椭圆曲率半径的四种求法

椭圆曲率半径的四种求法
椭圆曲率半径的四种求法

高中数学解析几何专题之椭圆汇总解析版

圆锥曲线第1讲 椭圆 【知识要点】 一、椭圆的定义 1. 椭圆的第一定义: 平面内到两个定点1F 、2F 的距离之和等于定长a 2( 2 12F F a >)的点的轨迹叫椭圆,这两 个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。 注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作a 2)大于这两个定点之间的距离 2 1F F (记作c 2),否则点的轨迹就不是一个椭圆。具体情形如下: (ⅰ)当c a 22>时,点的轨迹是椭圆; (ⅱ)当c a 22=时,点的轨迹是线段21F F ; (ⅲ)当c a 22<时,点的轨迹不存在。 注2:若用M 表示动点,则椭圆轨迹的几何描述法为 a MF MF 221=+(c a 22>, c F F 221=),即 2 121F F MF MF >+. 注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件: a MF MF 221=+千万不可忘记。 2. 椭圆的第二定义: 平面内到某一定点的距离与它到定直线的距离之比等于常数e (10<>b a ); (2)焦点在y 轴、中心在坐标原点的椭圆的标准方程是122 22=+b x a y (0>>b a ).

注1:若题目已给出椭圆的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看长半轴跟谁走。长半轴跟x 走,椭圆的焦点在x 轴;长半轴跟y 走,椭圆的焦点在y 轴。 (1)注2:求椭圆的方程通常采用待定系数法。若题目已指明椭圆的焦点的位置,则可设 其方程为12222=+b y a x (0>>b a )或122 22=+b x a y (0>>b a );若题目未指明椭圆的焦 点究竟是在x 轴上还是y 轴上,则中心在坐标原点的椭圆的方程可设为 12 2=+ny mx (0>m ,0>n ,且n m ≠). 三、椭圆的性质 以标准方程122 22=+b y a x (0>>b a )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:a x a ≤≤-,b y b ≤≤-; (2)对称性:关于x 轴、y 轴轴对称,关于坐标原点中心对称; (3)顶点:左右顶点分别为)0,(1a A -,)0,(2a A ;上下顶点分别为),0(1b B ,),0(2b B -; (4)长轴长为a 2,短轴长为b 2,焦距为c 2; (5)长半轴a 、短半轴b 、半焦距c 之间的关系为2 2 2 c b a +=; (6)准线方程:c a x 2 ± =; (7)焦准距:c b 2 ; (8)离心率: a c e = 且10<

以椭圆和圆为背景的解析几何大题

【名师精讲指南篇】 【高考真题再现】 例1 【2015高考】如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>的离心率为2 2, 且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程; (2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于 点P ,C ,若PC =2AB ,求直线AB 的方程. 【答案】(1)2 212 x y +=(2)1y x =-或1y x =-+. 【解析】 试题解析:(1)由题意,得2 2 c a =且23a c c +=, 解得2a = 1c =,则1b =, 所以椭圆的标准方程为2 212 x y +=. (2)当x AB ⊥轴时,2AB = C 3P =,不合题意. 当AB 与x 轴不垂直时,设直线AB 的方程为()1y k x =-,()11,x y A ,()22,x y B , 将AB 的方程代入椭圆方程,得( )()2 2 22124210k x k x k +-+-=,

则 () 22 1,22 221 12 k k x k ±+ = + ,C的坐标为 2 22 2 , 1212 k k k k ?? - ? ++ ?? ,且 ()()()() ()2 222 2 2121212 221 1 12 k x x y y k x x k + AB=-+-=+-= + . 若0 k=,则线段AB的垂直平分线为y轴,与左准线平行,不合题意. 从而0 k≠,故直线C P的方程为 2 22 12 1212 k k y x k k k ?? +=-- ? ++ ?? , 则P点的坐标为() 2 2 52 2, 12 k k k ?? + ? - ? + ?? ,从而 () () 22 2 2311 C 12 k k k k ++ P= + . 因为C2 P=AB,所以 () () () 222 2 2 2311421 12 12 k k k k k k +++ = + + ,解得1 k=±. 此时直线AB方程为1 y x =-或1 y x =-+. 例2 【2016高考】 如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:221214600 x y x y +--+=及其上一点A(2,4). (1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程; (2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程; (3)设点T(t,0)满足:存在圆M上的两点P和Q,使得, TA TP TQ += u u r u u r u u u r ,数t的取值围. 【答案】(1)22 (6)(1)1 x y -+-=(2):25215 l y x y x =+=- 或(3)22212221 t -≤≤+ 【解析】 试题解析:解:圆M的标准方程为()() 22 6725 x y -+-=,所以圆心M(6,7),半径为5,.

高中数学解析几何专题之椭圆(汇总解析版)

圆锥曲线第1讲 椭圆 【知识要点】 一、椭圆的定义 1. 椭圆的第一定义: 平面内到两个定点1F 、2F 的距离之和等于定长a 2( 2 12F F a >)的点的轨迹叫椭圆,这两 个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。 注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作a 2)大于这两个定点之间的距离 2 1F F (记作c 2),否则点的轨迹就不是一个椭圆。具体情形如下: (ⅰ)当c a 22>时,点的轨迹是椭圆; (ⅱ)当c a 22=时,点的轨迹是线段21F F ; (ⅲ)当c a 22<时,点的轨迹不存在。 注2:若用M 表示动点,则椭圆轨迹的几何描述法为 a MF MF 221=+(c a 22>, c F F 221=),即 2 121F F MF MF >+. 注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件: a MF MF 221=+千万不可忘记。 2. 椭圆的第二定义: 平面内到某一定点的距离与它到定直线的距离之比等于常数e (10<>b a ); (2)焦点在y 轴、中心在坐标原点的椭圆的标准方程是122 22=+b x a y (0>>b a ).

注1:若题目已给出椭圆的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看长半轴跟谁走。长半轴跟x 走,椭圆的焦点在x 轴;长半轴跟y 走,椭圆的焦点在y 轴。 (1)注2:求椭圆的方程通常采用待定系数法。若题目已指明椭圆的焦点的位置,则可设 其方程为12222=+b y a x (0>>b a )或122 22=+b x a y (0>>b a );若题目未指明椭圆的焦 点究竟是在x 轴上还是y 轴上,则中心在坐标原点的椭圆的方程可设为 12 2=+ny mx (0>m ,0>n ,且n m ≠). 三、椭圆的性质 以标准方程122 22=+b y a x (0>>b a )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:a x a ≤≤-,b y b ≤≤-; (2)对称性:关于x 轴、y 轴轴对称,关于坐标原点中心对称; (3)顶点:左右顶点分别为)0,(1a A -,)0,(2a A ;上下顶点分别为),0(1b B ,),0(2b B -; (4)长轴长为a 2,短轴长为b 2,焦距为c 2; (5)长半轴a 、短半轴b 、半焦距c 之间的关系为2 2 2 c b a +=; (6)准线方程:c a x 2 ± =; (7)焦准距:c b 2 ; (8)离心率: a c e = 且10<

缓和曲线曲率半径 的计算

所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。 现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。 我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出 R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷ R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷ L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷ R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。 现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

有关解析几何的经典结论

有关解析几何的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角、 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹就是以长轴为直 径的圆,除去长轴的两个端点、 3. 以焦点弦PQ 为直径的圆必与对应准线相离、 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切、 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程就是00221x x y y a b +=、 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦 P 1P 2的直线方程就是00221x x y y a b +=、 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=、 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y )、 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 与AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF 、 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 与A 2Q 交于点M,A 2P 与A 1Q 交于点N,则MF ⊥NF 、 11. AB 就是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程就是 22 00002222x x y y x y a b a b +=+、 13. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程就是

专题3.2 以解析几何中与椭圆相关的综合问题为解答题(解析版)

专题三 压轴解答题 第二关 以解析几何中与椭圆相关的综合问题 【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,且椭圆考查的最多,,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系. 类型一 中点问题 典例1 【山东省济南市2018届高三上学期期末考试】已知点()2,1P -在椭圆()22 2:102 x y C a a +=>上,动点,A B 都在椭圆上,且直线AB 不经过原点O ,直线OP 经过弦AB 的中点. (1)求椭圆C 的方程和直线AB 的斜率; (2)求PAB ?面积的最大值. 【解析】1)将()2,1P -代入22 212 x y a +=,得, 22 22112 a +=, 28a =, 椭圆方程为22 182 x y += 设直线:AB y kx m =+, ()11,A x y , ()22,B x y , ,A B 的中点为()00,M x y 由22 { 182 y kx m x y =++=得()222148480k x kmx m +++-= ()012214214km x x x k =+=-+, 002 14m y kx m k =+=+, 直线OP 经过弦AB 的中点,则OM OP k k =, 0012y x =-, 142m km =--, 12 k =

高中数学解析几何椭圆性质与定义

椭圆的性质及应用 一、圆锥曲线 圆锥与平面的截线通常有:圆、椭圆、双曲线、抛物线,其中的椭圆、双曲线、抛物线叫圆锥曲线,其中抛物线是圆锥面与平行于某条母线的平面相截而得的曲线,双曲线是圆锥面与平行于轴的平面相截而得的曲线,圆是圆锥面与垂直于轴的平面相截而得的曲线,其他平面截取的则为椭圆。 圆锥曲线有一个共同的定义:即:圆锥曲线是到定点距离与到定直线间距离之比为常值的点之轨迹。 二、椭圆的定义 椭圆是平面上到两定点的距离之和为常值的点之轨迹,也可定义为到定点距离与到定直线间距离之比为一个小于1常值的点之轨迹。 椭圆的第一定义:平面内与两定点F、F'的距离的和等于常数2a (2a>|FF'|)的动点P的轨迹叫做椭圆。即:│PF│+│PF'│=2a ,其中两定点F、F'叫做椭圆的焦点,两焦点的距离│FF'│叫做椭圆的焦距。若2a=|FF'|,为线段,若 下面确定椭圆的方程 现设P的坐标为(x,y),F的坐标为(C,0) 2a += 2a =- 整理可得: 22222222 ()() a c x a y a a c -+=- 定义:222 a c b -= 则椭圆的方程可表示为: 椭圆在方程上可以写为标准式2 2 22 1 y x a b +=,(a>b>0),这样的椭圆长轴在x轴上,焦点在X 轴时,若2 2 22 1 y x b a +=,(a>b>0),这样的椭圆长轴在y轴上。焦点在y轴时。 有两条线段,a、b中较大者为椭圆长半轴长,较短者为短半轴长,当a>b时,焦点在x轴上,焦距为:222 a c b -= 椭圆的第二定义 由椭圆的第一定义:可到椭圆方程为:2 2 2 2 2 2 2 2 2 1b x a b y b y a x = + ? = + 将2 2 2c a b- =代入,可得:2 2 2 2 2 2 2 2 2 2 2 2 2 2x a c a c x y c a x a c a y+ = + + ? - = - + 所以:()() 2 2 2 2 4 2 2 2? ? ? ? ? ± = ± + ? + ? ? ? ? ? = - +a x a c c x y c a x a c c x y 由此可得:() () a c c a x c x y c a x a c c x y= - - + ? + ? ? ? ? ? = - + 2 2 2 2 4 2 2 2 所以可得椭圆的第二个定义: 平面上到定点F距离与到定直线间距离之比为常数的点的集合(定点F不在定直线上,

高中数学解析几何专题之椭圆汇总解析版资料全

圆锥曲线第1讲椭圆 【知识要点】 一、椭圆的定义 1. 椭圆的第一定义: 平面到两个定点、的距离之和等于定长()的点的轨迹叫椭圆,这两个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。 注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作)大于这两个定点之间的距离(记作),否则点的轨迹就不是一个椭圆。具体情形如下: (ⅰ)当时,点的轨迹是椭圆; (ⅱ)当时,点的轨迹是线段; (ⅲ)当时,点的轨迹不存在。 注2:若用M表示动点,则椭圆轨迹的几何描述法为(,),即. 注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件:千万不可忘记。 2. 椭圆的第二定义: 平面到某一定点的距离与它到定直线的距离之比等于常数()的点的轨迹叫做椭圆。 二、椭圆的标准方程 (1)焦点在轴、中心在坐标原点的椭圆的标准方程是(); (2)焦点在轴、中心在坐标原点的椭圆的标准方程是(). 注1:若题目已给出椭圆的标准方程,那其焦点究竟是在轴还是在轴,主要看长半轴跟谁走。长半轴跟走,椭圆的焦点在轴;长半轴跟走,椭圆的焦点在轴。 (1)注2:求椭圆的方程通常采用待定系数法。若题目已指明椭圆的焦点的位置,则可设其方程为()或();若题目未指明椭圆的焦点究竟是在轴上还是轴上,则中心在坐标原点的椭圆的方程可设为(,,且). 三、椭圆的性质

以标准方程()为例,其他形式的方程可用同样的方法得到相关结论。 (1)围:,; (2)对称性:关于轴、轴轴对称,关于坐标原点中心对称; (3)顶点:左右顶点分别为,;上下顶点分别为,; (4)长轴长为,短轴长为,焦距为; (5)长半轴、短半轴、半焦距之间的关系为; (6)准线方程:; (7)焦准距:; (8)离心率:且. 越小,椭圆越圆;越大,椭圆越扁; (9)焦半径:若为椭圆在第一象限一点,则由椭圆的第二定义,有,; (10)通径长:. 注1:椭圆的焦准距指的是椭圆的焦点到其相应准线的距离。以椭圆的右焦点和右准线:为例,可求得其焦准距为. 注2:椭圆的焦点弦指的是由过椭圆的某一焦点与该椭圆交于不同两点的直线所构成的弦。椭圆的通径指的是过椭圆的某一焦点且垂直于其对称轴的弦。通径是椭圆的所有焦点弦中最短的弦。设椭圆的方程为(),过其焦点且垂直于轴的直线交该双曲线于、两点(不妨令点在轴的上方),则,,于是该椭圆的通径长为. 四、关于椭圆的标准方程,需要注意的几个问题 (1)关于椭圆的标准方程,最基本的两个问题是:其一,当题目已指明曲线的位置特征,并给出了“特征值”(指、、的值或它们之间的关系,由这个关系结合,我们可以确定出、、的值)时,我们便能迅速准确地写出椭圆的标准方程;其二,当题目已给出椭圆的标准方程时,我们便能准确地判断出曲线的位置特征,并能得到、、的值。 (2)椭圆的标准方程中的参数、、是椭圆所固有的,与坐标系的建立无关;、、三者之间的关系:必须牢固掌握。 (3)求椭圆的标准方程,实质上是求椭圆的标准方程中的未知参数、。根据题目已知条件,我们列出以、为未知参数的两个方程,联立后便可确定出、的值。特别需要注意的是:若题目中已经指明椭圆的焦点在轴或轴上,则以、为未知参数的方程组只有一个解,即、只有一个值;若题目未指明椭圆的焦点在哪个轴上,则以、为未知参数的方程组应有两个解,即、

几种主要的椭球公式

§6.3 几种主要的椭球公式 过椭球面上任意一点可作一条垂直于椭球面的法线,包含这条法线的平面叫做法截面,法截面同椭球面交线叫法截线(或法截弧)。包含椭球面一点的法线,可作无数多个法截面,相应有无数多个法截线。椭球面上的法截线曲率半径不同于球面上的法截线曲率半径都等于圆球的半径,而是不同方向的法截弧的曲率半径都不相同。 6.3.1子午圈曲率半径 子午椭圆的一部分上取一微分弧长ds DK =, 相应地有坐标增量dx ,点n 是微分弧dS 的曲率中 心,于是线段Dn 及Kn 便是子午圈曲率半径M 。 任意平面曲线的曲率半径的定义公式为: dB dS M = 子午圈曲率半径公式为: 32)1(W e a M -= 3V c M = 或 2 V N M = M 与纬度B 有关.它随B 的增大而增大,变化规律如下表所示: 6.3.2卯酉圈曲率半径 过椭球面上一点的法线,可作无限个法截 面,其中一个与该点子午面相垂直的法截面同椭 球面相截形成的闭合的圈称为卯酉圈。在图中 E PE '即为过P 点的卯酉圈。卯酉圈的曲率半径 用N 表示。 为了推导N 的表达计算式,过P 点作以O ' 为中心的平行圈PHK 的切线PT ,该切线位于垂 直于子午面的平行圈平面内。因卯酉圈也垂直于 子午面,故PT 也是卯酉圈在P 点处的切线。即 PT 垂直于Pn 。 所以PT 是平行圈PHK 及卯酉圈E PE '在P 点处的公切线。 卯酉圈曲率半径可用下列两式表示:

W a N = V c N = 6.3.3 任意法截弧的曲率半径 子午法截弧是南北方向,其方位角为0°或180°。卯 酉法截弧是东西方向,其方位角为90°或270°。现在来讨 论方位角为A 的任意法截弧的曲率半径A R 的计算公式。 任意方向A 的法截弧的曲率半径的计算公式如下: A B e N A N R A 22222cos cos 1cos 1'+=+=η (7-87) 6.3.4 平均曲率半径 在实际际工程应用中,根据测量工作的精度要求,在一定范围内,把椭球面当成具有适当半径的球面。取过地面某点的所有方向A R 的平均值来作为这个球体的半径是合适的。这个球面的半径——平均曲率半径R : MN R = 或 )1(2222e W a V N V c W b R -==== 因此,椭球面上任意一点的平均曲率半径R 等于该点子午圈曲率半径M 和卯酉圈曲率半径N 的几何平均值。 6.3.5 子午线弧长计算公式 子午椭圆的一半,它的端点与极点相重合;而赤道又把子午线分成对称的两部分。 如图所示,取子午线上某微分弧dx P P =',令P 点纬度为B , P '点纬度为dB B +,P 点的子午圈曲率半径为M ,于是有: MdB dx = 从赤道开始到任意纬度B 的平行圈之间的弧长可由下列积分求 出: ?=B MdB X 0 式中M 可用下式表达: B a B a B a B a a M 8cos 6cos 4cos 2cos 86420+-+-=

关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法

目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。 第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一

空间曲线的曲率、挠率和Frenet公式

空间曲线的曲率、挠率和Frenet公式摘要:本文研究了刻画空间曲线在某点邻近的弯曲程度和离开平面程度的量—曲率和挠率以及空间曲线论的基本公式--Frenet公式,并且举例有关曲率、挠率的计算和证明. 关键词:空间曲线;曲率;挠率;Frenet公式 Spatial curvature,torsion and Frenet formulas Abstract:This paper studies space curves depict a point near the bend in the degree and extend of the amount of leave plane-the curvature and torsion and the basic formula of space curves-Frenet formulas,and for example the curvature and torsion of the calculation and proof. Key Words: space curves; curvature; torsion; Frenet formulas 前言 空间曲线的曲率、挠率和Frenet公式是空间曲线基本理论的一部分,它是以空间曲线的密切平面和基本三棱形的知识作为基础的.空间曲线的曲率、挠率和Frenet公式在空间曲线的基本理论中占有重要位置,是空间曲线的一些基本性质和基本公式.曲线的曲率和挠率完全决定了曲线的形状.当曲线的曲率和挠率之间满足多种不同的关系时,就会得到不同类型的曲线.例如:0 k>时为直线,0 τ=时为平面曲线. 本文将从定义、公式推导和具体举例三方面逐步解析空间曲线的曲率、挠率和Frenet公式.本文第一部分讲述曲率和挠率的定义,第二部分讲述Frenet公式和曲率、挠率的一般参数表示的推导,第三部分具体举例有关曲率、挠率的计算和证明. 1.空间曲线的曲率和挠率的定义 1.1准备知识—空间曲线的伏雷内标架 给出2c类空间曲线()c和()c上一点p.设曲线()c的自然参数表示是

解析几何复习系列之六(椭圆及其性质)

椭圆及其性质 【复习要点】 1、椭圆的标准方程: (1)焦点在x 轴上,22221x y a b +=(0a b >>)(2)焦点在y 轴上,22 221y x a b +=(0a b >>) 方程22Ax By C +=表示椭圆的充要条件是0ABC ≠,且A 、B 、C 同号,A B ≠. 2x 、2y 的分母大小决定椭圆焦点的位置,焦点在分母大对应的坐标轴上 2、椭圆的性质:(以22 221x y a b +=(0a b >>)为例) (1)范围:a x a -≤≤,b y b -≤≤;(2)焦点:1(,0)F c -、2(,0)F c ,其中0c >且222c a b =-; (3)对称轴:两条对称轴0,0x y ==;一个对称中心(0,0),四个顶点(,0)a ±、(0,)b ±,其中 长轴长为2a ,短轴长为2b . 3、点P (x 0,y 0)在椭圆122 22=+b y a x 内部的充要条件是1220220<+b y a x ;在椭圆外部的充要条件是1220220>+b y a x ;在椭圆上的充要条件是1220220=+b y a x . 【强化训练】 1、已知两个定点1(4,0)F -、2(4,0)F . (1)若1210PF PF +=,则点 P 的轨迹是 , (2)若128PF PF +=,则点P 的轨迹是 ,(3)若126PF PF +=,则点 P 的轨迹是 2、椭圆22 1625400x y +=的长轴与半短轴的和等于 ,焦点的坐标是 顶点的坐标是 3、方程19 252 2=++-m y m x 表示焦点在y 轴上的椭圆,则实数m 的取值范围是 4、椭圆22 125 x y m m +=-+的焦点坐标是 5、椭圆115 2 2=+y m x 的焦距等于2,则实数m 的值为

重点高中数学解析几何专题之椭圆(汇总解析版)

重点高中数学解析几何专题之椭圆(汇总解析版)

————————————————————————————————作者:————————————————————————————————日期:

圆锥曲线第1讲 椭圆 【知识要点】 一、椭圆的定义 1. 椭圆的第一定义: 平面内到两个定点1F 、2F 的距离之和等于定长a 2( 2 12F F a >)的点的轨迹叫椭圆,这两 个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。 注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作a 2)大于这两个定点之间的距离 2 1F F (记作c 2),否则点的轨迹就不是一个椭圆。具体情形如下: (ⅰ)当c a 22>时,点的轨迹是椭圆; (ⅱ)当c a 22=时,点的轨迹是线段21F F ; (ⅲ)当c a 22<时,点的轨迹不存在。 注2:若用M 表示动点,则椭圆轨迹的几何描述法为 a MF MF 221=+(c a 22>, c F F 221=),即 2 121F F MF MF >+. 注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件: a MF MF 221=+千万不可忘记。 2. 椭圆的第二定义: 平面内到某一定点的距离与它到定直线的距离之比等于常数e (10<>b a ); (2)焦点在y 轴、中心在坐标原点的椭圆的标准方程是122 22=+b x a y (0>>b a ).

空间曲线的曲率、挠率和Frenet公式

空间曲线的曲率、挠率和Frenet 公式 前言 空间曲线的曲率、挠率和Frenet 公式是空间曲线基本理论的一部分,它是以空间曲线的密切平面和基本三棱形的知识作为基础的.空间曲线的曲率、挠率和Frenet 公式在空间曲线的基本理论中占有重要位置,是空间曲线的一些基本性质和基本公式.曲线的曲率和挠率完全决定了曲线的形状.当曲线的曲率和挠率之间满足多种不同的关系时,就会得到不同类型的曲线.例如:0k >时为直线,0τ=时为平面曲线. 本文将从定义、公式推导和具体举例三方面逐步解析空间曲线的曲率、挠率和Frenet 公式.本文第一部分讲述曲率和挠率的定义,第二部分讲述Frenet 公式和曲率、挠率的一般参数表示的推导,第三部分具体举例有关曲率、挠率的计算和证明. 1. 空间曲线的曲率和挠率的定义 1.1准备知识—空间曲线的伏雷内标架 给出2c 类空间曲线()c 和()c 上一点p .设曲线()c 的自然参数表示是 (),r r s = 其中s 是自然参数,得 dr ds r == α 是一单位向量.α 称为曲线()c 上p 点的单位切向量. 由于1=α,则 ⊥αα , 即 r r ⊥ . 在α 上取单位向量

= = αr βα r , (1) β称为曲线()c 上p 点的主法向量. 再作单位向量 =?γαβ, γ称为曲线()c 上p 点的副法向量. 我们把两两正交的单位向量,,αβγ称为曲线上p 点的伏雷内(Frenet)标架. 1.2 空间曲线的曲率 我们首先研究空间曲线的曲率的概念.在不同的曲线或者同一条曲线的不同 点处,曲线弯曲的程度可能不同.例如半径较大的圆弯曲程度较小,而半径较小的圆弯曲程度较大.为了准确的刻画曲线的弯曲程度,我们引进曲率的概念. 要从直观的基础上引出曲率的确切定义,我们首先注意到,曲线弯曲的程度越大,则从点到点变动时,其切向量的方向改变的越快.所以作为曲线在已知一曲线段PQ 的平均弯曲程度可取为曲线在P 、Q 间切向量关于弧长的平均旋转角. 设空间中3c 类曲线()c 的方程为 ().r r s = 曲线()c 上一点p ,其自然参数为s ,另一邻近点1p ,其自然参数为s s +?.在p 、 1p 两点各作曲线()c 的单位切向量()s α和()s s +?α.两个切向量的夹角是??,也 就是把点1p 的切向量()s s +?α平移到点p 后,两个向量()s α和()s s +?α的夹角为??. 我们把空间曲线在p 处的切向量对弧长的旋转速度来定义曲线在点p 的曲率. 定义[]1 空间曲线()c 在p 点的曲率为 ()lim s k s s ? ?→?=?, 其中s ?为p 点及其邻近点1p 间的弧长,??为曲线在点p 和1p 的切向量的夹角. 再利用命题“一个单位变向量()t r (即()1t =r )的微商的模,()r t 的几何意

文科数学2010-2019高考真题分类训练专题九解析几何第二十五讲椭圆

专题九 解析几何 第二十五讲 椭圆 2019年 1.(2019全国1文12)已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为 A .2212x y += B .22132 x y += C .22 143x y += D .22 154 x y += 2.(2019全国II 文9)若抛物线y 2 =2p (p >0)的焦点是椭圆 22 13x y p p +=的一个焦点,则p = A .2 B .3 C .4 D .8 3.(2019北京文19)已知椭圆22 22:1x y C a b +=的右焦点为(1,0),且经过点(0,1)A . (Ⅰ)求椭圆C 的方程; (Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与轴交于点M ,直线AQ 与轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点. 4.(2019江苏16)如图,在平面直角坐标系Oy 中,椭圆C 22 221(0)x y a b a b +=>>的焦点 为F 1(–1、0),F 2(1,0).过F 2作轴的垂线l ,在轴的上方,l 与圆F 22 2 2 (1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1= 5 2 . (1)求椭圆C 的标准方程; (2)求点E 的坐标.

5.(2019浙江15)已知椭圆22 195 x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______. 6.(2019全国II 文20)已知12,F F 是椭圆22 22:1(0)x y C a b a b +=>>的两个焦点,P 为C 上 一点,O 为坐标原点. (1)若2POF △为等边三角形,求C 的离心率; (2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围. 7.(2019天津文19)设椭圆22 221(0)x y a b a b +=>>的左焦点为F ,左顶点为A ,顶点为 B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率; (Ⅱ)设经过点F 且斜率为 3 4 的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程. 8.(2019全国III 文15)设12F F ,为椭圆C 22 +13620 x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________. 9.(2019北京文19)已知椭圆22 22:1x y C a b +=的右焦点为(1,0),且经过点(0,1)A . (Ⅰ)求椭圆C 的方程;

理科数学2010-2019高考真题分类训练专题九 解析几何第二十六讲 椭圆

专题九 解析几何 第二十六讲 椭圆 2019年 1.(2019全国I 理10)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若 22||2||AF F B =,1||||AB BF =,则C 的方程为 A .2 212x y += B .22 132x y += C .22 143x y += D .22 154 x y += 2.(2019全国II 理21(1))已知点A (?2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为?1 2 . 记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线; 3.(2019北京理4)已知椭圆()22 2210x y a b a b +=>>的离心率为12 ,则 (A )2 2.2a b = (B )2 2.34a b = (C )2a b = (D )34a b = 4.(2019全国III 理15)设12F F ,为椭圆C :22 +13620 x y =的两个焦点, M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________. 2010-2018年 一、选择题 1.(2018全国卷Ⅱ)已知1F ,2F 是椭圆22 221(0)+=>>:x y C a b a b 的左,右焦点,A 是C 的左顶点,点P 在过A 的直线上,12△PF F 为等腰三角形,12120∠=?F F P ,则C 的离心率为 A . 23 B . 12 C . 1 3 D . 14 2.(2018上海)设P 是椭圆22 153 x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( )

(第7章)椭球面上的基本计算

第七章 椭球面上的基本计算 §1 地球椭球的基本知识 一、地球形状的概念 地球的自然表面——不规则;不能在上面进行计算; 大地水准面——平均海水面延伸得到的封闭曲面,最接近大地自然表面; ∵大地水准面具有性质:大地水准面上任一点处的垂线(重力方向)与该点处切面正交; 又:重力是离心力与地心引力的合力(离心力与地心引力之比约1:300),而大地水准面上各点处引力不等,造成各点处垂线方向各异。 ∴各点处切面组成的曲面——大地水准面亦不规则,有微小起伏,是一个具有物理性质的曲面。 实践和理论均可证明:1)在各水准面(与大地水准面的不平行性不很明显)上测得的水平角,因归化到大地水准面上改正极微小,完全可以看成大地水准面上的角值;2)各高程面上测得之边长也可化算到大地水准面上;3)地面点的高程亦从大地水准面起算。 结论:大地水准面是测量外业的基准面;但它是物理曲面而非数学曲面,所以不能作为测量计算的基准面。 大地体——大地水准面包围的形体; 地球椭球——代表地球形体的旋转椭球体;椭球面上处处法线与该点的切面正交,是一个具有数学性质的曲面; 总地球椭球——与大地体最接近的地球椭球。应满足: ①其中心应与地球质心重合; ②旋转轴应与地轴重合,赤道应与地球赤道重合; ③体积应与大地体体积相等; ④总椭球面与大地水准面之间的高差平方和最小。 参考椭球——与某一局部大地水准面密切配合的椭球。 二、椭球的几何元素与参数 1.椭球的元素 长半径:a 短半径:b 2.椭球的参数 扁率: α=(a -b)/a 第一偏心率: a b a e /22-= 第二偏心率: b b a e /22-=' 式中:22b a -——椭圆的焦距,即椭圆的焦点到椭圆中心的距离

空间曲线曲率计算公式及推导

1.4 空间曲线的曲率定义及 计算公式 引理 设)(s a → 是单位圆周上的向量,即1||)(||=→ s a , 设)(s s a ?+→ 与)(s a → 之间的夹角记 为θ?,则有 ||lim ||)(||0s s a s ??='→? → θ 。 证明 因为 s s a s s a s a s ?-?+='→ → →?→ ) ()(lim )(0, 所以| ||| )()(||lim ||)(||0s s a s s a s a s ?-?+='→ →→?→ |||2 2sin 2|lim |2sin 2|lim 00s s s s ?????=??=→?→?θθθ θ | |lim 0s s ??=→?θ 。 (用解等腰三角形或用余弦定理,得 θ ????-+=-?+→ → cos 11211||)()(||22s a s s a

|2 sin |2)2sin 21(222 θ θ?=?--=。) 定理1.2 设曲线Γ:)(s r r → →=(s 是弧长参数)上的每一点有一个单位向量)(s a →,)(s s a ?+→ 与)(s a → 之间的夹角记为θ?,那么 || lim ||)(||0 s s a s ??='→?→ θ 。 设曲线Γ:)(s r r → → =,这里参数s 是曲线自身的弧长,我们知道,)(s r '是曲线的切向量, 1||)(||='→ s r ,即)(s r → '是单位向量。 记)(s r T →→'=,)()(s r s T → →''=', )(s T → 与)(s s T ?+→ 的夹角 θ?, ||lim 0s s ??→?θ度量了曲线的弯曲程度。 || lim ||)(||||)(||0 s s r s T s ??=''='→?→ →θ ,我们称之为曲线)(s r → 的 曲率,用)(s k 来表

相关文档
最新文档