stc12c5410ad单片机SPWM产生原理

stc12c5410ad单片机SPWM产生原理
stc12c5410ad单片机SPWM产生原理

STCl2C5410AD的可编程计数器

阵列PCA实现SPWM控制软件的编写过程,并给出了SPWM中断服务程序的流程图。将结果应用于由MICA421驱动器驱动的四个MOSFET器件

FQAl60N08所组成的逆变桥上进行实际调试,实验结果表明,该方法具有电路简单、计算量小、实时性强的优点,采用在线计算和查表技术相结合,较好的解决了实时控制的要求,具有较好的应用价值。

0 引言

近年来,随着逆变电源

在各行各业应用的日益广泛,采用正弦脉宽调制(SPWM)技术控制逆变电源

提高整个系统的控制效果是人们不断探索的问题。对SPWM的控制有多种实现方法,其一是采用模拟电路、数字电路等硬件电路产生SPWM波形,该方法波形稳定准确,但电路复杂、体积庞大、不能进行自动调节;其二是借助单片机、DSP

等微控制器

来实现SPWM的数字控制方法,由于其内部集成了多个控制电路,如PWM电路、可编程计数器阵列(PCA)等,使得这种方法具有控制电路简单、运行速度快、抗干扰性强等优点。本文介绍一种利用STC系列单片机实现SPWM波形的方法,并将由STCl2C5410AD产生的单极性SPWM波应用于单相逆变电源,实验结果证明了利用其实现SPWM波形的可行性和有效性。

1 正弦脉宽调制技术SPWM

SPWM控制方案有两种:即单极性调制和双极性调制法。单极性法所得的SPWM信号有正、负和0三种电平,而双极性得到的只有正、负两种电平。比较二者生成的SPWM波可知:在相同载波比情况下,生成的双极性SPWM波所含谐波量较大;并且在正弦逆变电源控制中,双极性SPWM波控制较复杂。因此一般采用单极性SPWM波控制的形式。

由单片机实现SPWM控制,根据其软件化方法的不同,有如下几种方法:自然采样法、对称规则法、不对称规则法和面积等效法等。理论分析发现面积等效法相对于其它方法而言,谐波较小,对谐波的抑制能力较强。而且实时控制简单,利于软件实现。因此本文采用面积等效法实现SPWM控制。

图l为SPWM面积等效法原理示意图。

假设所需的输出正弦电压为U0=Umsinωt,式中:Um为正弦波幅值。利用面积等效法正弦波小块面积S1与对应脉冲面积S2相等的原则,将正弦波的正半周分为N等分,则每一等分的宽度为兀/N,计算出半个周期内N个不同的脉宽值。相关公式如下:

正弦波S1面积为:

逆变器

输入直流电压为UD,脉冲面积S2与S1相等,即有:

所以第k个区间的脉冲宽度δk

式中:M为调制度。N为半个周期内的脉冲个数。综合考虑载波比、输出谐波等因素,在此N取60。由上式计算出的SPWM脉宽表是一个由窄到宽、再由宽到窄的60个值的正弦表,将其存入STC单片机的ROM中以供调用。

2 STC系列单片机生成SPWM波原理

2.1 STC系列单片机简介

STCl2系列单片机是深圳STC公司在8051单片机标准的内核基础上改进推出的一个增强型功能的8051的单片机,从引脚到指令上完全与8051单片机

兼容。最突出的特点就是其具有可编程计数器阵列PCA。以STCl2C5410AD为例,有四路可编程计数器阵列PCA/PWM。PCA含有一个特殊的16位定时器,有4个16位的捕获/比较模块与之相连。四个模块的公共时间基准由PCA定时器决定,可以通过PCA模式寄存器CMOD SFR的CPSl和CPS0位确定。每个模块可编程工作在4种模式下:上升/下降沿捕获、软件定时器、高速输出或PWM脉冲输出。文中SPWM生成功能主要靠PWM脉冲输出模式完成。图2即为PCA模块脉宽调节PWM输出模式框图。

在PCA PWM输出模式中,当CL SFR的值小于{EPCnL,CCAPnL}时,输出为低,当PCA CL SFR的值等于或大于{EPCnH,CCAPnH}时,输出为高。当CL的值由FF变为00溢出时,{EPCnH,CCAPnH}的内容装载到{EPCnL,CCAPnL}中。这样就实现了无干扰的更新PWM。要使能PWM模式,模块CCAPMn寄存器的PWMn和ECOMn位必须置位。本文中,SPWM波形是综

合使用了模块O的脉宽调节(PWM)模式和模块1的16位软件定时器模式,通过软件中断的形式实现的。

与此同时,STCl2C54lO单片机还具有快速A/D转换功能。有一个lO位精度、8路通道的A/D转换器

。可以方便的对输入、输出的电压、电流进行监控和显示。

2.2 SPWM波生成方法

利用STC系列单片机产生SPWM波的基本原理是:将载波周期数值赋给PCA模块l的16位捕获/比较模块寄存器CCAPlH(高8位)和CCAPlL(低8位),PCA定时器的值CH(高八位)、CL(低八位)与模块捕获寄存器的值相比较,当两者相等时,产生PCA中断。在中断中,调用模块0的PWM脉宽调节模式,将下一个SPWM波的脉宽通过CCAP0H装载到CCAPOL中,这样就可以实现无干扰的更新PWM。

图3中即为由软件实时计算好的一路单极性SPWM波形的脉宽示意图。在每个固定的载波周期内,不同脉宽数值组成一个正弦表格的形式。若选用模块

O(P3.7)输出此路SPWM,首先将模块0的PCA模块工作模式寄存器定义为8位PWM模式,将16位计数器定时器CH、CL清零,PCA PWM模式辅助寄存器O清零(保证捕获寄存器EPCOH(高八位)、EPC0L(低八位)固定为零,PWM 波比较的数值只与PCA模块0的捕获寄存器CCAPOH(高八位)、CC2APOL(低八位)有关),模块l的捕获寄存器CCAPlH(高八位)、CCAPlL(低八位)送入载波周期的高八位和低八位数值,PCA比较/捕获模块寄存器1(CCAPMl)定义为使能比较功能,允许匹配产生中断。将第一个脉宽值sin[0]装入CCAP0H,开PCA 模块中断及低压检测中断,开总中断,启动PCA计数。当16位计数器/定时器的数值与模块1中捕获/比较寄存器的数值相等时,产生一个CCF中断;在中断程序中,清中断标志位,重新给模块1的捕获寄存器CCAPlH(高八位)、CCAPlL(低八位)送入载波周期的高八位和第八位数值,将16位计数器定时器CH、CL清零,中断次数i加1,将下一个脉宽数值sin[i]装入CCAPOH以备比较。同时判断是否到达最大数值N,若是,中断次数i清零,同时将脉宽数sin[i]值送入CCAP0H,完成一个循环。这样,周而复始,在P3.7引脚上将不断产生随着正弦规律变化的脉宽,从而得到准确的SPWM波。

2.3 软件设计

程序编写采用KeilC51编程语言进行,整个程序由主程序和键盘中断子程序以及PCA中断子程序组成。主程序在系统初始化后进入SPwM脉宽计算程序,计算相应的脉冲宽度,形成正弦表格,等待中断标志位以响应不同的中断。由于SPWM波是不断输出的,必须将PCA中断级别设置为最高。一旦有PCA中断标志位,即转入执行其中断子程序。图4为PCA中断子程序流程图。在中断服务程序中,注意CCF1位和CF标志位均由硬件置位,但不能自动清零,必须在中断程序中由软件清零。

与此同时,系统可以响应键盘中断子程序,由键盘控制通过液晶显示屏监控输出电压、电流的变化情况等。

3 实验结果

根据上述设计思路及编写的软件,用MIC442l驱动器驱动四个MOSFET 器件FQAl60N08组成的逆变桥上进行实际调试。图5为由单片机STCl2C5410输出的两路互补(有一定死区时间)单极性SPWM波。用这两路互补信号直接驱动芯片MIC4421,其输出信号再分别驱动逆变桥,经低通滤波后的波形如图6所示。

4 结束语

实验结果表明,此方法电路结构简单,硬件设计和软件编程切实可行。采用在线计算和查表技术相结合,较好的解决了实时控制的要求。同时采用单片机作为控制器件,不仅成本降低,而且调试方便,受外界干扰较小,有很好的实用性和可靠性。

51单片机汇编指令集(附记忆方法)

51单片机汇编指令集 一、数据传送类指令(7种助记符) MOV(英文为Move):对内部数据寄存器RAM和特殊功能寄存器SFR的数据进行传送; MOVC(Move Code)读取程序存储器数据表格的数据传送; MOVX (Move External RAM) 对外部RAM的数据传送; XCH (Exchange) 字节交换; XCHD (Exchange low-order Digit) 低半字节交换; PUSH (Push onto Stack) 入栈; POP (Pop from Stack) 出栈; 二、算术运算类指令(8种助记符) ADD(Addition) 加法; ADDC(Add with Carry) 带进位加法; SUBB(Subtract with Borrow) 带借位减法; DA(Decimal Adjust) 十进制调整; INC(Increment) 加1; DEC(Decrement) 减1; MUL(Multiplication、Multiply) 乘法; DIV(Division、Divide) 除法; 三、逻辑运算类指令(10种助记符) ANL(AND Logic) 逻辑与; ORL(OR Logic) 逻辑或; XRL(Exclusive-OR Logic) 逻辑异或; CLR(Clear) 清零; CPL(Complement) 取反; RL(Rotate left) 循环左移; RLC(Rotate Left throught the Carry flag) 带进位循环左移; RR(Rotate Right) 循环右移; RRC (Rotate Right throught the Carry flag) 带进位循环右移; SWAP (Swap) 低4位与高4位交换; 四、控制转移类指令(17种助记符) ACALL(Absolute subroutine Call)子程序绝对调用; LCALL(Long subroutine Call)子程序长调用; RET(Return from subroutine)子程序返回; RETI(Return from Interruption)中断返回; SJMP(Short Jump)短转移; AJMP(Absolute Jump)绝对转移; LJMP(Long Jump)长转移; CJNE (Compare Jump if Not Equal)比较不相等则转移;

单片机课程设计产生三角波、正弦波、方波

STC89C51单片机产生正弦波、方波、三角波LED显示频率源程序 #include #include #define uchar unsigned char #define uint unsignedint sbit LATCH1=P2^6;//定义锁存使能端口段锁存 sbit LATCH2=P2^7;// 位锁存 unsigned char TempData[8]; //存储显示值的全局变量 unsigned char code DuanMa[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};// 显示段码值0~9 unsigned char code DuanMa2[10]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef};// 显示段码值0~9 unsigned char code DuanMa1[3]={0x77,0x7c,0x39}; unsigned char code WeiMa[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码 #define DataPort P0 sbitkeyA=P3^3; sbitkeyB=P3^4; sbitkeyC=P3^5; sbitwc=P1^0; sbitscl=P1^1; sbitsda=P1^2; sbit scl1=P1^3; sbit sda1=P1^4; sbit p5=P1^5; sbit p6=P1^6; sbit p7=P1^7; uintsign,ad; uchar temp[10], temp1[3];//定义显示区域临时存储数组

基于单片机正弦信发生器












专业班级:
学生姓名:
指导教师(签名):
一、课程设计(论文)题目
正弦波信号发生器设计
二、本次课程设计(论文)应达到的目的
本次课程设计是自动化专业学生在学习了《单片机原理及应用》课程 及《模拟电子线路》、《数字电子线路》等专业基础课程之后进行的一次综 合训练,其主要目的是加深学生对单片机软硬件技术和相关理论知识的理 解,进一步熟悉 51 单片机系统设计的基本理论、方法和技能;掌握工程 应用的基本内容和要求,力争做到理论与实际的统一;同时培养学生分析 问题、解决问题的能力和独立完成系统设计的能力,并按要求编写相关的 技术文档和设计报告等。
三、本次课程设计(论文)任务的主要内容和要求(包括原始数据、技 术参数、设计要求等)
1.设计内容
(1)选择 51 单片机,晶振采用 12MHz。
(2)设计一个能产生 0 至 50HZ 正弦波信号。通过 0832D/A 芯片完成 数模转换。

(3)频率值由键盘输入。 (4)将频率值由 LED 数码管上显示(两位)。 2.设计要求 (1)按照任务书的要求完成系统分析及方案设计。 (2)完成硬件原理图的设计,并选择相关元器件。 (3)完成控制软件流程图的设计,编写相应的单片机控制程序。 (4)撰写设计报告。 四、应收集的资料及主要参考文献: 1.李建忠.单片机原理及应用.西安电子科技大学出版社,2008 2.杨居义.单片机课程设计指导.清华大学出版社,2009 3.李海滨等.单片机技术课程设计与项目实例.中国电力出版社,2009 以及与 51 系列单片机相关的文献及教材。 五、审核批准意见
教研室主任(签字) 正弦信号发生器设计方案框图

基于51单片机的波形发生器的设计讲解

目录 1 引言 (1) 1.1 题目要求及分析 (1) 1.1.1 示意图 (1) 1.2 设计要求 (1) 2 波形发生器系统设计方案 (2) 2.1 方案的设计思路 (2) 2.2 设计框图及系统介绍 (2) 2.3 选择合适的设计方案 (2) 3 主要硬件电路及器件介绍 (4) 3.1 80C51单片机 (4) 3.2 DAC0832 (5) 3.3 数码显示管 (6) 4 系统的硬件设计 (8) 4.1 硬件原理框图 (8) 4.2 89C51系统设计 (8) 4.3 时钟电路 (9) 4.4 复位电路 (9) 4.5 键盘接口电路 (10) 4.7 数模转换器 (11) 5 系统软件设计 (12) 5.1 流程图: (12) 5.2 产生波形图 (12) 5.2.1 正弦波 (12) 5.2.2 三角波 (13) 5.2.3 方波 (14) 6 结论 (16) 主要参考文献 (17) 致谢...................................................... 错误!未定义书签。

1引言 1.1题目要求及分析 题目:基于51单片机的波形发生器设计,即由51单片机控制产生正弦波、方波、三角波等的多种波形。 1.1.1示意图 图1:系统流程示意图 1.2设计要求 (1) 系统具有产生正弦波、三角波、方波三种周期性波形的功能。 (2) 用键盘控制上述三种波形(同周期)的生成,以及由基波和它的谐波(5次以下)线性组合的波形。 (3) 系统具有存储波形功能。 (4) 系统输出波形的频率范围为1Hz~1MHz,重复频率可调,频率步进间隔≤100Hz,非正弦波的频率按照10次谐波来计算。 (5) 系统输出波形幅度范围0~5V。 (6) 系统具有显示输出波形的类型、重复频率和幅度的功能。

PID控制的基本原理

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 PID 控制的基本原理 1.PID 控制概述 当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关心的是变量,并与期望值相比较,以此误差来纠正和控制系统的响应。反馈理论及其在自动控制中应用的关键是:做出正确测量与比较后,如何用于系统的纠正与调节。 在过去的几十年里,PID 控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术飞速发展的今天,在工业过程控制中95%以上的控制回路都具有PID 结构,而且许多高级控制都是以PID 控制为基础的。 PID 控制器由比例单元(P)、积分单元(I)和微分单元(D)组成,它的基本原理比较简单,基本的PID 控制规律可描述为: G(S ) = K P + K1 + K D S (1-1) PID 控制用途广泛,使用灵活,已有系列化控制器产品,使用中只需设定三个参数(K P ,K I和K D )即可。在很多情况下,并不一定需要三个单元,可以取其中的一到两个单元,不过比例控制单元是必不可少的。 PID 控制具有以下优点: (1)原理简单,使用方便,PID 参数K P、K I和K D 可以根据过程动态特性变化,PID 参数就可以重新进行调整与设定。 (2)适应性强,按PID 控制规律进行工作的控制器早已商品化,即使目前最新式的过程控制计算机,其基本控制功能也仍然是PID 控制。PID 应用范围广,虽然很多工业过程是非线性或时变的,但通过适当简化,也可以将其变成基本线性和动态特性不随时间变化的系统,就可以进行PID 控制了。 (3)鲁棒性强,即其控制品质对被控对象特性的变化不太敏感。但不可否认PID 也有其固有的缺点。PID 在控制非线性、时变、偶合及参数和结构不缺点的复杂过程时,效果不是太好; 最主要的是:如果PID 控制器不能控制复杂过程,无论怎么调参数作用都不大。 在科学技术尤其是计算机技术迅速发展的今天,虽然涌现出了许多新的控制方法,但PID 仍因其自身的优点而得到了最广泛的应用,PID 控制规律仍是最普遍的控制规律。PID 控制器是最简单且许多时候最好的控制器。 在过程控制中,PID 控制也是应用最广泛的,一个大型现代化控制系统的控制回路可能达二三百个甚至更多,其中绝大部分都采用PID 控制。由此可见,在过程控制中,PID 控制的重要性是显然的,下面将结合实例讲述PID 控制。 1.1.1 比例(P)控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳定误差。比例控制器的传递函数为: G C (S ) = K P (1- 2) 式中,K P 称为比例系数或增益(视情况可设置为正或负),一些传统的控制器又常用比例带(Proportional Band,PB),来取代比例系数K P ,比例带是比例系数的倒数,比例带也称为比例度。 对于单位反馈系统,0 型系统响应实际阶跃信号R0 1(t)的稳态误差与其开环增益K 近视成反比,即: t→∞

基于单片机的信号发生器(完整电路_程序)资料

电子与信息工程学院综合实验课程报告 实验名称:基于单片机的信号发生器的设计与实现班级:10电工2班 学号:20101851046 姓名:李俊 指导教师: 时间:

摘要 本文以STC89C51单片机为核心设计了一个低频函数信号发生器。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如 正弦波、方波、三角波、三角波、梯形波及其他任意波形,波形的频率和幅度在一定范围内可任意改变。波形和频率的改变通过软件控制,幅度的改变通过硬件实现。介绍了波形的生成原理、硬件电路和软件部分的设计原理。本系统可以产生最高频率798.6HZ的波形。该信号发生器具有体积小、价格低、性能稳定、功能齐全的优点。 关键词:低频信号发生器;单片机;D /A转换; 1设计选题及任务 设计题目:基于单片机的信号发生器的设计与实现 任务与要求: 设计一个由单片机控制的信号发生器。运用单片机系统控制产生多种波形,这些波形包括方波、三角波、锯齿波、正弦波等。信号发生器所产生的波形的频率、幅度均可调节。并可通过软件任意改变信号的波形。 基本要求: 1. 产生三种以上波形。如正弦波、三角波、矩形波等。 2.最大频率不低于500Hz。并且频率可按一定规律调节,如周期按1T,2T,3T,4T 或1T,2T,4T,8T变化。 3.幅度可调,峰峰值在0——5V之间变化。 扩展要求:产生更多的频率和波形。 2系统概述 2.1方案论证和比较 2.1.1总体方案: 方案一:采用模拟电路搭建函数信号发生器,它可以同时产生方波、三角波、正弦波。但是这种模块产生的不能产生任意的波形(例如梯形波),并且频率调节很不方便。 方案二:采用锁相式频率合成器,利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需频率上,该方案性能良好,但难以达到输出频率覆盖系数的要求,且电路复杂。

51单片机指令表汇总

51单片机指令表 助记符指令说明字节数周期数 (数据传递类指令) MOV A,Rn 寄存器内容传送到累加器 1 1 MOV A,direct 直接地址内容传送到累加器 2 1 MOV A,@Ri 间接RAM内容传送到累加器 1 1 MOV A,#data 立即数传送到累加器 2 1 MOV Rn,A 累加器内容传送到寄存器 1 1 MOV Rn,direct 直接地址内容传送到寄存器 2 2 MOV Rn,#data 立即数传送到寄存器 2 1 MOV direct,Rn 寄存器内容传送到直接地址 2 2 MOV direct,direct 直接地址传内容传送到直接地址 3 2 MOV direct,A 累加器内容传送到直接地址 2 1 MOV direct,@Ri 间接RAM内容传送到直接地址 2 2 MOV direct,#data 立即数传送到直接地址 3 2 MOV @Ri,A 累加器内容传送到间接RAM 1 1 MOV @Ri,direct 直接地址内容传送到间接RAM 2 2 MOV @Ri,#data 立即数传送到间接RAM 2 1 MOV DPTR,#data16 16 位地址传送到数据指针 3 2 MOVC A,@A+DPTR 代码字节传送到累加器 1 2 MOVC A,@A+PC 代码字节传送到累加器 1 2 MOVX A,@Ri 外部RAM(8位地址)内容传送到累加器 1 2 MOVX A,@DPTR 外部RAM(16位地址)内容传送到累加器 1 2 MOVX @Ri,A 累加器内容传送到外部RAM(8位地址) 1 2 MOVX @DPTR,A 累加器内容传送到外部RAM(16 地址) 1 2 PUSH direct 直接地址内容压入堆栈 2 2 POP direct 堆栈内容弹出到直接地址 2 2 XCH A,Rn 寄存器和累加器交换 1 1 XCH A, direct 直接地址和累加器交换 2 1

单片机产生正弦波

单片机产生正弦波 一要求 采用单片机map430g2553和运算放大器lmv358产生正弦波,周期1秒。 二思路 可通过单片机产生PWM,调节参数寄存器的值,产生不同占空比的PWM信号。若占空比的变化规律是正弦的,则滤波后可得到所需正弦波形。 其中,PWM(Pulse Width Modulation)控制——脉冲宽度调制技术是通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。图1为用PWM波代替正弦半波的例子。(单片机输出图1b,滤波后得到图1a) 图1 用PWM波代替正弦半波

三实践 1 PWM周期计算 正弦波周期1秒,需要采用多少个周期的PWM信号去表示?数目过少,则波形不完整(极端状况只有1个周期的PWM);数目过多,则增加了单片机的计算量,并对速度有要求。这里取N=200个。 则PWM信号的周期为T=1/200秒=5毫秒。 2 PWM参数计算 PWM由定时器TimerA产生,参数主要包括:定时器时钟,周期计数,高电平计数三个。 ●定时器时钟:定时器时钟来源有4个,两个内部的(辅助时钟ACLK、子系统主时钟 SMCLK),两个外部的。这里采用内部时钟。没有外部晶体时,ACLK由内部时钟源VLOCLK(低频时钟源,12K赫兹)产生,SMCLK由内部数字时钟DCOCLK(默认1M赫兹)产生。这里建议采用较高频率的。部分代码如下: BCSCTL1 |= DIVA_0; // ACLK = VLO BCSCTL2 |= SELM_0 + DIVM_0 + DIVS_0; // MCLK = DCO, SMCLK = DCO // Configure TimerA TACTL = TASSEL1 +MC_1; // Source: SMCLK, UP mode 其中,ACLK可配置成VLOCLK的1,2,4,8分频,这里设置为1分频,即ACLK = VLO;第二行中,SELM_0的作用是选择MCLK的时钟源为DCOCLK,DIVM_0设置为MCLK = DCO,DIVS_0设置为SMCLK = DCO(默认时钟源)。 TASSEL1将定时器时钟设置为SMCLK(若为TASSEL0则选择ACLK),且未分频。模式选择MC_1为上升模式。采用上述方法设置 定时器时钟= SMCLK = DCO = 1M赫兹。 ●周期计数:上升模式表明定时器由0递增到一个上限值CCR0。CCR0需设置。 因为周期T=1/200秒,而定时器时钟= SMCLK = DCO = 1M赫兹,定时器周期t=1微秒,所以CCR0=T/t=5000,即5毫秒。 ●高电平计数:定时器由0递增到一个上限值CCR0过程中,需设置脉宽CCR1。 并且K= CCR1/ CCR0的数值每个周期(5毫秒)都变化一次,变化趋势满足正弦变化,200个5毫秒构成一个正弦变化周期。 为获得CCR1值,在matlab中输入: t=0:pi/100:2*pi; k=(sin(t)+1)/2; CCR1=round(4999*k); 可获得201个CCR1值。上式中,第一行设置了201个数,均匀分布在0-2pi 之间,第一个和最后一个分别对应0弧度和2pi弧度;第二行计算201个正弦值,偏置为0.5,全幅度为1的正弦波幅度,如图2所示:

单片机制作简易正弦波信号发生器(DAC0832)

调试时,电源的质量需要较高,不然的话,波形不易观察看清楚。 //河北工程大学信电学院自动化系 //设计调试成功 ***************将DA输出的 0V ~ -5V范围扩展成 -5V ~ +5V范围,电路如下图:*************** 如若VO2输出更平滑一些,可以在VO2处接一个小电容,滤掉高频。 (一)过程分析计算如下: ?第一级运放出来的V o1=-N*V ref/256。当V ref为+5V时,V o1=0~ -5V。 其中,V ref为参考电压,N为8位数字量输出到DAC0832 ?并结合第二级运放,是否可以推出来如下式子: V o2=-(2*V o1+V ref)=-(2*-N*V ref/256+V ref) =-(-2N*V ref/256+V ref) =2N*V ref/256-V ref 当参考电压V ref=5V时,V o2=10N/256-5。 由于要求输出的是正弦波xsinθ,幅值x不定,下面考虑幅值x分别取5和1的情况: ●当输出波形为5 sinθ时:5 sinθ=V o2 =2N*V ref/256-V ref =10N/256-5 //此时V ref=+5V 得sinθ=2N/256-1

●当输出波形为sinθ时:sinθ=V o2 =2N*V ref/256-V ref =10N/256-5 //此时V ref=+5V 得sinθ=10N/256-5 最后可以考虑输出波形的频率问题。例如要求输出特定频率的正弦波。 (二)针对输出的不同幅值波形 ?当输出波形为5 sinθ时:得sinθ=2N/256-1 这里我们要求进步为一度。具体到进步大小,和内存RAM或者ROM有关,即和你存放数据表的空间有关。放到哪个空间都可以。(这里周期采样最多256个点,步数可以为1、2、5等,自己视情况而定,这里由于是360度,256个采样点,故步的大小360/256=1.4=△θ,由此算的前三个 θ=0,1.4,2.8……,对应N为0x80,0x83,0x86……) 通过sinθ的特征和计算部分数据发现规律: 0~90度与90~180度大小是对称的;181~270度与270~359度是对称的。 故,不是所有数据都是计算的。

矢量控制系统(FOC)基本原理

矢量控制(FOC)基本原理 2014.05.15 duquqiubai1234163. 一、基本概念 1.1模型等效原则 交流电机三相对称的静止绕组 A 、B 、C ,通以三相平衡的正弦电流时,所产生的合成磁动势是旋转磁动势F ,它在空间呈正弦分布,以同步转速ω1(即电流的角频率)顺着 A-B-C 的相序旋转。这样的物理模型如图1-1a 所示。然而,旋转磁动势并不一定非要三相不可,单相除外,二相、三相、四相…… 等任意对称的多相绕组,通以平衡的多相电流,都能产生旋转磁动势,当然以两相最为简单。 图1 图1-1b 中绘出了两相静止绕组α 和 β ,它们在空间互差90°,通以时间上互差90°的两相平衡交流电流,也产生旋转磁动势F 。再看图1-1c 中的两个互相垂直的绕组M 和 T ,通以直流电流M i 和T i ,产生合成磁动势F ,如果让包含两个绕组在的整个铁心以同步转速旋转,则磁动势F 自然也随之旋转起来,成为旋转磁动势。把这个旋转磁动势的大小和转速也控制成与图 1-1a 一样,那么这三套绕组就等效了。

三相--两相变换(3S/2S 变换) 在三相静止绕组A 、B 、C 和两相静止绕组α、β之间的变换,简称3S/2S 变换。其电流关系为 111221022A B C i i i i i αβ????-- ???????=?????????-????? () 两相—两相旋转变换(2S/2R 变换) 同步旋转坐标系中(M 、T 坐标系中)轴向电流分量与α、β坐标系中轴向电流分量的转换关系为 cos sin 2sin cos M T i i i i αβ??????????=??????-???? ?? () 1.2矢量控制简介 矢量控制是指“定子三相电流矢量控制”。 矢量控制理论最早为解决三相异步电机的调速问题而提出。交流矢量的直流标量化可以使三相异步电机获得和直流电机一样优越的调速性能。将交流矢量变换为两相直流标量的过程见图2。

单片机定时1器控制产生10Hz正弦波信号

#include #define uchar unsigned char #define uint unsigned int sbit cs=P3^5; sbit wr=P3^6; uchar j; uchar code tosin[256]={ 0x80,0x83,0x86,0x89,0x8d,0x90,0x93,0x96,0x99,0x9c,0x9f,0xa2, 0xa5,0xa8,0xab,0xae,0xb1,0xb4,0xb7,0xba,0xbc,0xbf,0xc2,0xc5, 0xc7,0xca,0xcc,0xcf,0xd1,0xd4,0xd6,0xd8,0xda,0xdd,0xdf,0xe1, 0xe3,0xe5,0xe7,0xe9,0xea,0xec,0xee,0xef,0xf1,0xf2,0xf4,0xf5, 0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfd,0xfe,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xfe,0xfd, 0xfd,0xfc,0xfb,0xfa,0xf9,0xf8,0xf7,0xf6,0xf5,0xf4,0xf2,0xf1, 0xef,0xee,0xec,0xea,0xe9,0xe7,0xe5,0xe3,0xe1,0xde,0xdd,0xda, 0xd8,0xd6,0xd4,0xd1,0xcf,0xcc,0xca,0xc7,0xc5,0xc2,0xbf,0xbc, 0xba,0xb7,0xb4,0xb1,0xae,0xab,0xa8,0xa5,0xa2,0x9f,0x9c,0x99, 0x96,0x93,0x90,0x8d,0x89,0x86,0x83,0x80,0x80,0x7c,0x79,0x76, 0x72,0x6f,0x6c,0x69,0x66,0x63,0x60,0x5d,0x5a,0x57,0x55,0x51, 0x4e,0x4c,0x48,0x45,0x43,0x40,0x3d,0x3a,0x38,0x35,0x33,0x30, 0x2e,0x2b,0x29,0x27,0x25,0x22,0x20,0x1e,0x1c,0x1a,0x18,0x16, 0x15,0x13,0x11,0x10,0x0e,0x0d,0x0b,0x0a,0x09,0x08,0x07,0x06, 0x05,0x04,0x03,0x02,0x02,0x01,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x02,0x02,0x03,0x04,0x05, 0x06,0x07,0x08,0x09,0x0a,0x0b,0x0d,0x0e,0x10,0x11,0x13,0x15, 0x16,0x18,0x1a,0x1c,0x1e,0x20,0x22,0x25,0x27,0x29,0x2b,0x2e, 0x30,0x33,0x35,0x38,0x3a,0x3d,0x40,0x43,0x45,0x48,0x4c,0x4e, 0x51,0x55,0x57,0x5a,0x5d,0x60,0x63,0x66 ,0x69,0x6c,0x6f,0x72, 0x76,0x79,0x7c,0x80 };/*正弦波码 */

基于51单片机函数信号发生器设计

摘要:本系统利用单片机AT89S52采用程序设计方法产生锯齿波、正弦波、矩形波三种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,能产1Hz—3kHz的波形。通过键盘来控制三种波形的类型选择、频率变化,并通过液晶屏1602显示其各自的类型以及数值,系统大致包括信号发生部分、数/模转换部分以及液晶显示部分三部分,其中尤其对数/模转换部分和波形产生和变化部分进行详细论述。 关键词:单片机AT89S52、DAC0832、液晶1602 Abstract: this system capitalize on AT89s52,it makes use of central processor to generate three kinds of waves, they are triangle wave, and use D/A conversion module, wave generate module and liquid crystal display of 1602, it can have the 1Hz-3KHz profile. In this system it can control wave form choosing, frequency, range,can have the sine wave, the square-wave, the triangular wave. Simultaneously may also take the frequency measurement frequency,and displays them through liquid crystal display of 1602.this design includes three modules. They are D/A conversion module, wave generate module and liquid crystal display of LED module. In this design, the wave generator into wave form module and D/A conversion module are discussed in detail. key word: AT89S52, DAC0832, liquid crystal 1602.

(完整版)51单片机汇编指令(全)

指令中常用符号说明 Rn当前寄存器区的8个工作寄存器R0~R7(n=0~7) Ri当前寄存器区可作为地址寄存器的2个工作寄存器R0和R1(i=0,1) Direct8位内部数据寄存器单元的地址及特殊功能寄存器的地址 #data表示8位常数(立即数) #data16表示16位常数 Add16表示16位地址 Addr11表示11位地址 Rel8位代符号的地址偏移量 Bit表示位地址 @间接寻址寄存器或基址寄存器的前缀 ( )表示括号中单元的内容 (( ))表示间接寻址的内容 指令系统 数据传送指令(8个助记符) 助记符中英文注释 MOV Move 移动 MOV A , Rn;Rn→A,寄存器Rn的内容送到累加器A MOV A , Direct;(direct)→A,直接地址的内容送A MOV A ,@ Ri;(Ri)→A,RI间址的内容送A MOV A , #data;data→A,立即数送A MOV Rn , A;A→Rn,累加器A的内容送寄存器Rn MOV Rn ,direct;(direct)→Rn,直接地址中的内容送Rn MOV Rn , #data;data→Rn,立即数送Rn MOV direct , A;A→(direct),累加器A中的内容送直接地址中 MOV direct , Rn;(Rn)→direct,寄存器的内容送到直接地址 MOV direct , direct;(direct)→direct,直接地址的内容送到直接地址 MOV direct , @Ri;((Ri))→direct,间址的内容送到直接地址 MOV direct , #data;8位立即数送到直接地址中 MOV @Ri , A;(A)→@Ri,累加器的内容送到间址中 MOV @Ri , direct;direct→@Ri,直接地址中的内容送到间址中 MOV @Ri , #data; data→@Ri ,8位立即数送到间址中 MOV DPTR , #data16;data16→DPTR,16位常数送入数据指针寄存器,高8位送入DPH,低8位送入DPL中(单片机中唯一一条16位数据传送指令) (MOV类指令共16条)

信号发生器 (正弦波,方波,三角波)51单片机 C语言代码

/**************************************/ /* 信号发生器(正弦波,方波,三角波) */ /*************************************/ #include #include #define uchar unsigned char #define uint unsigned int sbit cs=P2^0; //tlc5615片选端口 sbit clk=P2^1; //tlc5615时钟线 sbit din=P2^2; //tlc5615传输端口 sbit key1=P1^0; sbit key2=P1^1; //按键的单片机接口 uchar keydat; uchar flag; //波形发生终止信号的标志位一旦被置零立马停止发信号

uchar flagsqu; //方波高低电平控制为(运用定时器1中断控制) uchar m,num; uchar dat=0xff; uchar code tosin[141]={ //正弦波的编码 0x00,0x01,0x02,0x02,0x03,0x04,0x05,0x06,0x07,0x08, 0x09,0x0a,0x0b,0x0d,0x0e,0x10,0x11,0x13,0x15,0x16, 0x18,0x1a,0x1c,0x1e,0x20,0x22,0x25,0x27,0x29,0x2b, 0x2e,0x30,0x33,0x35,0x38,0x3a,0x3d,0x40,0x43,0x45, 0x48,0x4c,0x4e,0x51,0x55,0x57,0x5a,0x5d,0x60,0x63, 0x66,0x69,0x6c,0x6f,0x70,0x71,0x72,0x73,0x74,0x75, 0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7e, 0x7f,0x80,0x7f,0x7e,0x7e,0x7d,0x7c,0x7b,0x7a,0x79, 0x78,0x77,0x76,0x75,0x74,0x73,0x72,0x6f,0x6c,0x69, 0x66,0x63,0x60,0x5d,0x5a,0x57,0x55,0x51,0x4e,0x4c, 0x48,0x45,0x43,0x40,0x3d,0x3a,0x38,0x35,0x33,0x30, 0x2e,0x2b,0x29,0x27,0x25,0x22,0x20,0x1e,0x1c,0x1a, 0x18,0x16,0x15,0x13,0x11,0x10,0x0e,0x0d,0x0b,0x0a, 0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x02,0x01, 0x00};

PID控制的基本原理

S lim e (t ) = 1 +RK t →∞ PID 控制的基本原理 1.PID 控制概述 当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关 心的是变量,并与期望值相比较,以此误差来纠正和控制系统的响应。反馈理论及其在自动控制中应用的关键是: 做出正确测量与比较后,如何用于系统的纠正与调节。 在过去的几十年里,PID 控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术 飞速发展的今天,在工业过程控制中 95%以上的控制回路都具有 PID 结构,而且许多高级控制都是以 PID 控制为 基础的。 PID 控制器由比例单元(P )、积分单元(I )和微分单元(D )组成,它的基本原理比较简单,基本的 PID 控 制规律可描述为: G (S ) = K P + K 1 + K D S (1-1) PID 控制用途广泛,使用灵活,已有系列化控制器产品,使用中只需设定三个参数( K P , K I 和 K D ) 即可。在很多情况下,并不一定需要三个单元,可以取其中的一到两个单元,不过比例控制单元是必不可少的。 PID 控制具有以下优点: (1) 原理简单,使用方便,PID 参数 K P 、K I 和 K D 可以根据过程动态特性变化,PID 参数就可以重 新进行调整与设定。 (2) 适应性强,按 PID 控制规律进行工作的控制器早已商品化,即使目前最新式的过程控制计算机,其 基本控制功能也仍然是 PID 控制。PID 应用范围广,虽然很多工业过程是非线性或时变的,但通过适当简化,也 可以将其变成基本线性和动态特性不随时间变化的系统,就可以进行 PID 控制了。 (3) 鲁棒性强,即其控制品质对被控对象特性的变化不太敏感。 但不可否 认 PID 也有其固有的缺点。PID 在控制非线性、时变、偶合及参数和结构不缺点的复杂过程时,效果不是太好; 最主要的是:如果 PID 控制器不能控制复杂过程,无论怎么调参数作用都不大。 在科学技术尤其是计算机技术迅速发展的今天,虽然涌现出了许多新的控制方法,但 PID 仍因其自身的优 点而得到了最广泛的应用,PID 控制规律仍是最普遍的控制规律。PID 控制器是最简单且许多时候最好的控制器。 在过程控制中,PID 控制也是应用最广泛的,一个大型现代化控制系统的控制回路可能达二三百个甚至更多, 其中绝大部分都采用 PID 控制。由此可见,在过程控制中,PID 控制的重要性是显然的,下面将结合实例讲述 PID 控制。 1.1.1 比例(P )控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输 出存在稳定误差。比例控制器的传递函数为: G C (S ) = K P (1- 2) 式中, K P 称为比例系数或增益(视情况可设置为正或负),一些传统的控制器又常用比例带(Proportional Band , PB ),来取代比例系数 K P ,比例带是比例系数的倒数,比例带也称为比例度。 对于单位反馈系统,0 型系统响应实际阶跃信号 R 0 1(t)的稳态误差与其开环增益 K 近视成反比,即: t →∞ 对于单位反馈系统,I 型系统响应匀速信号 (1- 3) R 1 (t)的稳态误差与其开环增益 K v 近视成反比, 即: lim e (t ) = R 1 K V (1- 4)

C51单片机指令集大全

格式功能简述字节数周期 一、数据传送类指令 MOV A, Rn 寄存器送累加器 1 1 MOV Rn,A 累加器送寄存器 1 1 MOV A ,@Ri 内部RAM单元送累加器 1 1 MOV @Ri ,A 累加器送内部RAM单元 1 1 MOV A ,#data 立即数送累加器 2 1 MOV A ,direct 直接寻址单元送累加器 2 1 MOV direct ,A 累加器送直接寻址单元 2 1 MOV Rn,#data 立即数送寄存器 2 1 MOV direct ,#data 立即数送直接寻址单元 3 2 MOV @Ri ,#data 立即数送内部RAM单元 2 1 MOV direct ,Rn 寄存器送直接寻址单元 2 2 MOV Rn ,direct 直接寻址单元送寄存器 2 2 MOV direct ,@Ri 内部RAM单元送直接寻址单元 2 2 MOV @Ri ,direct 直接寻址单元送内部RAM单元 2 2 MOV direct2,direct1 直接寻址单元送直接寻址单元 3 2 MOV DPTR ,#data16 16位立即数送数据指针 3 2 MOVX A ,@Ri 外部RAM单元送累加器(8位地址) 1 2 MOVX @Ri ,A 累加器送外部RAM单元(8位地址) 1 2 MOVX A ,@DPTR 外部RAM单元送累加器(16位地址) 1 2 MOVX @DPTR ,A 累加器送外部RAM单元(16位地址) 1 2 MOVC A ,@A+DPTR 查表数据送累加器(DPTR为基址) 1 2 MOVC A ,@A+PC 查表数据送累加器(PC为基址) 1 2 XCH A ,Rn 累加器与寄存器交换 1 1 XCH A ,@Ri 累加器与内部RAM单元交换 1 1 XCHD A ,direct 累加器与直接寻址单元交换 2 1 XCHD A ,@Ri 累加器与内部RAM单元低4位交换 1 1 SWAP A 累加器高4位与低4位交换 1 1 POP direct 栈顶弹出指令直接寻址单元 2 2 PUSH direct 直接寻址单元压入栈顶 2 2 二、算术运算类指令 ADD A, Rn 累加器加寄存器 1 1 ADD A,@Ri 累加器加内部RAM单元 1 1 ADD A, direct 累加器加直接寻址单元 2 1 ADD A, #data 累加器加立即数 2 1 ADDC A, Rn 累加器加寄存器和进位标志 1 1 ADDC A,@Ri 累加器加内部RAM单元和进位标志 1 1 ADDC A, #data 累加器加立即数和进位标志 2 1 ADDC A, direct 累加器加直接寻址单元和进位标志 2 1 INC A 累加器加1 1 1 INC Rn 寄存器加1 1 1

基于单片机正弦波有效值的测量

基于单片机正弦波有效值的测量 一.简介 本作品以单片机STC12C5A60S2为主控芯片并以此为基础,通过二极管1N5819实现半波整流,使用单片机内部自带10位AD对整流后的输入信号进行采样,从而实现对峰值的检测;同时通过运放LM837对输入信号进行放大,之后通过施密特触发器,将原始信号整形成可被单片机识别的标准脉冲波形,之后配合内部计数器(定时器)达到测量其频率的目的;这样,整流和AD采样实现对输入信号峰值的检测;通过放大、整形实现对输入信号频率的检测。 二.基本功能与技术指标要求 (1)输入交流电压:1mV~50V,分五档: ①1mV~20mV,②20mV~200mV,③200mV~2V,④2V~20V,⑤20v~50V。 (2)正弦频率;1Hz~100kHz; (3)检测误差:≤2%; (4)具有检测启动按钮和停止按钮,按下启动按钮开始检测,按下停止按钮停止检测; (5)显示方式:数字显示当前检测的有效是,在停止检测状态下,显示最后一次检测到的有效值; (6)显示:LCD,显示分辨率:每档满量程的0.1%; 三.理论分析 本文要求输入交流信号,通过电路测量其峰值,频率,有效值以

及平均值,因为输入的交流信号为模拟信号,而一般处理数据使用的主控芯片单片机处理的是数字信号,所以我们选择使用数模转换器AD(Analog to Digital Converter)将输入的模拟信号转换为数字信号,并进行采样;由于要求输入交流信号电压峰峰值Vpp为 50mV~10V,所以如果我们采用AD为8位,则最小采样精度为 ,因此会产生78.4%的误差,并且题目要求输入交流信号的频率范围为40Hz~50kHz,所以为了保证对高频率信号的单周期内采样个数,我们需要选择尽量高速度的AD; 因此我们选用使用单片机STC12C5A60S2,其内部自带AD为8路10位最高速度可达到250KHz,所以我们可以将最小采样精度缩小到 ,并且在输入交流信号频率最大时(50KHz)在单个周期内可采集5个点,因此可保证测量精度。 由于该AD只能接受0~5V的模拟信号输入,所以当我们直接输入一个双极性信号时可能损坏AD,因此当信号进入AD之前我们要进行半波整流,为此我们设计了整流电路,在交流信号通过整流电路输入AD 后,由AD实时输出对应模拟信号大小的二进制数,并存入变量MAX 中,随着信号的不断输入MAX中只保存AD输出过的最大值,这样既 可测出输入信号的峰值;由交流信号有效值表达式 可知检波器应当首先把输入的瞬时电压平方, 然后在一定平均时间内取平均值再开方。即可得到交流信号的有效值,然后通过比较峰值

设计并实现频率可控的正弦波信号发生器 单片机课设

1Proteus软件简介 Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件。它运行于Windows 操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是:①实现了单片机仿真和SPICE电路仿真相结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。②支持主流单片机系统的仿真。目前支持的单片机类型有:68000系列、8051系列、A VR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。③提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。④具有强大的原理图绘制功能。总之,该软件是一款集单片机和SPICE分析于一身的仿真软件,功能极其强大。 特点:支持ARM7,PIC ,A VR,HC11以及8051系列的微处理器CPU模型,更多模型正在开发中; 交互外设模型有LCD显示、RS232终端、通用键盘、开关、按钮、LED等; 强大的调试功能,如访问寄存器与内存,设置断点和单步运行模式; 支持如IAR、Keil和Hitech等开发工具的源码C和汇编的调试; 一键“make”特性:一个键完成编译与仿真操作; 内置超过6000标准SPICE模型,完全兼容制造商提供的SPICE模型; DLL界面为应用提供特定的模式; 14种虚拟仪器:示波器、逻辑分析仪、信号发生器、规程分析仪等; 高级仿真包含强大的基于图形的分析功能:模拟、数字和混合瞬时图形;频率;转换;噪声;失真;付立叶;交流、直流和音频曲线; 模拟信号发生器包括直流、正旋、脉冲、分段线性、音频、指数、单频FM;数字信号发生器包括尖脉冲、脉冲、时钟和码流; 集成PROTEUS PCB设计形成完整的电子设计系统。 Protues软件与Keil uVision的结合 对于初次使用Protues软件的人可能还不知道如何设置,现在把设置步骤简介如下,仅供参考(本文章只讨论在单机上结合,在两个联网机器使用由于篇幅限制不在此讨论):设置

相关文档
最新文档