matlAB,SIMULINK联合仿真经典例子

matlAB,SIMULINK联合仿真经典例子
matlAB,SIMULINK联合仿真经典例子

数控螺旋面钻头尖刃磨机的机构仿真

一、原理

图1二并联杆数控螺旋面钻头尖刃磨机床示意图

图2 二并联杆数控螺旋面钻头尖刃磨机床刃磨原理图

重要假设条件:

1、二并联杆数控螺旋面钻头尖刃磨机床是通过两组并联杆(2,a和3,b)保证动平台4

只在空间中做水平运动,而没有翻转运动。每一组并联杆是由空间相互平行的4根杆件组成,由于组内各杆件受力相同,所以将其简化成平面机构如图2。构件a,b是保证动平台4只做水平运动的辅助平行杆,所以可以假设将机构中杆件a,b省略,而动平台4只做水平移动,没有翻转运动,也就是4相对于地面的夹角θ4恒等于0。

2、直线电机的次子有两个(1和5)但是在加工过程中并不是两者同时运动,所以假设5

与导轨固联。

3、假设机床在工作过程中动平台4只受到树直向上的恒力作用,且作用在其中心位置。基于以上假设机床平面结构示意图如图3。

图3二并联杆数控螺旋面钻头尖刃磨机床简化机构平面结构示意图

二、建立仿真方程

C2=cos(θ2) S2=sin(θ2) C3=cos(θ3) S3=sin(θ3)

一)力方程(分别对各个杆件进行受力分析) 对动平台4:受力分析如图4

图4动平台4的受力分析

对并联杆2:受力分析如图5

图5并联杆2的受力分析 对直线电机滑块1:受力分析如图6

图6直线电机滑块1的受力分析

对并联杆3:受力分析如图7

图7并联杆3的受力分析 二)闭环矢量运动方程(矢量图如图8)

图8 闭环矢量图

矢量方程为:R1+R2=R3+R4

将上述矢量方程分解为x 和y 方向,并分别对方程两边对时间t 求两次导数得: r1_dot_dot+r2*α2*S2+r2*w2^2*C2=r3*α3*S3+r3*w3^2*C3 (12) r2*α2*C2-r2*w2^2*S2=r3*α3*C3-r3*w3^2*S3 (13) 三)质心加速度的矢量方程

矢量关系:

Ac3=Rc3_dot_dot

Ac4=R3_dot_dot+ Rc4_dot_dot

Ac2=R3_dot_dot+ R4_dot_dot+ Rc2_dot_dot (_dot_dot 表示对时间求两次导数)

将上述三个矢量方程分别分解为x 和y 方向,则它们等效为以下六个方程;

Ac3x=-rc3*w3^2*C3-rc3*α3*S3 (14) Ac3y=-rc3*w3^2*S3+rc3*α3*C3 (15) Ac4x=-r3*w3^2*C3-r3*α3*S3 (16) Ac4y=-r3*w3^2*S3+r3*α3*C3 (17) Ac2x=-r3*w3^2*C3-r3*α3*S3-rc2*w2^2*C2-rc2*α2*S2 (18) Ac2y=-r3*w3^2*S3+r3*α3*C3-rc2*w2^2*S2+rc2*α2*C2 (19) 力未知量为:

F12x,F12y,F24x,F24y,F43x,F43y,F13x,F13y,Fy,Fm 引入的加速度有:

α2,α3,r1_dot_dot ,Ac3x ,Ac3y ,Ac4x ,Ac4y ,Ac2x ,Ac2y

三、系统方程的组装

将所有19个方程组装成矩阵形式

1

01000000000020

00

101000000

000020000222222220000002000000000

01010000000000004000010100000000000040

00101000000000000010000000010010000000

100000010000000000000010100000000m m rc S rc C rc S rc C I m m m ??-?-?-----300000000101000000003000

000333300000

3

000000000000000002233

10000000

000000000223300000000000000000223301000000

0000000002233001000000000000000330001000000000000m m r C r S I r S r S r C r C rc S r S rc C r C rc S ??-?-??-?????-?003300001000

00000000003300000100

00000000

0033

00001rc C r S r C ??

?

? ?

?

? ?

?

? ?

?

? ? ? ?

?

? ?

?

? ?

?

? ?

?

?

?-

?

? ?

? ??-??

1201202402404343013013000

20333^2322^2222^2233^2322^222233441F x F y F x F y F x p F y F x F y Fy Fm r w C r w C r w S r w S rc w C Ac x Ac y Ac x Ac y Ac x Ac y r αα???? ? ? ? ? ? ?- ? ? ? ? ? ? ? ??= ? ? ???-?? ? ???-?? ?-?? ? ? ? ? ? ? ? ? ? ???

33^2322^2233^2333^2333^2333^2333^23r w S rc w S r w S rc w C rc w S r w C r w S ?? ?

?

? ?

?

? ? ? ? ? ? ? ?

? ?

?

? ? ? ?-?? ???+?? ? ?-?? ? ??? ?

-?? ?

? ????? 四、初始条件的设定

假设图3位置就是初始位置。由于θ2+θ3=180度(3.14弧度),所以积分器初始值设为 θ2=1,θ3=2.14,r1=1.5,其它积分器初始值均设为0。

五、机构的仿真及其结果

根据上述矩阵方程建立的m 文件和simulink 文件见附录。 仿真结果:

1、并联杆2的运动参数曲线如图10

2、并联杆3的运动参数曲线如图

11

3、直线电极滑块1的运动参数曲线如图

12

4、各个杆件内力曲线如图13

由图可知F24y与F43y的曲线重合,而实际上F24y,F43y是并联杆与动平台之间的内力,它们实际上也是相等的,所以曲线与实际情况相符。

图13各个杆件内力曲线

5、直线电机驱动力Fm与导轨对直线电机次子法向支持力Fy的曲线

6、并联杆2的质心加速度Ac2x ,Ac2y 曲线如图

15

7、并联杆3的质心加速度Ac3x ,Ac3y 曲线如图

16

8、动平台4的质心加速度Ac4x ,Ac4y 曲线如图

17

9、误差曲线

图18机构仿真误差随时间的变化曲线

M函数为

function e=my7(u)

%u(1)=r1

%u(2)=theta_2

%u(3)=theta_3

r2=1.0;

r3=1.0;

r4=0.5;

ex=u(1)-r2*cos(u(2))+r3*cos(u(3))-r4;

ey=r2*sin(u(2))-r3*sin(u(3));

e=norm([ex ey]);

结论:

由误差曲线可以看出误差程周期变化,并且是收敛状态,所以仿真正确。

Matlab Simulink 仿真步骤

MATLAB基础与应用简明教程 张明等编著 北京航空航天大学出版社(2001.01) MATLAB软件环境是美国New Mexico大学的Cleve Moler博士首创的,全名为MATrix LABoratory(矩阵实验室)。它建立在20世纪七八十年代流行的LINPACK(线性代数计算)和ESPACK(特征值计算)软件包的基础上。LINPACK和ESPACK软件包是从Fortran语言开始编写的,后来改写为C语言,改造过程中较为复杂,使用不便。MA TLAB是随着Windows环境的发展而迅速发展起来的。它充分利用了Windows环境下的交互性、多任务功能语言,使得矩阵计算、数值运算变得极为简单。MA TLAB语言是一种更为抽象的高级计算机语言,既有与C语言等同的一面,又更为接近人的抽象思维,便于学习和编程。同时,它具有很好的开放性,用户可以根据自己的需求,利用MA TLAB提供的基本工具,灵活地编制和开发自己的程序,开创新的应用。 本书重点介绍了MA TLAB的矩阵运算、符号运算、图形功能、控制系统分析与设计、SimuLink仿真等方面的内容。 Chap1 MATLAB入门与基本运算 本章介绍MATLAB的基本概念,包括工作空间;目录、路径和文件的管理方式;帮助和例题演示功能等。重点介绍矩阵、数组和函数的运算规则、命令形式,并列举了可能得到的结果。由于MA TLAB的符号工具箱是一个重要分支,其强大的运算功能在科技领域有特殊的帮助作用。 1.1 MATLAB环境与文件管理 1.2 工作空间与变量管理 1.2.1 建立数据 x1=[0.2 1.11 3]; y1=[1 2 3;4 5 6]建立一维数组x1和二维矩阵y1。分号“;”表示不显示定义的数据。 MATLAB还提供了一些简洁方式,能有规律地产生数组: xx=1:10 %xx从1到10,间隔为1 xx=-2:0.5:1 %xx从-2到1,间隔为0.5 linespace命令等距离产生数组,logspace在对数空间中等距离产生数组。对于这一类命令,只要给出数组的两端数据和维数就可以了。 xx=linespace(d1,d2,n) %表示xx从d1到d2等距离取n个点 xx=logspace(d1,d2,n) %表明xx从10d1到10d2等距离取n个点 1.2.2 who和whos命令 who: 查看工作空间中有哪些变量名 whos: 了解这些变量的具体细节 1.2.3 exist命令 查询当前的工作空间内是否存在一个变量,可以调用exist()函数来完成。 调用格式:i=exist(…A?); 式中,A为要查询的变量名。返回的值i表示A存在的形式: i=1 表示当前工作空间内存在一个变量名为A的矩阵; i=2 表示存在一个名为A.m的文件; i=3 表示MATLAB的工作路径下存在一个名为A.mex的文件;

SIMULINK仿真方法简介

SIMULINK仿真方法简介 SIMULINK是一个进行动态系统的建模、仿真和综合分析的集成软件包。它可以处理的系统包括:线性、非线性系统;离散、连续及混合系统;单任务、多任务离散事件系统。 在SIMULINK提供的图形用户界面GUI上,只要进行鼠标的简单拖拉操作就可以构造出复杂的仿真模型。它的外表以方框图形式呈现,且采用分层结构。从建模角度,SIMULINK 既适用于自上而下的设计流程,又适用于自下而上的逆程设计。从分析研究角度,这种SIMULINK模型不仅让用户知道具体环节的动态细节,而且能够让用户清晰的了解各器件、各子系统、各系统间的信息交换,掌握各部分的交互影响。 1. 应用SIMULINK的基本操作 1)在MATLAB的命令窗运行指令simulink或点击命令窗口中的图标,便可以打开如图B1-2所示的SIMULINK模块库浏览器(Simulink Library Browser)。 图B1-2 SIMULINK库浏览器 2)点击Source字库前的“+”号(或双击字库名),便可以得到各种信源模块,如图B1-3。 图B1-3 信源子库的模块 3)点击“新建”图标,打开一个名为untitled的空白模型窗口,如图B1-4。

图B1-4 SIMULINK的新建模型窗口 4)用鼠标指向所需的信号源(如阶跃信号Step),按下鼠标左键,把它拖至untitled窗,就生成一个阶跃信号的复制品。,如图B1-5。 图B1-5模型创建中的模型窗口 5)采用上述方法,将信宿库Sink中的示波器scope拷贝到模型窗口,把鼠标指向信源右侧的输出端,当光标变成十字符时,按住鼠标任意键,移向示波器的输入端,就完成了两个模块间的信号连接,如图B1-6。 图B1-6 创建模型完毕中的模型窗口 6)进行仿真,双击示波器,打开示波器显示屏,如图1-7。点击模型窗口中的“仿真启动” 图标或点击simulink菜单下的start,仿真就开始了,就可以观测到阶跃信号的波形了,如图B1-7。

simulink 仿真教程(从入门到入土)+报告(真)

Simulink仿真 摘要:simulink作为matlab的衍生模组,具有强大的仿真能力。原则上你可以将任意具有明确映射关系的物理量进行仿真模拟。对于相互间关系不明确的物理量,则可以通过输入输出数据的采集,然后通过模糊控制的方案替代明确的映射关系。本文主要针对的是以电焊机电路为主,其他仿真为辅的教程性质的文章。关键词:matlab Simulink 仿真电焊机教程 第一章初识软件 (2) 1.1 simulink 简介 (2) 1.2 simulink基础页面 (2) 1.3 常用库的介绍 (3) 1.3.1 simulink库 (4) 1.3.1.1 常用模块库 (4) 1.3.1.2 其他常用子库模块 (6) 1.3.2 电气库Simscape (7) 1.3.2.1 Electrical库 (7) 1.3.2.2 Specialized Technology库 (8) 1.4模块连接 (9) 第二章简单仿真系统的建立 (11) 2.1传递函数S信号仿真 (11) 2.1.1 运放环节的等效替代 (11) 2.1.2 等效变换 (12) 2.1.3 逻辑仿真 (13) 2.2电气库仿真 (13) 2.3子系统和模块的建立 (15) 2.3.1 子系统的建立 (15) 2.3.2 模块的建立 (16) 第三章复合仿真 (18) 3.1 m函数模块 (18) 3.1.1 简单编程 (18) 3.1.2 部分函数介绍 (19) 3.2 整体模型 (21) 3.3 仿真注意事项 (22) 3.3.1 注意事项1 (22) 3.3.2 注意事项2 (23) 3.3.3 注意事项3 (24) 3.3.4 注意事项4 (24) 结语 (25)

Matlab中的Simulink和SimMechanics做仿真

这里我们利用Matlab中的Simulink和SimMechanics做仿真,那么先来看看相关的资料。 SimMechanics ——机械系统建模和仿真 SimMechanics 扩展Simscape? 在三维机械系统建模的能力。用户可以不进行方程编程,而是借助该多刚体仿真工具搭建模型,这个模型可以由刚体、铰链、约束以及外力组成。自动化3-D动画生成工具可做到仿真的可视化。用户也可通过从CAD系统中直接导入模型的质量、惯量、约束以及三维几何结构。Real-Time Workshop可以对SimMchanics模型进行自动化C代码生成,并在硬件在回路仿真过程中可以使用生成的代码而不是硬件原型测试嵌入式控制器。 SimMechanics可以用于开发悬架、机器手臂、外科医疗设备、起落架和大量的其它机械系统。用户也可以在SimMechanics环境下集成其它的MathWorks物理建模工具,这样做可以实现更加复杂跨领域的物理建模。 特点: ?提供了三维刚体机械系统的建模环境 ?包含了一系列分析机械运动和设计机械元件尺寸的仿真技术 ?三维刚体可视化仿真 ?SimMechanics Link utility,提供Pro/ENGINEER 和SolidWorks CAD平台的接口并且也提供了API函数和其它CAD平台的接口

?能够把模型转化为C代码(使用Real-Time Workshop) ?由于集成在Simulink环境中,因此可以建立高精度、非线性的模型以支持控制系统的开发和测试。 强大功能: 搭建机械系统模型 使用SimMechanics用户仅需要收集物理系统信息即可建立三维机械系统模型。使用刚体、坐标系、铰链和作用力元素定义和其它Simulink模型直接相连的部分。这个过程可以重用Simulink模型以及扩展了SimMechanics工具的能力。用户还可把Simulink模型和SimMechnics模型集成为一个模块,并可封装成可在其它模型中复用的子系统。 机械系统建模仿真和分析 SimMechanics包含如下子系统: ?使用Simulink查表模块和SimMechanics传感器和作动器定义的非线性的弹性单元 ?用来定义航空器件压力分布的空气动力学拖曳模块,例如副翼和方向舵 ?车辆悬架系统,例如防侧翻机械装置和控制器 ?轮胎模型

matlabsimulink初级教程

S i m u l i n k仿真环境基础学习Simulink是面向框图的仿真软件。 7.1演示一个Simulink的简单程序 【例7.1】创建一个正弦信号的仿真模型。 步骤如下: (1)在MATLAB的命令窗口运行simulink命令,或单击工具栏中的图标,就可以打开Simulink模块库浏览器(SimulinkLibraryBrowser)窗口,如图7.1所示。

图7.1Simulink界面 (2)单击工具栏上的图标或选择菜单“File”——“New”——“Model”,新建一个名为“untitled”的空白模型窗口。 (3)在上图的右侧子模块窗口中,单击“Source”子模块库前的“+”(或双击Source),或者直接在左侧模块和工具箱栏单击Simulink下的Source子模块库,便可看到各种输入源模块。 (4)用鼠标单击所需要的输入信号源模块“SineWave”(正弦信号),将其拖放到的空白模型窗口“untitled”,则“SineWave”模块就被添加到untitled窗口;也可以用鼠标选中“SineWave”模块,单击鼠标右键,在快捷菜单中选择“addto'untitled'”命令,就可以将“SineWave”模块添加到untitled窗口,如图7.2所示。

(5) Scope ”模块(示波器)拖放到“untitled ”窗口中。 (6)在“untitled ”窗口中,用鼠标指向“SineWave ”右侧的输出端,当光标变为十字符时,按住鼠标拖向“Scope ”模块的输入端,松开鼠标按键,就完成了两个模块间的信号线连接,一个简单模型已经建成。如图7.3所示。 (7)开始仿真,单击“untitled ”模型窗口中“开始仿真”图标 ,或者选择菜单“Simulink ”——“Start ”,则仿真开始。双击“Scope ” 模块出现示波器显示屏,可以看到黄色的正弦波形。如图7.4所示。 图7.2Simulink 界面

Matlab Simulink中异步电机模型说明文档

Description The Asynchronous Machine block operates in either generator or motor mode. The mode of operation is dictated by the sign of the mechanical torque: Mechanical System s ls

Preset model Provides a set of predetermined electrical and mechanical parameters for various asynchronous machine ratings of power (HP), phase-to-phase voltage (V), frequency (Hz), and rated speed (rpm). Select one of the preset models to load the corresponding electrical and mechanical parameters in the entries of the dialog box. Note that the preset models do not include predetermined saturation parameters. Select No if you do not want to use a preset model, or if you want to modify some of the parameters of a preset model, as described below. When you select a preset model, the electrical and mechanical parameters in the Parameters tab of the dialog box become unmodifiable (grayed out). To start from a given preset model and then modify machine parameters, you have to do the following: Select the desired preset model to initialize the parameters. 1. 2. Change the Preset model parameter value to No. This will not change the machine parameters. By doing so, you just break the connection with the particular preset model. 3. Modify the machine parameters as you wish, then click Apply. Mechanical input Allows you to select either the torque applied to the shaft or the rotor speed as the Simulink signal applied to the block's input. Select Torque Tm to specify a torque input, in N.m or in pu, and change labeling of the block's input to Tm. The machine speed is determined by the machine Inertia J (or inertia constant H for the pu machine) and by the difference between the applied mechanical torque Tm and the internal electromagnetic torque Te. The sign convention for the mechanical torque is the following: when the speed is positive, a positive torque signal indicates motor mode and a negative signal indicates generator mode. Select Speed w to specify a speed input, in rad/s or in pu, and change labeling of the block's input to w. The machine speed is imposed and the mechanical part of the model (Inertia J) is ignored. Using the speed as the mechanical input allows modeling a mechanical coupling between two machines and interfacing with SimMechanics? and SimDriveline? models. The next figure indicates how to model a stiff shaft interconnection in a motor-generator set when friction torque is ignored in machine 2. The speed output of machine 1 (motor) is connected to the speed input of machine 2 (generator), while machine 2 electromagnetic torque output Te is applied to the mechanical torque input Tm of machine 1. The Kw factor takes into account speed units of both machines (pu or rad/s) and gear box ratio w2/w1. The KT factor takes into account torque units of both machines (pu or N.m) and machine ratings. Also, as the inertia J2 is ignored in machine 2, J2 referred to machine 1 speed must be added to machine 1 inertia J1.

simulink-matlab仿真教程

simulink matlab 仿真环境教程 Simulink 是面向框图的仿真软件。 演示一个Simulink 的简单程序 【例1.1】创建一个正弦信号的仿真模型。 步骤如下: (1) 在MATLAB 的命令窗口运行simulink 命令,或单击工具栏中的图标,就可以打开Simulink 模块库浏览器 (Simulink Library Browser) 窗口,如图1.1所示。 (2) 单击工具栏上的图标或选择菜单“File ”——“New ”——“Model ”,新建一个名为“untitled ”的空白 模型窗口。 (3) 在上图的右侧子模块窗口中,单击“Source ”子模块库前的“+”(或双击Source),或者直接在左侧模块和工具箱栏单击Simulink 下的Source 子模块库,便可看到各种输入源模块。 (4) 用鼠标单击所需要的输入信号源模块“Sine Wave ”(正弦信号),将其拖放到的空白模型窗口“untitled ”,则“Sine Wave ”模块就被添加到untitled 窗口;也可以用鼠标选中“Sine Wave ”模块,单击鼠标右键,在快捷菜单中选择“add to 'untitled'”命令,就可以将“Sine Wave ”模块添加到untitled 窗口,如图1.2 所示。 图7.1 Simulink 界面

(5) 用同样的方法打开接收模块库“Sinks”,选择其中的“Scope ”模块(示波器)拖放到“untitled”窗口中。 (6) 在“untitled”窗口中,用鼠标指向“Sine Wave”右侧的输出端,当光标变为十字符时,按住鼠标拖向“Scope”模块的输入端,松开鼠标按键,就完成了两个模块间的信号线连接,一个简单模型已经建成。如图1.3所示。 (7) 开始仿真,单击“untitled”模型窗口中“开始仿真”图标,或者选择菜单“Simulink”——“Start”,则仿真开始。双击“Scope”模块出现示波器显示屏,可以看到黄色的正弦波形。如图1.4所示。 (8) 保存模型,单击工具栏的图标,将该模型保存为“Ex0701.mdl”文件。 1.2 Simulink的文件操作和模型窗口 1.2.1 Simulink的文件操作 1. 新建文件 新建仿真模型文件有几种操作: ?在MATLAB的命令窗口选择菜单“File”“New”“Model”。 图7.2 Simulink界面 图7.3 Simulink模型窗口 图7.4 示波器窗口

matlab-simulink 初级教程

Simulink仿真环境基础学习 Simulink是面向框图的仿真软件。 7.1演示一个Simulink的简单程序 【例7.1】创建一个正弦信号的仿真模型。 步骤如下: (1) 在MATLAB的命令窗口运行simulink命令,或单击工具栏中的图标,就可以打开Simulink模块库浏览器(Simulink Library Browser) 窗口,如图7.1所示。

(2) 单击工具栏上的图标或选择菜单“File ”——“New ”——“Model ”,新建一个名为“untitled ”的空白模型窗口。 (3) 在上图的右侧子模块窗口中,单击“Source ”子模块库前的“+”(或双击Source),或者直接在左侧模块和工具箱栏单击Simulink 下的Source 子模块库,便可看到各种输入源模块。 (4) 用鼠标单击所需要的输入信号源模块“Sine Wave ”(正弦信号),将其拖放到的空白模型窗口“untitled ”,则“Sine Wave ”模块就被添加到untitled 窗口;也可以用鼠标选中“Sine Wave ”模块,单击鼠标右键,在快捷菜单中选择“add to 'untitled'”命令,就可以将“Sine Wave ”模块添加到untitled 窗口,如图7.2所示。 图7.1 Simulink 界面

(5) 用同样的方法打开接收模块库“Sinks”,选择其中的“Scope”模块(示波器)拖放到“untitled”窗口中。 (6) 在“untitled”窗口中,用鼠标指向“Sine Wave”右侧的输出端,当光标变为十字符时,按住鼠标拖向“Scope”模块的输入端,松开鼠标按键,就完成了两个模块间的信号线连接,一个简单模型已经建成。如图7.3所示。 (7) 开始仿真,单击“untitled ”模型窗口中“开始仿真”图标,或者选择菜单“Simulink”——“Start”,则仿真开始。双击“Scope”模块出现示波器显示屏, 可以看到黄色的正弦波形。如图7.4所示。 图7.2 Simulink界面

matlab的Simulink简介

Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。 Simulink;是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。. 构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。Simulink与MATLAB® 紧密集成,可以直接访问MATLAB大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。 丰富的可扩充的预定义模块库 交互式的图形编辑器来组合和管理直观的模块图 以设计功能的层次性来分割模型,实现对复杂设计的管理 通过Model Explorer 导航、创建、配置、搜索模型中的任意信号、参数、属性,生成模型代码 提供API用于与其他仿真程序的连接或与手写代码集成 使用Embedded MATLAB?模块在Simulink和嵌入式系统执行中调用MATLAB算法 使用定步长或变步长运行仿真,根据仿真模式(Normal,Accelerator,Rapid Accelerator)来决定以解释性的方式运行或以编译C代码的形式来运行模型 图形化的调试器和剖析器来检查仿真结果,诊断设计的性能和异常行为 可访问MATLAB从而对结果进行分析与可视化,定制建模环境,定义信号参数和测试数据 模型分析和诊断工具来保证模型的一致性,确定模型中的错误 平面连杆机构 英文名称: planar linkage mechanism

simulink仿真说明

Simulink是Simulation和link仿真链接。是一个附加组件,为用户提供了一个建模与仿真的工作平台,由于许多功能是基于MATLAB平台的。必须在MATLAB环境中运行,也把他称为一个MATLAB的工具箱。 以前MATLAB仿真编程是在文本窗口中进行的。输入函数是命令和MATLAB 函数,在simulink 中与用户的交互接口是基于windows的模型化图形输入,用户可以通过单击拖动鼠标的方式绘制和组织系统,并完成对系统的仿真。因此对于我们来说只需知道这些功能模块的输入输出、功能以及图形界面的使用方法。就可以用鼠标和键盘进行仿真。 三种方法进入Simulink 1、在MATLAB菜单栏中单击FILE,在下拉菜单的NEW选项中单击MODEL. 2、在MATLAB工具栏中单击彩色图标,然后在打开的模型库浏览器窗口中单击 ‘新建文件‘ 3、在MATLAB命令窗口中输入Simulink,然后在打开的模型库浏览器窗口中单 击‘新建文件‘。 一、模块的提取 左键拖曳 右键add to 二、模块的移动放大和缩小 移动:左键拖曳选中后用方向键脱离线移动按住shift 然后拖曳 缩放 : 点击模块四个角拖曳 三、复制粘贴和删除和windows一样删除选择clear 四、模块的旋转:右键点击然后选择Flip block 顺时针转180度 rotate block 顺时针90度。 五、模块名的修改移动:单击该模块名出现一个小框可以像文本一样修改移动 还可以右键单击然后Hide name 六、模块参数设置:双击 七、模块连接:光标的箭头对准模块的输出端变成+后按下左键拖曳到另一个 输入端松开左键。 八、连线的弯折开始画线时,在需要弯折的地方松开鼠标停顿一下,然后继续 按下鼠标左键改变方向即可。 移动光标指向要移动的线段,然后拖动鼠标即可 删除选中要删除的部分,然后delete 直流电动机的直接启动 新建一个simulink 仿真平台打开simulink然后点击新建 打开simpowersystems的加号在electrical source中选择D C Voltage Source拖曳到仿真平台 Elements里面选Breaker Connectors 里面选择Ground output把电源正端接到断路器的1端,电源负端接

状态空间与simulink仿真

考虑以下系统 u x X ???? ??????+??????????-----=102101110221 []x y 001= 对系统设计一个状态反馈控制器使得闭环阶跃响应的超调量小于5%,且在稳态值1%范围的调节时间小于4.6S 。 ○ 1主导二阶极点方法配置极点 分析: 超调量小于5%,即 %52 1≤--ξξπ e 算得69.0≥ξ 稳态值1%范围的调节时间小于4.6S ,即 6.46 .4≤= σ s t 1≥σ 下面首先对系统的能控性进行判断,以编程方式实现 a=[-1 -2 -2;0 -1 1;1 0 -1]; b=[2;0;1]; %输入a ,b 矩阵 q=[b a*b a^2*b] rank(q) 计算结果为 ??????????--=511010042q q 的秩为3 因此该系统为完全能控型系统,在满足系统要求的前提下,理论上能任意配置期望极点 下面根据具体的求解思路进行编程求解反馈控制器k

g=poly(a); %求原系统的特征方程 a2=g(2);a1=g(3);a0=g(4); w=[1 0 0;a2 1 0;a1 a2 1]; q1=[a^2*b a*b b]; p=q1*w; %求解转换矩阵 deta=1; zeta=0.75; wn=deta/zeta; %输入满足条件的ζ和δ den=conv([1 4],[1 2*deta wn^2]); %输入期望极点(-4,-1±0.88i) aa2=den(2);aa1=den(3);aa0=den(4); k=[aa0-a0 aa1-a1 aa2-a2]; k1=k*(inv(p)) %输出配置矩阵k k 得到[] 1 . 1 1= 4778 . . 0444 6444 下面对系统进行验证,是否满足条件 ahat=a-b*k1; bhat=b; chat=[1 0 0]; dhat=0; sys=ss(ahat,bhat,chat,dhat); step(sys,'r'); sys1=ss(a,b,c,d); hold on; grid on; step(sys1,'.-'); (其中sys1为未加控制器的原系统) 由图可知,系统在进行配置之前并未满足系统要求,在增加控制器之后,系统要求得到满足。

simulink_matlab仿真教程

simulink matlab仿真环境教程 Simulink是面向框图的仿真软件。 演示一个Simulink的简单程序 【例1.1】创建一个正弦信号的仿真模型。 步骤如下: (1) 在MATLAB的命令窗口运行simulink命令,或单击工具栏中的图标,就可以打开Simulink模块库浏览器(Simulink Library Browser) 窗口,如图1.1所示。 图7.1 Simulink界面 (2) 单击工具栏上的图标或选择菜单“File”——“New”——“Model”,新建一个名为“untitled”的空白模型窗口。 (3) 在上图的右侧子模块窗口中,单击“Source”子模块库前的“+”(或双击Source),或者直接在左侧模块和工具箱栏单击Simulink下的Source子模块库,便可看到各种输入源模块。 (4) 用鼠标单击所需要的输入信号源模块“Sine Wave”(正弦信号),将其拖放到的空白模型窗口“untitled”,则“Sine Wave”模块就被添加到untitled窗口;也可以用鼠标选中“Sine Wave”模块,单击鼠标右键,在快捷菜单中选择“add to 'untitled'”命令,就可以将“Sine Wave”模块添加到untitled窗口,如图1.2所示。

(5) 用同样的方法打开接收模块库“Sinks”,选择其中的“Scope”模块(示波器)拖放到“untitled”窗口中。 (6) 在“untitled”窗口中,用鼠标指向“Sine Wave”右侧的输出端,当光标变为十字符时,按住鼠标拖向“Scope”模块的输入端,松开鼠标按键,就完成了两个模块间的信号线连接,一个简单模型已经建成。如图1.3所示。 (7) 开始仿真,单击“untitled”模型窗口中“开始仿真”图标,或者选择菜单“Simulink”——“Start”,则仿真开始。双击“Scope”模块出现示波器显示屏,可以看到黄色的正弦波形。如图1.4所示。 (8) 保存模型,单击工具栏的图标,将该模型保存为“Ex0701.mdl”文件。 1.2 Simulink的文件操作和模型窗口 1.2.1 Simulink的文件操作 1. 新建文件 新建仿真模型文件有几种操作: ?在MATLAB的命令窗口选择菜单“File”“New”“Model”。 ?在图1.1的Simulink模块库浏览器窗口选择菜单“File”“New”“Model”,或者单击工具栏的图标。 ?在图1.3的Simulink模型窗口选择菜单“File”“New”“Model”,或者单击工具栏的图标。 2. 打开文件 打开仿真模型文件有几种操作: 图7.2 Simulink界面 图7.3 Simulink模型窗口 图7.4 示波器窗口

几个简单的simulink仿真模型

一频分复用和超外差接收机仿真 目的 1熟悉Simulink模型仿真设计方法 2掌握频分复用技术在实际通信系统中的应用 3理解超外差收音机的接收原理 内容 设计一个超外差收接收机系统,其中发送方的基带信号分别为1000Hz的正弦波和500Hz的方波,两路信号分别采用1000kHz和1200kHz的载波进行幅度调制,并在同一信道中进行传输。要求采用超外差方式对这两路信号进行接收,并能够通过调整接收方的本振频率对解调信号进行选择。 原理 超外差接收技术广泛用于无线通信系统中,基本的超外差收音机的原理框图如图所示: 图1-1超外差收音机基本原理框图 从图中可以看出,超外差接收机的工作过程一共分为混频、中频放大和解调三个步骤,现分别叙述如下: 混频:由天线接收到的射频信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,并可根据调整控制电压随时调整振荡频率,使得器振荡频率始终比接收信号频率高一个中频频率,这样,接受信号与本机振荡在混频器中进行相乘运算后,其差频信号的频率成分就是中频频率。其频谱搬移过程如下图所示:

图1-2 超外差接收机混频器输入输出频谱 中频放大:从混频模块输出的信号中包含了高频和中频两个频率成分,这样一来只要采用中频带通滤波器选出进行中频信号进行放大,得到中频放大信号。 解调:将中频放大后的信号送入包络检波器,进行包络检波,并解调出原始信号。 步骤 1、设计两个信号源模块,其模块图如下所示,两个信号源模块的载波分别为1000kHz,和1200kHz,被调基带信号分别为1000Hz的正弦波和500Hz的三角波,并将其封装成两个子系统,如下图所示: 图1-2 信源子系统模型图 2、为了模拟接收机距离两发射机距离不同引起的传输衰减,分别以Gain1和Gain2模块分别对传输信号进行衰减,衰减参数分别为0.1和0.2。最后在信道中加入均值为0,方差为0.01的随机白噪声,送入接收机。 3、接收机将收到的信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,其中压控振荡器由输入电压进行控制,设置Slider Gain模块,使输入参数在500至1605可调,从而实现本振的频率可控。压控振荡器的本振频率设为465kHz,灵敏度设为1000Hz/V。

matlAB,SIMULINK联合仿真经典例子

数控螺旋面钻头尖刃磨机的机构仿真 一、原理 图1二并联杆数控螺旋面钻头尖刃磨机床示意图 图2 二并联杆数控螺旋面钻头尖刃磨机床刃磨原理图 重要假设条件: 1、二并联杆数控螺旋面钻头尖刃磨机床是通过两组并联杆(2,a和3,b)保证动平台4 只在空间中做水平运动,而没有翻转运动。每一组并联杆是由空间相互平行的4根杆件组成,由于组内各杆件受力相同,所以将其简化成平面机构如图2。构件a,b是保证动平台4只做水平运动的辅助平行杆,所以可以假设将机构中杆件a,b省略,而动平台4只做水平移动,没有翻转运动,也就是4相对于地面的夹角θ4恒等于0。 2、直线电机的次子有两个(1和5)但是在加工过程中并不是两者同时运动,所以假设5 与导轨固联。 3、假设机床在工作过程中动平台4只受到树直向上的恒力作用,且作用在其中心位置。基于以上假设机床平面结构示意图如图3。

图3二并联杆数控螺旋面钻头尖刃磨机床简化机构平面结构示意图 二、建立仿真方程 C2=cos(θ2) S2=sin(θ2) C3=cos(θ3) S3=sin(θ3) 一)力方程(分别对各个杆件进行受力分析) 对动平台4:受力分析如图4 图4动平台4的受力分析 对并联杆2:受力分析如图5 图5并联杆2的受力分析 对直线电机滑块1:受力分析如图6 图6直线电机滑块1的受力分析

对并联杆3:受力分析如图7 图7并联杆3的受力分析 二)闭环矢量运动方程(矢量图如图8) 图8 闭环矢量图 矢量方程为:R1+R2=R3+R4 将上述矢量方程分解为x 和y 方向,并分别对方程两边对时间t 求两次导数得: r1_dot_dot+r2*α2*S2+r2*w2^2*C2=r3*α3*S3+r3*w3^2*C3 (12) r2*α2*C2-r2*w2^2*S2=r3*α3*C3-r3*w3^2*S3 (13) 三)质心加速度的矢量方程

saber中文使用教程SaberSimulink协同仿真

Saber中文使用教程之软件仿真流程 今天来简单谈谈 Saber 软件的仿真流程问题。利用 Saber 软件进行仿真分析主要有两种途径,一种是基于原理图进行仿真分析,另一种是基于网表进行仿真分析。前一种方法的基本过程如下: a. 在 SaberSketch 中完成原理图录入工作; b. 然后使用 netlist 命令为原理图产生相应的网表; c. 在使用 simulate 命令将原理图所对应的网表文件加载到仿真器中,同时在Sketch 中启动 SaberGuide 界面; d. 在 SaberGuide 界面下设置所需要的仿真分析环境,并启动仿真; e. 仿真结束以后利用 CosmosScope 工具对仿真结果进行分析处理。 在这种方法中,需要使用 SaberSketch 和 CosmosScope 两个工具,但从原理图开始,比较直观。所以,多数 Saber 的使用者都采用这种方法进行仿真分析。但它有一个不好的地方就是仿真分析设置和结果观察在两个工具中进行,在需要反复修改测试的情况下,需要在两个窗口间来回切换,比较麻烦。而另一种方法则正好能弥补它的不足。基于网表的分析基本过程如下: a. 启动 SaberGuide 环境,即平时大家所看到的 Saber Simulator 图标,并利用 load design 命令加载需要仿真的网表文件 ; b. 在 SaberGuide 界面下设置所需要的仿真分析环境,并启动仿真; c. 仿真结束以后直接在 SaberGuide 环境下观察和分析仿真结果。 这种方法要比前一种少很多步骤,并可以在单一环境下实现对目标系统的仿真分析,使用效率很高。但它由于使用网表为基础,很不直观,因此多用于电路系统结构已经稳定,只需要反复调试各种参数的情况;同时还需要使用者对 Saber 软件网表语法结构非常了解,以便在需要修改电路参数和结构的情况下,能够直接对网表文件进行编辑 saber中文使用教程Saber/Simulink协同仿真 接下来需要在Saber中定义输入输出接口以便进行协同仿真,具体过程如下

教材-第九章Simulink仿真介绍

下篇电机学MATLAB仿真 MATLAB因其完整的专业体系和先进的设计开发思路,在多个领域得到了广泛应用。其产品SIMULINK是一个动态系统建模、仿真和综合分析的集成软件包,在SIMULINK提供的图形用户界面(GUI)上,只要进行鼠标的简单拖拉操作就可构造出复杂的仿真模型,它能让使用者在可视化图形方式下以最小的代价来模拟系统的动态运行过程。电机的SIMULINK仿真模型构建主要使用SIMULINK中的电力系统仿真模块库(SimPowerSystem),该库是由加拿大的Hydro Quebec公司和TECSIM International公司共同开发的,功能非常强大,可以应用于电路、电力电子系统、电机系统、电路系统等领域的仿真。使用者可以在仿真进程中改变感兴趣的参数,实时地观察系统行为的变化。 为加深学生对电机学理论知识及先前实验的理解,本教材下篇应用MATLAB R2009b 软件,借助于MATLAB/SIMULINK强大功能,对电机与拖动控制中主要实验进行建模仿真。 第九章Simulink简介 其产品SIMULINK是一个动态系统建模、仿真和综合分析的集成软件包,在SIMULINK 提供的图形用户界面(GUI)上,只要进行鼠标的简单拖拉操作就可构造出复杂的仿真模型,它能让使用者在可视化图形方式下以最小的代价来模拟系统的动态运行过程。SIMULINK 是Simulation和Link两个英文单词的缩写,意思是仿真链接,MATLAB模型库都在此环境中使用,从模型库中提取模型放到SIMULINK的仿真平台上进行仿真。所以,有关SIMULINK的操作是仿真应用的基础。电机的SIMULINK仿真模型构建主要使用SIMULINK中的电力系统仿真模块库(SimPowerSystem),该库是由加拿大的Hydro Quebec 公司和TECSIM International公司共同开发的,功能非常强大,可以应用于电路、电力电子系统、电机系统、电路系统等领域的仿真。使用者可以在仿真进程中改变感兴趣的参数,实时地观察系统行为的变化。 9.1 SIMULINK的工作环境 1 SIMULINK启动 在MA TLAB中,启动SIMULINK环境有以下几种方法: (1)在MATLAB的菜单栏上选择File,在下拉菜单中的New选项下选中Model,如图9-1所示。

Simulink仿真教程

Simulink仿真教程 1.1 Simulink 基本操作 1.1.1 启动Simulink a)打开 单击MATLAB Command窗口工具条上的Simulink图标,或者在MATLAB命令窗口输入Simulink,即弹出图示的模块库窗口界面(Simulink Library Browser)。该界面右边的窗口给出Simulink所有的子模块库。 常用的子模块库有Sources(信号源),Sink(显 示输出),Continuous(线性连续系统),Discrete (线性离散系统),Function & Table(函数与 表格),Math(数学运算),Discontinuities (非 线性),Demo(演示)等。 每个子模块库中包含同类型的标准模型,这 些模块可直接用于建立系统的Simulink框图 模型。可按以下方法打开子模块库: 1)用鼠标左键点击某子模块库(如 【Continuous】),Simulink浏览器右边 的窗口即显示该子模块库包含的全部标准模块。 2)用鼠标右键点击Simulink菜单项,则弹出一菜单条,点击该菜单条即弹出该子库的标准模块窗口.如单击左图中的【Sinks】,出现“Open the ‘Sinks’Library”菜单条,单击该菜单条,则弹出右图所示的该子库的标准模块窗口。 b)打开空白窗口模型 模型窗口用来建立系统的仿真模型。只有先创建一个空白的模型窗口,才能将模块库的相应模块复制到该窗口,通过必要的连接,建立起Simulink仿真模型。也将这种窗口称为Simulink 仿真模型窗口。 以下方法可用于打开一个空白模型窗口: 1)在MATLAB主界面中选择【File:New→Model】 菜单项; 2)单击模块库浏览器的新建图标; 3)选中模块库浏览器的【File : New → Model】菜 单项。 所打开的空白模型窗口如图所示。

相关文档
最新文档