛物线解析式为y=2x ﹣4x+3; (2)因为y=2x ﹣4x+3=2(x 2)-﹣1,所以抛物线对称轴为x=2,顶点P (2,﹣1), 设M (2,t ),因为△CPM 为等腰三角形,如图2所示, ①当MC=PC 时,过C 作CQ ⊥对称轴,垂足为Q ,则Q(2,3),所以QP=MQ=3-(-1)=4,所以M 到x 轴的距离8-1=7,所以1M 的坐标(2,7); ②当MP=MC 时,作PC 的垂直平分线交对称轴于点M ,所以222(t+1)2+(t-3)=,解得t=32,所以2M 的坐标(2, 32 );

二次函数存在性问题总结

已知,抛物线322 --=x x y 交x 轴于点A 、B ,交y 轴于点C. 1、线段最值 ①线段和最小 点P 是抛物线对称轴上一动点,当点P 坐标为多少时,PA+PC 值最小. A B C O x y ②线段差最大 点Q 是抛物线对称轴上一动点,当点Q 坐标为多少时,|QA -QC|值最大. A B C O x y ③线段最值 连接BC,点M 是线段BC 上一动点,过点M 作MN//y 轴,交抛物线于点N,求线段MN 的最大值及点N 的坐标. A B C O x y N M 变式① 点N 是第四象限内抛物线上一动点,连接BN 、CN,求BCN S ?的最大值及点N的坐标 A B C O x y N

变式② 点N是第四象限内抛物线上一动点,求点N到线段BC 的最大距离及点N的坐标 A B C O x y N M 2、等腰三角形的存在性问题 点D 为抛物线322 --=x x y 的顶点,连接BC ,点P 是直线B C上一动点,是否存在点P,使△PAD 为等腰三角形,若存在,求出点P 的坐标,若不存在,说明理由. A B C O x y D 3、菱形的存在性问题 点D为抛物线322 --=x x y 的顶点,连接BC 点P 是直线BC 上一动点,点Q 为坐标平面内一点,是否存在以A 、D、P、Q 为顶点的四边形是菱形,若存在,求出点P 坐标,若不存在,说明理由. A B C O x y D 4、平行四边形的存在性问题 点D 为抛物线322 --=x x y 的顶点,点M 是抛物线上一动点,点N 为直线BC 上一动点,是否存在以O 、D 、M、N 为顶点的四边形是平行四边形,若存在,求出点M 坐标,若不存在,说明理由. A B C O x y D 5、直角三角形的存在性问题

中考数学二次函数存在性问题及参考答案

中考数学二次函数存在性问题及参考答案 一、二次函数中相似三角形的存在性问题 1.如图,把抛物线2 =向左平移1个单位,再向下平移4个单位,得到抛物线2 y x =-+. y x h k () 所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D. (1)写出h k 、的值;(2)判断△ACD的形状,并说明理由; (3)在线段AC上是否存在点M,使△AOM∽△ABC若存在,求出点M的坐标;若不存在,说明理由. 2.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C. (1)求抛物线的解析式; (2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标; (3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似若存在,求出点P的坐标;若不存在,请说明理由. 二、二次函数中面积的存在性问题

3.如图,抛物线()20y ax bx a >=+与双曲线k y x = 相交于点A ,B .已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOX =4.过点A 作直线AC ∥x 轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积; (3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由. 4.如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上, 其中A (-2,0),B (-1, -3). (1)求抛物线的解析式;(3分) (2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标;(2分) (3)在第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.(4分) (4)在抛物线的BD 段上是否存在点Q 使三角形BDQ 的面积最大,若有,求出点Q 的坐标,若没有,请说明理由。 三、二次函数中直角三角形的存在性问题 5.如图,△ABC 是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线2y x bx c =++经过A ,B 两点, 抛物线的顶点为D . (1)求b ,c 的值;

答案 二次函数-矩形的存在性问题

参考答案 1. (2015 黑龙江省龙东地区) 如图,四边形OABC 是矩形,点A 、C 在坐标轴上,△ODE 是△OCB 绕点O 顺 时针旋转90°得到的,点D 在x 轴上,直线BD 交y 轴于点F ,交OE 于点H ,线段BC 、OC 的长是方程x 2﹣6x+8=0的两个根,且OC >BC . (1)求直线BD 的解析式; (2)求△OFH 的面积; (3)点M 在坐标轴上,平面内是否存在点N ,使以点 D 、F 、M 、N 为顶点的四边形是矩形?若存在, 请直接写出点N 的坐标;若不存在,请说明理由. 1. 分析: (1)解方程可求得OC 、BC 的长,可求得B 、D 的坐标, 利用待定系数法可求得直线BD 的解析式; (2)可求得E 点坐标,求出直线OE 的解析式,联立直线BD 、OE 解析式可求得H 点的横坐标,可求得△OFH 的面积; (3)当△MFD 为直角三角形时,可找到满足条件的点N ,分∠MFD=90°、∠MDF=90°和∠FMD=90°三种情况,分别求得M 点的坐标,可分别求得矩形对角线的交点坐标,再利用中点坐标公式可求得N 点坐标. 解答: 解:(1)解方程x 2﹣6x+8=0可得x=2或x=4,∵BC 、OC 的长是方程x 2 ﹣6x+8=0的两个根,且OC >BC , ∴BC=2,OC=4,∴B (﹣2,4),∵△ODE 是△OCB 绕点O 顺时针旋转90°得到的, ∴OD=OC=4,DE=BC=2,∴D (4,0),设直线BD 解析式为y=kx+b , 把B 、D 坐标代入可得,解得,∴直线BD 的解析式为y=﹣x+; (2)由(1)可知E (4,2),设直线OE 解析式为y=mx , 把E 点坐标代入可求得m=, ∴直线OE 解析式为y=x ,令﹣x+=x , 解得x=,∴H 点到y 轴的距离为, 又由(1)可得F (0,),∴OF=,∴S △OFH =××=; (3)∵以点D 、F 、M 、N 为顶点的四边形是矩形, ∴△DFM 为直角三角形, ①当∠MFD=90°时,则M 只能在x 轴上,连接FN 交MD 于点G ,如图1, 由(2)可知OF=,OD=4,则有△MOF ∽△FOD , ∴=,即=,解得OM=,∴M (﹣,0),且D (4,0),∴G (,0), 设N 点坐标为(x ,y ),则=,=0,解得x=,y=﹣,此时N 点坐标为(,﹣); ②当∠MDF=90°时,则M 只能在y 轴上,连接DN 交MF 于点G ,如图2, 则有△FOD ∽△DOM , ∴=,即=,解得OM=6, ∴M (0,﹣6),且F (0,), ∴MG=MF=,则OG=OM ﹣MG=6﹣=, ∴G (0,﹣), 设N 点坐标为(x ,y ),则=0,=﹣, 解得x=﹣4,y=﹣,此时N (﹣4,﹣); ③当∠FMD=90°时,则可知M 点为O 点,如图3, ∵四边形MFND 为矩形, ∴NF=OD=4,ND=OF=,可求得N (4,); 综上可知存在满足条件的N 点,其坐标为(,﹣)或(﹣4,﹣)或(4,). 2. (2015 重庆市綦江县) 如图,抛物线2 23y x x =-++与x 轴交与A ,B 两点(点A 在点B 的左侧),与

二次函数存在性问题总结

已知,抛物线322 --=x x y 交x 轴于点A、B,交y 轴于点C. 1、线段最值 ①线段和最小 点P 是抛物线对称轴上一动点,当点P 坐标为多少时,PA+PC值最小. A B C O x y ②线段差最大 点Q 是抛物线对称轴上一动点,当点Q 坐标为多少时,|Q A-QC |值最大. A B C O x y ③线段最值 连接B C,点M是线段BC 上一动点,过点M 作M N//y 轴,交抛物线于点N ,求线段MN 的最大值及点N 的坐标. A B C O x y N M 变式① 点N是第四象限内抛物线上一动点,连接BN、CN,求BCN S ?的最大值及点N 的坐标 A B C O x y N

变式② 点N 是第四象限内抛物线上一动点,求点N 到线段BC 的最大距离及点N 的坐标 A B C O x y N M 2、等腰三角形的存在性问题 点D为抛物线322 --=x x y 的顶点,连接BC ,点P 是直线BC 上一动点,是否存在点P ,使△PAD 为等腰三角形,若存在,求出点P 的坐标,若不存在,说明理由. A B C O x y D 3、菱形的存在性问题 点D为抛物线322 --=x x y 的顶点,连接BC 点P 是直线B C上一动点,点Q 为坐标平面内一点,是否存在以A 、D 、P 、Q 为顶点的四边形是菱形,若存在,求出点P坐标,若不存在,说明理由. A B C O x y D 4、平行四边形的存在性问题 点D 为抛物线322 --=x x y 的顶点,点M是抛物线上一动点,点N 为直线B C上一动点,是否存在以O、D、M 、N 为顶点的四边形是平行四边形,若存在,求出点M 坐标,若不存在,说明理由. A B C O x y D 5、直角三角形的存在性问题

二次函数中的存在性问题(等腰三角形的存在性问题)

二次函数中的存在性问题(等腰三角形) 1.如图,抛物线254y ax ax =-+经过ABC △的三个顶点, 已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =. (1)求抛物线的对称轴; (2)写出A B C ,,三点的坐标并求抛物线的解析式; (3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点, 是否存在PAB △是等腰三角形.若存在,求出所有符合条 件的点P 坐标;不存在,请说明理由.

2如图,已知抛物线224 233 y x x =- ++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D . 点M 从O 点出发,以每秒1个单位长度 的速度向B 运动,过M 作x 轴的垂线,交抛物线于点P ,交BC 于(1)求点B 和点C 的坐标; (2)设当点M 运动了x (秒)时,四边形OBPC 的面积为S , 求S 与x 的函数关系式,并指出自变量x 的取值范围. (3)在线段BC 上是否存在点Q ,使得△DBQ 成为以BQ 等腰三角形?若存在,求出点Q 的坐标,若不存在,说明理由.

3.已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点. (1)求抛物线的函数关系式; (2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ), 请求出△CBE 的面积S 的值; (3)在抛物线上求一点0P 使得△ABP 0为等腰三角形并 写出0P 点的坐标; (4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P (要求简要说明理由,但不证明);若不存在这样的点P ,请说明理由.

二次函数存在性问题及解答

初中数学二次函数存在性问题 总复习试题及解答 1.(10广东深圳)如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A (-2,0),B (-1, -3). (1)求抛物线的解析式; (2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标; (3)在第(2)问的结论下,抛物线上的点P 使S △P AD =4S △ABM 成立,求点P 的坐标. 答案:(1)、因为点A 、B 均在抛物线上,故点A 、B 的坐标适合抛物线方程 ∴403a c a c +=??+=-? 解之得:14 a c =??=-?;故24y x =-为所求 (2)如图2,连接BD ,交y 轴于点M ,则点M 就是所求作的点 设BD 的解析式为y kx b =+,则有203k b k b +=?? -+=-?,1 2 k b =??=-?, 故BD 的解析式为2y x =-;令0,x =则2y =-,故(0,2)M - (3)、如图3,连接AM ,BC 交y 轴于点N ,由(2)知,OM=OA=OD=2,90AMB ∠=? 易知BN=MN=1, 易求AM BM == 122ABM S =?=;设2(,4)P x x -, 依题意有:214422AD x -=?,即:2 144422x ?-= ? 解之得:x =±,0x = ,故 符合条件的P 点有三个: 123((0,4)P P P -- 图2

2. (10北京)在平面直角坐标系xOy 中,抛物线y = - 41-m x 2+4 5m x +m 2-3m + 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上。 (1) 求点B 的坐标; (2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的 垂线,与直线OB 交于点E 。延长PE 到点D 。使得ED =PE 。 以PD 为斜边在PD 右侧作等腰直角三角形PCD (当P 点运动 时,C 点、D 点也随之运动) 当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求 OP 的长; 若P 点从O 点出发向A 点作匀速运动,速度为每秒1一点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止 运动,P 点也同时停止运动)。过Q 点作x 轴的垂线,与直线AB 交于点F 。延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点,N 点也随之运动)。若P 点运动到t 秒时,两个等腰直角三角形分别有一条直角边恰好落在同一条直线上,求此刻t 的值。 答案:解:(1) ∵拋物线y = -41-m x 2+4 5m x +m 2-3m +2经过原点, ∴m 2 -3m +2=0,解得m 1=1,m 2=2, 由题意知m ≠1,∴m =2, ∴拋物线的解析式为y = -41x 2+25 x , ∵点B (2,n )在拋物线 y = -41x 2+2 5 x 上, ∴n =4,∴B 点的坐标为(2,4)。 (2) 设直线OB 的解析式为y =k 1x ,求得直线OB 的解析式为 y =2x , ∵A 点是拋物线与x 轴的一个交点, 可求得A 点的坐标为(10,0), 设P 点的坐标为(a ,0),则E 点的坐标为(a ,2a ), 根据题意作等腰直角三角形PCD ,如图1。 可求得点C 的坐标为(3a ,2a ), 由C 点在拋物线上,得2a = -41?(3a )2+2 5 ?3a , 即49a 2-211a =0,解得a 1=9 22,a 2=0 (舍去), ∴OP =9 22 。 依题意作等腰直角三角形QMN ,设直线AB 的解析式为y =k 2x +b , 由点A (10,0),点B (2,4), 求得直线AB 的解析式为y = -2 1 x +5, 当P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上, 有以下三种情况: 第一种情况:CD 与NQ 在同一条直线上。如图2所示。可证△DPQ 为等腰直角三角形。 此时OP 、DP 、AQ 的长可依次表示为t 、4t 、2t 个单位。 ∴PQ =DP =4t ,∴t +4t +2t =10,∴t =7 10 。 第二种情况:PC 与MN 在同一条直线上。如图3所示。可证△PQM 为等腰直角三角形。 此时OP 、AQ 的长可依次表示为t 、2t 个单位。∴OQ =10-2t ,

二次函数中的存在性问题

二次函数中的存在性问题 一、二次函数中相似三角形的存在性问题 1.如图,把抛物线向左平移1个单位,再向下平移4个单位,得到抛物线. 所得抛物线与轴交于A,B两点(点A在点B的左边),与轴交于点C,顶点为D. (1)写出的值; (2)判断△ACD的形状,并说明理由; (3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由. 1、解:(1)∵由平移的性质知,的顶点坐标为D(-1,-4),∴。

(2)由(1)得.当时,. 解之,得。∴. 又当时,,∴C点坐标为(0,-3)。 又抛物线顶点坐标D(-1,-4), 作抛物线的对称轴交轴于点E,DF⊥轴于点F。 易知,在Rt△AED中,AD2=22+42=20,在Rt△AOC中,AC2=32+32=18, 在Rt△CFD中,CD2=12+12=2, ∴AC2+ CD2=AD2。∴△ACD是直角三角形。 (3)存在.作OM∥BC交AC于M,M点即为所求点。 由(2)知,△AOC为等腰直角三角形,∠BAC=450,AC。 由△AOM∽△ABC,得。即。 过M点作MG⊥AB于点G,则AG=MG=, OG=AO-AG=3-。又点M在第三象限,所以M(-,-)。 2.如图,抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C. (1)求抛物线的解析式; (2)若点D在抛物线上,点E在抛物线的对称轴上, A、O、D、E为顶点的四边形是平行四边形,求点D的坐标; (3)P是抛物线上的第一象限内的动点,过点P作PMx轴于M, 是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?

若存在,求出点P的坐标;若不存在,请说明理由. 2、解:(1)设抛物线的解析式为, ∵抛物线过A(﹣2,0),B(﹣3,3),O(0,0)可得,解得。 ∴抛物线的解析式为。 (2)①当AE为边时,∵A、O、D、E为顶点的四边形是平行四边形,∴DE=AO=2, 则D在轴下方不可能,∴D在轴上方且DE=2,则D1(1,3),D2(﹣3,3)。 ②当AO为对角线时,则DE与AO互相平分。 ∵点E在对称轴上,且线段AO的中点横坐标为﹣1, 由对称性知,符合条件的点D只有一个,与点C重合,即C(﹣1,﹣1)。 故符合条件的点D有三个, 分别是D1(1,3),D2(﹣3,3),C(﹣1,﹣1)。 (3)存在,如图:∵B(﹣3,3),C(﹣1,﹣1), 根据勾股定理得:BO2=18,CO2=2,BC2=20,∴BO2+CO2=BC2. ∴△BOC是直角三角形。 假设存在点P,使以P,M,A为顶点的 三角形与△BOC相似, 设P(,),由题意知>0,>0,且, ①若△AMP∽△BOC,则。即 +2=3(2+2)得:1=,2=﹣2(舍去). 当=时,=,即P(,)。

二次函数中点的存在性问题

二次函数中的存在性问题 1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由. 2.已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式; (2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由. 3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C. (1)求此抛物线的解析式; (2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

4.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3). (1)求直线AC及抛物线的解析式; (2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积; (3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C. (1)求直线BC的解析式; (2)求抛物线的顶点及对称轴; (3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由; (4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.

二次函数的存在性问题(相似三角形的存在性问题)

二次函数的存在性问题(相似三角形) 1、已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。 (1)求抛物线的解析式; (2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; (3)连接OA 、AB ,如图②,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。 2、设抛物线2 2y ax bx =+-与x 轴交于两个不同的点A(一1,0)、B(m ,0),与y 轴交于点C .且∠ACB=90°.

x y F - 2 -4 -6 A C E P D B 5 2 1 2 4 6 G (1)求m 的值和抛物线的解析式;(2)已知点D(1,n )在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标.(3)在(2)的条件下,△BDP 的外接圆半径等于________________. 解:(1)令x=0,得y=-2 ∴C(0,一2).∵ACB=90°,CO ⊥AB,.∴ △AOC ∽△COB,. ∴OA ·OB=OC 2 ;∴OB= 22 241 OC OA == ∴m=4. 3、已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点.(1)求抛物线的函数关系式; (2)若过点B 的直线y k x b '=+与抛物线相交于点C (2,m ) ,请求出?OBC 的面积S 的值. (3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于直线DC 下方的抛物线上,任取一点P ,过点P 作直线PF 平行于y 轴交x 轴于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得?OCD 与?CPE 相似?若存在,求出点P 的坐标;若不存在,请说明理由. 解:(1)由题意得:255036600a b c a b c c ++=??++=??=? 解得1 50a b c =-??=??=?故抛物线的函数关系式为2 5y x x =-+ (2)C 在抛物线上,2 252,6m m ∴-+?=∴= C ∴点坐标为(2,6), B 、 C 在直线y kx b '=+上

二次函数中的存在性问题(相似三角形的存在性问题)

二次函数的存在性问题(相似三角形) 1、已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。 (1)求抛物线的解析式; (2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; (3)连接OA 、AB ,如图②,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。 A A B B O O x x y y

x y F - 2 -4 -6 A C E P D B 5 2 1 2 4 6 G 2、设抛物线2 2y ax bx =+-与x 轴交于两个不同的点A(一1,0)、B(m ,0),与y 轴交于点C .且∠ACB=90°. (1)求m 的值和抛物线的解析式;(2)已知点D(1,n )在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标.(3)在(2)的条件下,△BDP 的外接圆半径等于________________. 解:(1)令x=0,得y=-2 ∴C(0,一2).∵ACB=90°,CO ⊥AB,.∴ △AOC ∽△COB,. ∴OA ·OB=OC 2;∴OB= 22 241 OC OA == ∴m=4. 3、已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点.(1)求抛物线的函数关系式; (2)若过点B 的直线y kx b '=+与抛物线相交于点C (2,m ),请求出?OBC 的面积S 的值. (3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于直线DC 下方的抛物线上,任取一点P ,过点P 作直线PF 平行于y 轴交x 轴于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得?OCD 与?CPE 相似?若存在,求出点P 的坐标;若不存在,请说明理由.

相关文档
最新文档