工程塑料齿轮疲劳寿命有限元分析

工程塑料齿轮疲劳寿命有限元分析
工程塑料齿轮疲劳寿命有限元分析

工程塑料齿轮疲劳寿命有限元分析

采用有限元方法对超高相对分子质量聚乙烯(UHMWPE)工程塑料齿轮无缺陷情况

和存在不同程度熔接痕缺陷情况的疲劳寿命进行了分析,得出了利用ANSYS对工程塑料

齿轮疲劳寿命进行分析的方法.以及上述情况下的疲劳寿命。采用了符合实际啮合情况的接触模型与裂纹模型,首先得到了在正常工作情况下齿轮最容易发生疲劳处的节点应力,然后通过输入S—N曲线,并采用Miner疲劳积累理论对应力最大处的节点进行疲劳分析。ANSYS疲劳分析结果表明:熔接痕缺陷的位置对该材料齿轮的疲劳寿命有较大影响。

1 齿轮的疲劳破坏

疲劳是一种十分有趣的现象,当材料或结构受到多次重复变化的载荷作用后,应力值

虽然始终没有超过材料的强度极限,甚至比屈服极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料或结构的破坏现象就叫做疲劳破坏。

如图1所示,F表示齿轮啮合时作用于齿轮上的力。齿轮每旋转一周,轮齿啮合一次。啮合时,F由零迅速增加到最大值,然后又减小为零。因此,齿根处的弯曲应力or也由

零迅速增加到某一最大值再减小为零。此过程随着齿轮的转动也不停的重复。应力or随

时间t的变化曲线如图2所示。

在现代工业中,很多零件和构件都是承受着交变载荷作用,工程塑料齿轮就是其中的

典型零件。工程塑料齿轮因其质量小、自润滑、吸振好、噪声低等优点在纺织、印染、造纸和食品等传动载荷适中的轻工机械中应用很广。

图1 齿轮啮合时受力情况

疲劳破坏与传统的静力破坏有着许多明显的本质差别:

图2 齿根应力随时间变化曲线

1)静力破坏是一次最大载荷作用下的破坏;疲劳被坏是多次反复载荷作用下产生的破坏,它不是短期内发生的,而是要经历一定的时间。

2)当静应力小于屈服极限或强度极限时,不会发生静力破坏;而交变应力在远小于静强度极限,甚至小于屈服极限的情况下,疲劳破坏就可能发生。

3)静力破坏通常有明显的塑性变形产生;疲劳破坏通常没有外在宏观的显著塑性变形迹象,事先不易觉察出来,这就表明疲劳破坏具有更大的危险性。

工程塑料齿轮的疲劳寿命,是设计人员十分关注的课题,也是与实际生产紧密相关的问题。然而,在疲劳载荷作用下的疲劳寿命计算十分复杂。因为要计算疲劳寿命,必须有精确的载荷谱,材料特性或构件的S-N曲线,合适的累积损伤理论,合适的裂纹扩展理论等。本文对工程塑料齿轮疲劳分析的最终目的,就是要确定其在各种质量情况下的疲劳寿命。通过利用有限元方法和CAE软件对工程塑料齿轮的疲劳寿命进行分析研究有一定工程价值。

2 工程塑料齿轮材料的确定

超高分子量聚乙烯(UHMWPE)是一种综合性能优异的新型热塑性工程塑料,它的分子结构与普通聚乙烯(PE)完全相同,但相对分子质量可达(1~4)×106。随着相对分子质量的大幅度升高,UHMWPE表现出普通PE所不具备的优异性能,如耐磨性、耐冲击性、

低摩擦系数、耐化学性和消音性等。

UHMWPE耐磨性居工程塑料之首,比尼龙66(PA66)高4倍,是碳钢、不锈钢的7—8倍。摩擦因数仅为0.07~0.11,具有自润滑性,不粘附性。因此,本文选用UHMWPE

作为工程塑料齿轮材料进行研究。UHMWPE性能见表1。

由于UHMWPE导热性能较差,所以与其啮合的齿轮选用钢材料。这样导热性好、摩

损小,并能弥补工程塑料齿轮精度不高的缺点。2啮合齿轮均为标准直齿圆柱齿轮,参数为:UHMWPE齿轮齿数30,钢齿轮齿数20,模数4mm,齿宽20mm,压力角取为20°。

表1 超高相对分子质量聚乙烯性能

3 UHMWPE材料齿轮疲劳分析模型的建立

齿轮在啮合过程中,轮齿如同受线载荷的悬臂梁,齿根所受的弯矩最大,因此齿根处

的弯曲疲劳强度最弱。当轮齿在齿顶处啮合时,处于双对齿啮合区,此时弯矩的力臂虽然最大,但力并不是最大,因此弯矩并不是最大。根据分析,齿根所受的最大弯矩发生在齿轮啮合点位于单对齿啮合区最高点时。因此,在建立UHMWPE材料齿轮疲劳分析模型时,应该建立载荷作用于单对齿啮合区最高点。

由机械原理渐开线齿轮连续传动条件分析方法,可以得出单对齿轮啮合最高点。然后

利用CAXA软件的齿轮建模功能和数据转换功能建立UHMWPE材料齿轮疲劳分析模型

如图3所示。

图3 UHMWPE材料齿轮疲劳分析模型

4 利用ANSYS分析UHMWPE材料齿轮疲劳寿命

ANSYS是以有限元分析为基础的大型通用CAE软件,是世界上第一个通过IS09001认可的有限元分析软件。因此,通过准确地建立模型、合理的网格划分与载荷施加以及边界条件设定,就能得到可靠性较好的计算结果。

对于工程塑料齿轮,由于其材料的力学性能、热性能等都与金属材料有很大区别,其失效形式及失效机理与金属齿轮也有很大区别。由于塑料齿轮的弹性模量较低,与钢齿轮啮合过程中其赫兹接触区较大,接触应力较小,一般不会出现点蚀等表面失效,所以轮齿在弯曲应力作用下疲劳断裂或折断是塑料齿轮的主要失效形式。因此主要对3种情况下的UHMWPE材料齿轮的疲劳寿命进行分析。

4.1 UHMWPE材料齿轮无缺陷情况的疲劳寿命分析

在利用ANSYS进行齿轮的疲劳分析前,需要对2啮合齿轮进行接触分析。按照上文所分析的实际接触情况,确定2齿轮单齿啮合区域最高点位置,并定义接触类型为柔体对柔体的面对面接触。

取钢齿轮啮合面为目标面,用单元Targel69来定义,取UHMWPE材料齿轮啮合面为接触面,用单元Contal71来定。可以从菜单(Main

Menu>Preprocessor>Modeling>Create>Contact Pair)进入接触向导,来建立目标面接触面的“接触对”。也可以采用其他途径建立接触对,这属于ANSYS基本操作,本文不再详述。接触对建立完成后进入静强度求解过程,主动齿轮为钢齿轮,传递力矩为6N·m,

ANSYS计算所得UHMWPE材料齿轮齿根处的应力如图4所示。从应力云图中可以看出:最大应力发生在UHMWPE材料齿轮齿根处,节点号为:2279,应力值为:32.1MPa。

图4 UHMWPE材料齿轮齿根处应力云图

工程塑料齿轮ANSYS疲劳分析的步骤为:首先进入后处理POST1,恢复数据库,然后提取齿根最大弯曲应力处的节点应力并将其储存,并确定重复次数,最后采用Miner疲劳积累理论计算疲劳寿命并查看结果。

UHMWPE材料齿轮疲劳寿命预测需要的较关键疲劳性质是材料的S-N曲线,所研究的UHMWPE材料的S-N曲线如图5所示。

图5 UHMWPE材料S-N曲线

疲劳分析结果如图6所示。可见在文中所设定工作载荷下,该UHMWPE材料齿轮轮齿

的疲劳寿命为132800次,累计疲劳系数为0.75301。

图6无缺陷UHMwPE材料齿轮疲劳计算结果

4.2 齿问存在熔接痕时UHMWPE材料齿轮的疲劳寿命分析

UHMWPE材料齿轮注塑工艺复杂。工艺控制不当很容易产生熔接痕等注塑缺陷。因此,对存在熔接痕缺陷的UHMWPE材料齿轮进行分析,可以确定该缺陷的不同位置对齿轮疲劳破坏的影响程度。这对工程塑料齿轮的注塑工艺,浇口位置安排等都有一定的指导意义。

在利用ANSYS分析存在熔接痕缺陷的工程塑料齿轮时,将熔接痕等效为I型裂纹问题,并采用KSCON命(Main Menu>Preprocessor>MeshShape&Size>Concentrat KPs-Create),使ANSYS自动围绕熔接痕尖端关键点生成奇异单元,然后进行分析求解。假设在两轮齿间

存在一条长为1.5mm的熔接痕,熔接痕位置和尺寸如图7所示。

图7 齿间熔接痕尺寸

疲劳分析结果如图8所示。结果显示:在齿间存在较小熔接痕缺陷情况下,UHMWPE 材料齿轮轮齿的疲劳寿命为124600次,累计疲劳系数为0.80257。疲劳产生的位置仍未齿根处。可见,齿间存在较小熔接痕缺陷情况下,缺陷对UHMWPE齿轮疲劳寿命无较大影响。

图8 齿间存在缺陷UHMWPE材料疲劳计算结果

4.3齿根存在熔接痕时UHMWPE材料齿轮的疲劳寿命分析

假设在齿根处存在一条长为1.5 mm的熔接痕,熔接痕位置和尺寸如图9所示。

图9 齿根熔接痕尺寸

疲劳分析结果为:疲劳破坏发生在熔接痕尖端,如图10所示。齿轮轮齿的疲劳寿命仅为5631次。可见,在齿根存在较小熔接痕缺陷情况下齿轮很快进人疲劳并断裂破坏。

图l0 疲劳破坏发生位置

5 结论与展望

1)采用ANSYS有限元技术可以计算复杂边界条件下的疲劳问题,对工程塑料齿轮的疲劳寿命的确定有一定价值。

2)通过ANSYS分析得出:所研究的UHMWPE材料齿轮在无缺陷情况下的疲劳寿命远高于齿根存在熔接痕情况下的寿命。

3)当熔接痕靠近UHMWPE材料齿轮齿根处时,加载后轮齿很快进人疲劳并断裂,因此需要对注塑工艺进行优化,避免在齿轮齿根处出现熔接痕。

4)很多性能优异的工程塑料均可用作为中等载荷的齿轮材料,例如POM,PA66等,利用有限元方法校核其疲劳寿命会加快设计速度,同时也提高了可靠性。

齿轮设计的一般步骤

1、根据负载、以及运动状态(速度、是垂直运动还是水平运动)来计算驱动功率 2、初步估定齿轮模数(必要时,后续进行齿轮强度校核,若在强度校核时,发现模数选得太小,就必须重新确定齿轮模数,关于齿轮模数的选取,一般凭经验、或是参照类比,后期进行安全校核) 3、进行初步的结构设计,确定总传动、以及确定传动级数(几级传动) 4、根据总传动比进行分配,计算出各级的分传动比 5、根据系统需要进行详细的传动结构设计(各个轴系的详细设计),这样的设计一般还在总装图上进行。 6、在结构设计的时候,若发现前期的参数不合理(包括齿轮过大、相互有干涉、制造与安装困难等),就需要及时的返回上面程序重新来过 7、画出关键轴系的简图(一般是重载轴,当然,各个轴系都做一遍当然好),画出各个轴端的弯矩图、转矩图,从而找出危险截面,并进行轴的强度校核 8、低速轴齿轮的强度校核 9、安全无问题后,拆分零件图 渐开线圆柱齿轮传动设计程序主要用于外啮合渐开线圆柱标准直齿齿轮传动设计、渐开线圆柱标准斜齿齿轮传动设计和渐开线圆柱变位齿轮传动设计。程序中的各参数和各设计方法符合相关的国家标准,即:渐开线圆柱齿轮基本轮廓(GB/T1356-2001)、渐开线圆柱齿轮模数(GB/T1357-1987等效采用ISO54-1977),以及《渐开线圆柱齿轮承载能力计算方法》(GB/T3480-1997等效ISO6336-1966)、渐开线圆柱齿轮精度(GB/T10095-2001等效ISO1328-1997)。程序根据输入的齿轮传动设计参数和相关设计要求,进行齿轮几何尺寸的计算、齿轮接触疲劳强度校核和弯曲疲劳强度校核的计算,以及相关公差值的计算等。整个设计过程分步进行,界面简洁,操作方便 硬齿面齿轮 风力发电增速齿轮箱中,其输入轴承受叶片传过来的轴向力、扭矩和颠覆力矩。中间轴上的齿轮承受输入端传过来的力矩和输出端刹车时传过来的刹车力矩。输出轴上的齿轮承受中间轴传过来的扭矩,同时也承受输出端刹车时带来的刹车力矩。 一、齿轮箱输入轴、中间轴和输出轴上各种齿轮的受力分析 风力发电增速齿轮箱中,其输入轴承受叶片传过来的轴向力、扭矩和颠覆力矩。中间轴上的齿轮承受输入端传过来的力矩和输出端刹车时传过来的刹车力矩。输出轴上的齿轮承受中间

滚动轴承疲劳寿命试验台的设计毕业设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

疲劳寿命设计方法

寿命设计方法 -王光建

目录 …什么是疲劳失效 …无限寿命设计方法 ?S-N曲线(wohler curve)及疲劳极限?基于疲劳极限的评判 ?考虑平均应力的损伤修正…有限寿命设计方法 ?Miner法则(疲劳损伤线性累积) ?雨流计数法?寿命计算…疲劳寿命仿真计算 …疲劳寿命计算的不足

疲劳失效 …疲劳是一种机械损伤过程 …特点: 在这一过程中即使名义应力低于材料屈服强度;破坏前无明显塑性变形,突然发生断裂…本质: ?交变载荷+金属缺陷?金属的循环塑性变形(微观) ?疲劳一般包含裂纹萌生和随后的裂纹扩展两个过程 ?疲劳是损伤的累积 金属内部缺陷微裂纹产生裂纹扩展断裂 (晶体位错) 疲劳发生过程 …疲劳的判断: 金属材料的疲劳断裂口上,有明显的光滑区域与颗粒区域,光滑区域是疲劳断裂区,颗粒区域是脆性断裂区 粗糙的脆性断裂区 光滑的疲劳区 裂纹源

-S-N曲线(Wohler curve)及疲劳极限…S-N曲线是根据材料的疲劳强度实验数据得出的应力和疲劳寿命N的关系曲线 …S-N曲线用于描述材料的疲劳特性 σ S-N curve 1871年,Wohler首先对铁路车轴进行了系统的疲劳研究,发展了S-N曲线及疲劳极限概念

-S-N曲线(Wohler curve)及疲劳极限…疲劳极限:一般规定,循环次数107所对应的最大应力为疲劳极限 σ σ limit S-N curve

-基于疲劳极限的评判 …Alternating stress 作为判断应力 Alternating stress=(σ - σmin)/2 max …判断标准 σAlternating stress<σ limit σσ limit σ √ 2 S-N curve σ × 1

滚动轴承疲劳寿命试验台的设计

第1章绪论 1.1课题研究的目的和意义 滚动轴承是机器运转中重要的零部件,是旋转结构中的重要组成部分之一,具有承受载荷和传递动运动的作用。可是,滚动轴承是机器运转时主要故障来源之一,有数据结果分析表明:旋转机器中有35%的故障都及轴承的失效相关,轴承能够使用多久和可靠性的大小直接影响到机器系统的整体性能。为此在对轴承的加速老化试验和加速寿命试验,对于研究轴承的故障演变规律和失效原理有着很重要的意义。 在20世纪前期,Lundberg和Palmgren对5210的滚动轴承做了很多试验,根据1400多套滚子轴承、球轴承的寿命试验结果,在Weibull分布理论的基础上,通过研究得到了寿命及负载的方程式,称为L-P公式。伴随我国轴承制造技术的不断发展,轴承的几何结构和制造精度得到了相当高的提升和改进。目前,在市场上有几百种不一样型号的滚动轴承。现在的5210轴承钢的材料和制造精度比以前的要好,而且现在在材料的选择上已近不局限于轴承钢。现在生产轴承的原料包括合金钢,陶瓷,轴承钢和塑料等。为此,为了评估新材料的处理工艺,新材料和新几何结构的滚动轴承的磨损寿命,还得对滚动轴承做疲劳寿命试验。另外由于加工技术的提高和材料科学的发展,使用时润滑条件的改善,轴承能够使用的时间越来越长。来自工业和武器等方面的需求也助推了滚动轴承箱相当好的方向发展。比如发电设备,排水设备等要求轴承工作时间连续不间断的十几二十几的小时不间断的无故障运行10000-20000个小时,折算一下相当于及连续工作11-22年并且中间没有出现任何故障,即使是电动工具、一般机械和家用电器等对寿命的要求相对较低的使用场景也要求轴承无故障的间断或不间断的工作4000-8000小时。因此,在很多情况下,研究轴承的寿命必须利用加速疲劳寿命试验方法来获得轴承在高应力的疲劳寿命,并且通过加速实验的结果来估计不一样应力水平下的疲劳寿命,以减少试验时的成本和时间。

影响扭簧疲劳寿命的关键因素

影响扭簧疲劳的关键因素 我们在加工扭簧时,必须要考虑几个影响它寿 命的重要因素: 一、原料的钢号和产地。 弹簧钢的种类有很多,其中抗疲劳性能较好的钢号 有:重要用途碳素弹簧钢丝(如琴钢线,T9A等)、油淬火-回火弹簧钢丝(如VDCrSi)、合金弹簧钢(50CrVA); 这些材料的抗疲劳特性是值得肯定的,一般小于2.0mm直径的弹簧,我们多采用重要用途碳素钢,大于2.0mm直径的弹簧,一般采用后两种材料。另外,除了钢号的选择,钢材自身的产地也是相当重要的,国内钢材比较好的有宝钢、武钢等知名钢厂;国外也有非常优秀的弹簧钢,如德国、日本和韩国等国家生产的弹簧钢,首先设计或制造一种扭簧,其疲劳寿命至关因素即是胚料。 二、加工工艺 谈到加工工艺,首先应考虑到成形技术、退火工艺和喷丸强度,另外还可以增加一些辅助工序,如添加润滑油等。 成形技术方面,现在应用比较广泛的是有芯卷制,可以参阅《弹簧手册》,里面有细致的介绍,其中成形设备也是相当关键,个人觉得转线机这种设备制作扭簧是非常理想的设备,主要原因是它在成形扭簧时,可以同步弹簧线向旋转,我们一般弹簧成形设备,送线和卷制是分开控制的,所以在成形时,无法解决弹簧线扭转,如果是圆线,还勉强可以成形,若是方线或非圆形线材,是无法成形扭簧的。重点问题是,这种能同步线向旋转的转线机,更能减少成形对线材内部结构

的伤害,从而保证成形出的扭簧寿命更加长一些。 三、退火温度与时间。 退火,是一种消除扭簧内部应力的工艺方法,它的作用效果主要有温度和时间两个因素决定。由于扭簧经弹簧机外力作用成形,其内部应力失去平衡,我们需借用退火工艺来消除它内部的大部分应力,对扭簧的性能也起优化作用。当然,退火工艺不仅仅是这么简单,对于不同钢号、不同钢胚和不同直径的弹簧钢,都需要用不同的退火温度和时间,我们在定温度和时间的时候,首先要接近钢材拉线后的退火温度,而时间一般不用太久,一般都在10-40分钟内,具体看弹簧线直径大小。退火温度高低和时间长短,对扭簧疲劳的影响是有一个峰值的,当温度和时间综合效果低于这个峰值时或高于这个峰值,最后得到的扭簧寿命都不是最好的,这个峰值就是一个临界点,只有通过多组退火试验,多次去测试,最后才能确定这个临界点。 四、喷丸强度。 喷丸,也是一种消除扭簧内部应力的工艺方法,而喷丸强度是喷丸效果的一种指标,影响喷丸强度的因素主要有钢丸的直径大小、硬度、喷丸的时间和所喷扭簧的量。不同直径的扭簧,我们需要的喷丸强度是不一样的。喷丸的最佳效果,是通过喷丸,在扭簧表面能形成一层强化膜,这必须是丸粒的轻微打击而形成的,不能伤害到扭簧表面,造成表面缺陷,更不能把这种破坏深入到钢的内部组织。 所以喷丸强度是很关键的因素,遵从的原则是柔和均匀。

直齿圆柱齿轮强度计算

4.5 直齿圆柱齿轮强度计算 一、轮齿的失效 齿轮传动就装置形式来说,有开式、半开式及闭式之分;就使用情况来说有低速、高速及轻载、重载之别;就齿轮材料的性能及热处理工艺的不同,轮齿有较脆(如经整体淬火、齿面硬度较高的钢齿轮或铸铁齿轮)或较韧(如经调质、常化的优质钢材及合金钢齿轮),齿面有较硬(轮齿工作面的硬度大于350HBS或38HRC,并称为硬齿面齿轮)或较软(轮齿工作面的硬度小于或等于350HBS或38HRC,并称为软齿面齿轮)的差别等。由于上述条件的不同,齿轮传动也就出现了不同的失效形式。一般地说,齿轮传动的失效主要是轮齿的失效,而轮齿的失效形式又是多种多样的,这里只就较为常见的轮齿折断和工作面磨损、点蚀,胶合及塑性变形等略作介绍,其余的轮齿失效形式请参看有关标准。至于齿轮的其它部分(如齿圈、轮辐、轮毂等),除了对齿轮的质量大小需加严格限制外,通常只需按经验设计,所定的尺寸对强度及刚度均较富裕,实践中也极少失效。 轮齿折断

轮齿折断有多种形式,在正常情况下,主要是齿根弯曲疲劳折断,因为在轮齿受载时,齿根处产生的弯曲应力最大,再加上齿根过渡部分的截面突变及加工刀痕等引起的应力集中作用,当轮齿重复受载后,齿根处就会产生疲劳裂纹,并逐步扩展,致使轮齿疲劳折断(见图1 图2 图3)。此外,在轮齿受到突然过载时,也可能出现过载折断或剪断;在轮齿受到严重磨损后齿厚过分减薄时,也会在正常载荷作用下发生折断。在斜齿圆柱齿轮(简称斜齿轮)传动中,轮齿工作面上的接触线为一斜线(参看),轮齿受载后,如有载荷集中时,就会发生局部折断。 若制造或安装不良或轴的弯曲变形过大,轮齿局部受载过大时,即使是直齿圆柱齿轮(简称直齿轮),也会发生局部折断。 为了提高齿轮的抗折断能力,可采取下列措施:1)用增加齿根过渡圆角半径及消除加工刀痕的方法来减小齿根应力集中;2)增大轴及支承的刚性,使轮齿接触线上受载较为均匀;3)采用合适的热处理方法使齿芯材料具有足够的韧性;4)采用喷丸、滚压等工艺措施对齿根表层进行强化处理。 齿面磨损 在齿轮传动中,齿面随着工作条件的不同会出现不同的磨损形式。例如当啮合齿面间落入磨料性物质(如砂粒、铁屑等)时,齿面即被逐渐磨损而至报废。这种磨损称为磨粒磨损(见图4、图5、图6)。它

弹簧疲劳试验方案

5.试样弹簧 5.1试样 试样应按规定程序批准的图样、技术文件制造,并经过尺寸和特性检验合格。 5.2试样抽取 试样应从同一批产品中随机抽取 5.3 试样数量 5.3.1 对于疲劳寿命验证试验,推荐的最少试样数量最少4件,当有特殊要求时,试样数量可自行确定。 6 试验条件 6.1 试验机 6.1.1 推荐采用机械式或电液伺服试验机,也可安装在配套阀上进行试验。 6.1.2 试验机位移精度应满足试验要求。 6.1.3 试验机得频率应在一定范围内可调。 6.1.4 试验机应具备试验时间或次数预置、自动计时或计数、自动停机及输出试验数据等功能。 6.2 试验频率 6.2.1 试验频率可根据试验机得频率范围和弹簧实际工作频率等情况确定。整个试验过程中试验频率应保持稳定。 6.2.2 试验频率Fr 应避开单个弹簧的固有自振频率F ,一般应满足如下关系式: 10F F r 其中:钢制弹簧固有频率F 按如下公式计算: F=3.56×105×d/nD 2 6.3 试验振幅 振幅分为位移幅(Ha )和载荷幅(Fa )。对于螺旋弹簧的疲劳寿命验证试验一般使用位移幅作为试验振幅。 6.4 试验环境 试验一般在室温下进行,但试验时样件的温升应不高于实际工况最高温度。 7 试验方法 7.1试样的安装 7.1.1试样的安装方法 为了避免试样承受偏载和附加应力,压缩弹簧试样安装时要保证试样两端平整接触,应将试样安放再固定的支座上;拉伸弹簧试样的安装应满足工况要求。 7.1.2 试验。高度 对定型的产品,试样试验的最大高度为实际使用要求的最大高度H1,试验的最小高度为实际使用要求的最小高度H2.试验的平均高度为实际使用工况的最大高度H1与最小高度H2二者之和的平均值。 7.1.3安装高度允许偏差 用多工位试验机,或者多台试验机同时对一批试样进行试验时,应将试样调整到同样的试验安装高度,其最大允许偏差为3%Ha 。 7.2 加载 7.2.1 正常情况下,按试验机的加载方式进行加载。 7.2.2 在有必要情况下,可模拟产品实际工作负载进行加载。 7.3 试验机运转及数据记录

弹簧疲劳试验机

弹簧疲劳试验机机型详解济南铂鉴弹簧疲 劳试验机机型描述 弹簧疲劳试验机根据弹簧的种类不同可以分为弹簧拉压疲劳试验机,弹簧扭转疲劳试验机,高低温弹簧疲劳试验机。 ●弹簧拉压疲劳试验机 弹簧拉压疲劳试验机主要用于各种弹簧、弹性体、弹性元件等零部件的拉压疲劳寿命试验。 功能特点 (1)根据各种弹簧、弹性体、弹性元件的技术要求,调整各种弹簧、弹性体、弹性元件的振幅和频率。 (2)液晶汉字显示,试验次数和频率根据要求可输入程序,自动完成。 (3)由电机、减速机连接凸轮带动连杆做往复运动,实现对各种弹簧、弹性体、弹性元件的压缩运动。 (4)试验空间的调整采用电机调节,方便快捷。 (5)试验区增加了防护网,保证了试验的安全性。 (6)预置试验次数自动停机。 (7)弹簧断裂自动停机。 (8)操作简单,运行可靠稳定。 主要技术指标 型号: TPL-1000N-TPL-20000N 最大试验力: 1000N-20000N 工作方式:电机自动加载 数据处理: 能够保存、自动停机 试件最大长度: 400mm(可根据客户要求定制)

试件最大外径:Φ100mm(可根据客户要求定制) 试验频率: 0~5Hz; 最大振幅: 50mm; 计数容量: 99999999 试验工位:四个工位 试验机尺寸:约800*580*2100 mm 试验机重量: 500Kg 外观、装配:应符合GB/T2611要求 保护功能:程序保护 供电电源: 220V,50Hz ●弹簧扭转疲劳试验机 弹簧扭转试验机主要用于各种开关厂及钟表行业、健身器材等厂家所需的各种扭转试样的疲劳寿命试验。 功能特点: (1)试验频率可调,扭转试验次数根据要求设计。 (2)设置试验次数自动停机。 (3)数字显示试验次数、试验频率。 (4)操作简单,运行可靠,性能稳定。 主要技术指标 型号: TPN-2000Nmm-TPL-5000Nmm 最大试验力: 2000Nmm-5000Nmm 工作方式:电机自动加载 数据处理: 能够保存、自动停机 试件最大外径:Φ120mm(可根据客户要求定制) 试验频率: 0~5Hz; 测试角度: 1-360°任选;

轴承疲劳寿命3

河南科技大学 实习报告 (3) 学院_______________ 专业班级_______________ 学生姓名_______________ 指导教师_______________ ______学年第______学期

【实验名称】:滚动轴承疲劳寿命试验 【实验目的】:1、滚动轴承的疲劳寿命是轴承的一个非常重要的质量指标; 2、通过实验和现场收集有价值的数据; 3、目前,随着经济全球化,资源本地化的加剧,为了满足轴承制造商和轴承大用户对提高轴承综合质量的要求,我国轴承行业必须对轴承寿命激发试验做更多的尝试。 【实验设备】:ABLT-1A轴承寿命试验机该仪器主要用于滚动轴承疲劳寿命强化(快速)试验。由试验头、试验头座、传动系统、加载系统、润滑系统、计算机控制系统等组成。试验轴承类型:球轴承和滚子轴承 试验轴承内径:10~60mm 试验轴承转速:1000~10000r/min 最大径向加载:100KN 最大轴向加载:50KN 【实验原理和方法】:轴承的寿命与载荷间的关系可表示为下列公式: L10=(f t*C/P)ε或 L h=(106/60*n)* (f t*C/P)ε 式中: L10──基本额定寿命(106转); L h──基本额定寿命(小时h);C──基本额定动载荷,由轴承类型、尺寸查表获得;P──当量动载荷(N),根据所受径向力、轴向力合成计算;f t──温度系数,由表1查得;n──轴承工作转速(r/min);ε──寿命指数(球轴承ε=3 ,滚子轴承ε=10/3 )。 6308实验条件的确定: 额定动载荷Cr=22200N; 取当量动载荷P=6720N; 极限转速n l=14000r/min; 取实验转速n=6000r/min; 基本额定寿命:L10=(106/60*n)*(C/P)ε=100h(球轴承ε=3) 试验结果计算: 按GB/T24607-2009 按检验水平2,实验套数E=8 为布尔分布斜率:b=1.5 设K=1.4 L=K*L10b/0.10536=1.4*1001.5/0.10536=13288 T1i=(L/E)*U a=(13288/8)U a=2674 T0=1941.5=2702 T0=2702> T1i=2674 符合达到K=1.4要求,所以轴承做实验要转够194个小时。 根据GB/T24607-2009合格评定8.4.2L10t/L10h>=Z, (球轴承Z,=1.4)即为合格 【实验步骤】:1、实验分两组进行,1#~4#为第一组,5#~8#为第二组; 2、使用钢笔蘸王水溶液分别给八套轴承编上1~8等号码; 3、将编号的轴承利用工具装入工装内,再将工装装入轴承试验机内; 4、每个试验机内部可以装入四套轴承,其中两套作为对比轴承,工作环境稍好于另外两套; 5、检查一下机器是否有异常,如果无,打开试验机,开始试验,知道轴承损坏或者转够了194个小时时才停止; 6、利用计算机每隔一定的时间记录实验数据,判定轴承寿命是否具有可靠性;

车轴知识

车轴知识 车轴是机车车辆承受动载荷的关键零件,受力状态复杂,它主要承受弯曲载荷、扭转载荷或弯扭复合载荷,并可能受到一定冲击。所以,轴在工作中可因疲劳、弯曲、扭转或拉伸应力而断裂,但疲劳断裂是轴的普遍断裂形式。因此,对车轴钢材而言,主要是保证其良好的强度,特别是弯扭复合疲劳强度及韧性。为了防止其轴颈部位的迅速磨损,还应具备一定的表面硬度。 车轴的强度、韧性等性能要求须通过车轴钢材成分和热处理两方面来保证,与此同时,对钢材的冶金质量、淬透性要求等还须提出附加要求。以下仅就高速铁路用车轴材质的优化选择加以论述。 车轴钢材成分 车轴钢材成分对性能的保证包括两方面涵义,一方面指合金化问题,另方面指含碳量高低的选择。 车轴钢材的含碳量 “碳”是钢中必不可少的元素,也是影响钢材性能的重要元素。然而加碳虽然强化作用很高,但却显著降低韧性。轴类零件一般选择中碳钢。为了提高铁路行车安全性,应降低车轴钢的含碳量,在降碳的同时,可通过微合金化及热处理来提高车轴强度。 40~45钢车轴使用历史悠久,是国际上使用较多的钢种。由于其强度偏低,耐磨性差,疲劳裂纹萌生门槛值较低,使用寿命较短。但40~45钢韧脆转变温度低,加工性能好,成本低,如果能采用先进的冶炼、锻造技术和热处理工艺,在保持韧性前提下提高强度,其裂纹率很可能有所下降,使用寿命将会相对延长。 长期以来,我国的机车车辆均采用优质碳素钢车轴,国外由于各国的国情不同,技术观点不同,选用的车轴材料不尽相同。依据各国车轴标准不同,车轴材料一般分为两大类,即碳素钢车轴及合金钢车轴。但都属于低碳钢范畴。碳素钢车轴钢材的含碳量一般选择0.30~0.45%,加入合金元素,可适当降碳。 车轴钢材的合金元素 依据车轴钢材的使用性能,要求车轴钢具有较高的强度和韧性,即良好的综合性能。因此,车轴钢合金化的目的就是添加合金元素达到强韧化目的。 钢材的韧化,意味着不发生脆化。依据一般的强化机构,除细晶强化外,一般均会发生脆化,即脆性转变温度上升的同时,韧性破断的冲击值和断裂韧性值下降。对于大截面钢件,Mo是使其晶粒细化,提高综合性能的首选元素。Cr能够增加钢的淬透性,促使淬火及回火后工件整个截面上获得较均匀的组织。Ni是提高钢材韧性最有效的合金元素。它韧化的机理是使材料基体本身在低温下易于交叉滑移,从而提高韧性。所以,不论对何种组织,加入Ni均可提高韧性。多种合金元素的复合加入,反映在性能上,则由单一性能到优良的综合机械性能,从而可以满足车轴在不同受荷状态的需要。因此,Cr、Ni、Mo等合金元素是车轴钢合金化的主要元素。 选材时还必须考虑经济性,包括材料成本的高低,供应是否充分,加工工艺过程是否复杂。由于Ni、Mo的价格昂贵,使材料的成本增加。 综合性能、资源和成本等多种因素,车轴钢成分设计中,在满足设计要求的组织和性能前提下,应控制Ni、Mo的含量。 车轴钢的冶金质量 车轴要求钢材具有良好的疲劳强度,钢材中的宏观和微观缺陷将造成应力集中,而且本身常常就是裂纹源,因而,车轴钢材的冶金质量就显得十分重要。为此,国外已开始较普遍地采用钢包脱气、真空冶炼等精炼方法生产车轴用钢。精炼钢的疲劳强度和冲击性能都得到

KISSsoft关于齿轮强度的计算中文版

3. 强度计算 输入你自己的材料数据 在Kisssoft的数据库中已经包含了一些塑料的数据,如果你想在kisssoft中储存你的一些关于塑料齿轮的数据,你可以使用以下方法: 这里我们用已经做好的POM表 首先点击“Extras”->“Data base tool”,选择相应的数据然后进行计算,如图3-1。或者输入自己的数据,点击“material basic base”并在对话框的底部点击“+”,就会出现一个对话框,在这个对话框中就可以输入数据。如图3-2 (图3-1)

(图3-2) 结合有效的齿型计算强度 在KISSsoft系统中如何激活“graphical method(图解法)”。当你输入强度时,在对话框的右下方点击“Details”按钮,然后在“Form factor Yf and Ys”的下拉菜单中选择“using graphical method”如图所示

现在,计算时首先计算出的是齿轮的齿形系数Yf和它的应力修整系数Ys. 你也可以在KISSsoft系统中显示齿根应变系数,点击“Path of contact”输入你所需的设置参数,并进行运算。如下图: “Path of contact”的设置版面 然后你点击“Graphics”->“Path of contact”, 选择你所需要的图表,例如选择应力强度曲线(stress curve)的2D形式。

Tooth root stresses and Hertzian pressure

Tooth root stresses, progression in the tooth root

齿轮强度计算公式

第7节 标准斜齿圆柱齿轮的强度计算 一. 齿面接触疲劳强度计算 1. 斜齿轮接触方式 2. 计算公式 校核式: 设计式: 3. 参数取值说明 1) Z E ---弹性系数 2) Z H ---节点区域系数 3) εα---斜齿轮端面重合度 4) β---螺旋角。斜齿轮:β=80~250;人字齿轮β=200~350 5) 许用应力:[σH ]=([σH1]+[σH2])/2≤1.23[σH2] 6) 分度圆直径的初步计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: a) 初取K=K t b) 计算d t c) 修正d t 二. 齿根弯曲疲劳强度计算 1. 轮齿断裂 2. 计算公式校核式: 设计式: 3. 参数取值说明 1) Y F a 、Y Sa ---齿形系数和应力修正系数。Z v =Z/cos 3β→Y Fa 、Y Fa 2) Y β---螺旋角系数。 3) 初步设计计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: d) 初取K=K t e) 计算m nt f) 修正m n [] H t H E H u u bd KF Z Z σεσα≤±=1 1[] 3 2 1112??? ? ??±≥H H E d Z Z u u KT d σεψα[]3 2 1112 ??? ? ??±≥H H E d t t Z Z u u T K d σψ311t t K K d d ≥[]F n sa Fa t F bm Y Y Y KF σεσα β ≤=[]3 2121cos 2F sa Fa d n Y Y z Y KT m σεψβα β≥3t t n n K K m m ≥[] 3 2121cos 2F sa Fa d t nt Y Y z Y T K m σεψβα β≥

简析滚动轴承的疲劳寿命

安昂商城 简析滚动轴承的疲劳寿命 轴承疲劳寿命是指,在一定技术状态下的滚动轴承,在主机的实际使用状态下运转,直至滚动表面发生疲劳剥落而不能满足主机要求时的轴承内,外圈(轴、座圈)相对旋转次数的总值总转数。当轴承转速大致恒定或已成为已知,疲劳寿命可用与总转数相应的运转总小时数来表示,此外,还应注意: 1)、影响滚动轴承疲劳寿命的因素非常多,无法全部加以估计或通过标准试验条件而加以消除,这造成轴承实际疲劳寿命有很大的离散性,因此轴承疲劳寿命的计算与试验是以数理统计学和概率论为基础的。最常用的滚动轴承疲劳寿命的表达参数为额定寿命L10,在ISO推荐标准R281中L10的涵义明确规定如下:“数量上足够多的相同的一批轴承,其额定寿命L10用转数(或在转速不变时用小时数)来表示,改批轴承中有90%在疲劳剥落发生前能达到或超过此转数(或小时数)”。迄今为止,世界各国都遵从上述规定。 在美国等一些国家中,还采用中值寿命的概念。中值寿命Lm是指一批相同轴承的中值寿命,即指其中50%的轴承在疲劳剥落前能够达到或超过的总转数,或在一定转速下的工作小时数。中值寿命Lm,不是一批轴承寿命的算术平均值。一般中值寿命Lm是额定寿命的5倍左右。 2)、额定寿命的概念值使用于数量足够的一批滚动轴承,而不适用于个别滚动轴承。例如有40套6204轴承按其使用条件算的其额寿命为1000h,其实际意义是在这批轴承中大体上可能有90%,即36套的实际运转寿命将超过1000h即出现疲劳,但不能个别地指出究竟是哪只轴承的疲劳寿命将低于1000h。事实上,由于轴承设计、制造、材质以及应用技术的不断进步,一些厂家轴承产品的实际使用寿命大多略高于甚至成倍地高于按标准方法计算出的额定寿命。 3)、对于实际使用中并非由于疲劳失效的轴承,额定疲劳寿命的意义就代表这批滚动轴承在正常发挥其材料潜力时可期望的寿命。因此在大多数情况下,用户在选择滚动轴承时仍先作疲劳寿命计算,再根据实际失效类别进行校核,例如磨损寿命校核,取计算结果中较小值为滚动轴承计算寿命。

影响圆柱螺旋弹簧疲劳寿命的因素分析

译文: 影响圆柱螺旋弹簧疲劳寿命的因素分析 [摘要]为提高圆柱螺旋弹簧疲劳强度,从消除、减小疲劳破坏的外因及内因入手,合理设计零件参数与材料是完全必要的。在加工制造时合理安排工艺流程,保护和提高弹簧表面状态,严格控制热处理过程,使之基体得到强化。采用抛丸处理等表面强化手段,使弹簧表面获得对提高疲劳极限有利的压应力,同时消除产生裂纹源的表面缺陷,达到提高疲劳寿命之目的。 [关键词]疲劳强度疲劳寿命金相组织裂纹表面强化 一、概述 弹簧作为储能和减震零件,被广泛用于各种机械设备中,随着这些机械设备对高可靠性的要求,对其使用的弹簧疲劳强度及稳定性提出了更高要求。要求弹簧制造厂从设计、制造、热处理、表面处理等过程加以控制,确保弹簧的可靠性。笔者将多年从事机械制造、热处理实际工作的经验与大家分享,以期对读者提高弹簧设计、制造工艺有帮助。 二、疲劳强度的影响因素 疲劳强度的影响因素很多,这里只对与设计、制造有关的因素进行探讨。(一)材料表面粗糙度的影响 交变载荷下金属不均匀滑移主要集中在金属的表面,使疲劳裂纹常常产生在表面上,所以材料表面粗糙度对疲劳强度影响很大。表面划伤、裂纹都会产生应力集中,使疲劳强度下降。因此材料表面粗糙度的影响应引起重视。 (二)表面强化及表面应力的影响 螺旋弹簧不管是受压或受拉,其承受的应力主要是扭转应力,在弹簧的内表面,应力最大。因此,采用表面强化,使弹簧表面残余应力为压应力对提高疲劳极限很有利。表面强化提高疲劳极限的原因在于:表面强化后不仅直接提高了表面层强度,从而提高了表面层的疲劳极限,而且由于强化层的存在,使表层产生压应力,这样就降低了表面层的拉应力,使疲劳裂纹不易产生和扩展。 (三)材料合金成分及组织的影响 弹簧材料成分和组织对疲劳极限的影响主要表现在对强度、热处理工艺性、晶粒大小的影响上。材料成分中影响疲劳极限的主要元素是碳,碳含量的增加,

齿轮强度计算公式

第7节 标准斜齿圆柱齿轮的强度计算 一. 令狐采学 二. 齿面接触疲劳强度计算 1. 斜齿轮接触方式 2. 计算公式 校核式: 设计式: 3. 参数取值说明 1) Z E---弹性系数 2) Z H---节点区域系数 3) ---斜齿轮端面重合度 4) ---螺旋角。斜齿轮:=80~250;人字齿轮=200~350 5) 许用应力:[H]=([H1]+[H2])/2 1.23[H2] 6) 分度圆直径的初步计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: a) 初取K=Kt b) 计算dt c) 修正dt 三. 齿根弯曲疲劳强度计算 1. 轮齿断裂 2. 计算公式校核式: 设计式: 3. 参数取值说明 1) Y Fa 、YSa---齿形系数和应力修正系数。Zv=Z/cos3YFa 、YFa 2) Y ---螺旋角系数。 3) 初步设计计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: d) 初取K=Kt e) 计算mnt [] H t H E H u u bd KF Z Z σεσα≤±=1 1[]32 1112 ??? ? ??±≥H H E d t t Z Z u u T K d σψ[]3 2121cos 2F sa Fa d n Y Y z Y KT m σεψβα β≥[] 32 121cos 2F sa Fa d t nt Y Y z Y T K m σεψβα β≥

f) 修正mn 第8节 标准圆锥齿轮传动的强度计算 一. 作用:用于传递相交轴之间的运动和动力。 二. 几何计算 1. 锥齿轮设计计算简化 2. 锥距 3. 齿数比: u=Z2/Z1=d2/d1=tan 2=cot 1 4. 齿宽中点分度圆直径 dm/d=(R-0.5b)/R=1-0.5b/R 记R=b/R---齿宽系数R=0.25~0.3 dm=(1-0.5R)d 5. 齿宽中点模数 mn=m(1-0.5R) 三. 受力分析 大小: Ft1=2T1/dm1(=Ft2) Fr1=Ft1tan cos Fa2) Fa1=Ft1tan sin 1(=Fr2) 方向: 四. 强度计算 1. 齿面接触疲劳强度计算 1)计算公式: 按齿宽中点当量直齿圆柱齿轮计算,并取齿宽为0.85b ,则: 以齿轮大端参数代替齿宽中点当量直齿圆柱齿轮参数,代入 n 1 n 2 相交轴 n 2 两轴夹角900 n 1 2 2 2122212 21Z Z m d d R +=+= d 1 d m b R d m2 d 2 δ1 δ2 O C 2 C 1 A 2 A 1 q Fr α δ Fa Fn Ft Fa1 Fr 2 2 1 n 1 Fa2 Fr 1 Ft 1 Ft 2 []H v v v v H E H u u bd KT Z Z σσ≤+=1 85.023 1 1

疲劳寿命试验报告OTY.doc

离合器分离轴承 疲劳寿命试验报告 (2016)试验第012号 产品名称:离合器分离轴承产品型号:50RCTS3502 产品件号:491Q-1602060 试验类型:寿命质量考核 哈尔滨天烨轴承有限公司 2016年12 月18 日

哈尔滨天烨轴承有限公司产品开发部 离合器轴承寿命试验报告共2页第2页 7 试验结果 该分离轴承经过100万次分离、结合试验后,各零部件无任何损坏,轴承总成工作正常。 8 试验结论 根据JB/T5312-2001《汽车离合器分离轴承及其单元》的规定,离合器分离轴承动态分离耐久性试验达到100万次为合格品,该分离轴承与原车离合器进行配套试验,经过100万次分离、结合试验后没有任何损坏,旋转灵活、无异响。证明该轴承满足使用要求。 9试验时间 2016年11月25日至2016年12月17日 10试验地点 本公司轴承寿命试验区 11试验参加人员 姜利涛陈庆峰张学涛 编制张学涛审核陈庆峰

哈尔滨天烨轴承有限公司产品开发部 离合器轴承寿命试验报告共2页第1页 离合器分离轴承寿命试验报告 1试验报告 任务单号:LHQ—012/2007 2试验目的 对本公司生产的50RCTS3502自调心离合器分离轴承进行寿命试验。 3试验对象 本公司成品库里的50RCTS3502自调心离合器分离轴承任抽2套中的第2套。4试验项目 离合器分离轴承寿命试验。 5试验方法及实验条件 5.1评价依据标准 现参考我国JB/T5312-2001《汽车离合器分离轴承及其单元》 5.2试验设备 本公司2014年自制的TY-03-04离合器分离轴承耐久性试验台。 5.3试验条件 与原车离合器总成配套进行动态分离耐久性试验。 主轴转速:3000r/min 分离频率:70次/min 分离行程:7.5mm 试验区温度:100℃±5℃ 试验总次数: 100万次 6试验过程 试验从2016年11月25日开始。每20万次停机对实验轴承检查一次。 直至1001500次试验结束。

波形弹簧疲劳失效分析与预防

波形弹簧疲劳失效分析与预防 https://www.360docs.net/doc/873073954.html,/ 作者:未知文章来源:本站原创 点击数:838 更新时间:2007-11-12 16:26:20 | 【字体:小大】 一、引言 弹簧行业在整个机械制造业当中虽然是一个小行业,但其所起到的作用是绝对不可低估的。随着开放程度的不断深入,在引进的机械制造业、汽车、石化及电力等工业装备在国内得到了大量的应用。相应地我们也了解一些具有优越性能的新型零部件,多层波形弹簧就属于一种较新的弹性元件。 普通的单层波形弹簧是一个金属圆环上具有若干个峰谷的弹性元件。而多层波形弹簧看上去就是由若干个普通的单层波形弹簧组合而成的,区别在于它不是简单叠加的,而是通过一种特殊的连续绕制工艺加工而成。 二、分类与工作原理 波形弹簧通常分为:a、单层波形弹簧、 单层封闭型呈“O”形状波形弹簧、 单层开口型呈“C”形状波形弹簧; b、多层峰对峰式(串联式)波形弹簧; c、多层叠峰式也称嵌套式(并联式); 单层波形弹簧:适用于短位移和中低弹力的工作条件、具有很好的可靠性和较高工作原理:波形弹簧具有圆柱弹簧和碟形弹簧的双重工作原理的精确度。 多层波形弹簧对峰式(串联式):弹力值与圈数成反对比,其主要应用于:大位移、中低弹力要求,是圆柱弹簧的替代品。嵌套式(并联式):弹簧的力值与圈数成正比,在发生巨大弹力的同时,还可以保持波形弹簧所有的精确特性,在许多场合中可以用嵌套式(并联式)波形弹簧代替碟形弹簧使用。 三、材料、温度对疲劳失效影响 就同一种材料而言:细晶粒组织的材料比粗晶粒组织的材料具有更高的屈服强度和疲劳弹度;表面强化处理的比未经过强化处理的疲劳寿命要高得多;材料表面粗糙度愈小,应力集中愈小,疲劳强度愈高;有冶金缺陷的材料疲劳寿命也就会大大降低,使弹簧提前产生疲劳失效。 用普通弹簧钢生产的波形弹簧具有弹性好,导电性、耐磨性强,正常温度下(温度?200?时)弹簧疲劳失效处于正常范围以内。但弹簧随着温度的增加,弹性会逐渐减小,失效现象将会明显增加。

汽车变速器齿轮强度计算方法

汽车变速器齿轮强度计算方法研究

摘要 汽车变速器齿轮强度的计算比较复杂,有些参数需通过多次选取和计算,才能达到设计要求,需要耗费大量的时间。通过学习研究一些国外变速器的齿轮计算方法,通过VB6.0编程实现计算机辅助汽车变速器齿轮强度计算,找到一种简便的、快速的计算方法。同时使用S-N曲线对计算后的齿轮强度进行校核。 Solidworks是法国达索公司开发的集三维建模、运动模拟及有限元分析为一体的,功能强大且操作简单的机械设计软件。可对齿轮进行快速建模,并应用集成cosmosworks 对啮合齿轮进行有限元分析,为设计提供依据。本文以某六档机械式汽车变速器为实例进行设计计算。 关键词:汽车变速器,齿轮强度计算,cosmosworks,VB 汽车变速器齿轮的强度计算和校核 1.1 齿轮强度计算 1.1.1 变速箱齿轮的失效形式 通常变速箱齿轮损坏有三种形式:轮齿折断、齿面点蚀、齿面胶合。

齿轮在啮合过程中,轮齿表面将承受集中载荷的作用。轮齿相当于悬臂梁,根部弯曲应力很大,过渡圆角处又有应力集中,故轮齿根部很容易发生断裂。折断有两种情况:一是轮齿受足够大的突然载荷冲击作用导致发生断裂;二是受多次重复载荷的作用,齿根受拉面的最大应力区出现疲劳裂缝,裂缝逐渐扩展到一定深度,轮齿突然折断。变速箱齿轮折断多数是疲劳破坏。 齿面点蚀是闭式齿轮传动常出现的一种损坏形式。因闭式齿轮传动的齿轮在润滑油中工作,齿面长期受到脉动的接触应力作用,会逐渐产生大量与齿面成尖角的小裂缝。而裂缝中充满了润滑油,啮合时由于齿面互相挤压,裂缝中油压升高,使裂缝继续扩展,最后导致齿面表层一块块剥落,齿面出现大量扇形小麻点,此即齿面点蚀。理论上靠近节圆的根部齿面处要较靠近节圆顶部齿面处点蚀更严重;互相啮合的齿轮副中,主动的小齿轮点蚀较严重。 在变速箱齿轮中,齿面胶核损坏的情况不多,故一般设计计算无须校核齿面胶合的情况。 齿轮计算载荷的确定在齿轮强度计算中占据至关重要的地位,而影响轮齿载荷的因素却有很多,也比较复杂,目前在国际上的各种齿轮强度计算方法的主要区别,就是对载荷影响因素的计算方法的不同。 为使齿轮能在预定的使用寿命内正常工作,应保证齿面具有一定的抗点蚀能力。影响接触疲劳强度的因素很多,如接触应力、齿面滑动速度、齿面润滑状态以及材料的性能和热处理等,根据赫兹(H.R.Hertz)导出的两弹性圆柱体接触表面最大接触应力的计算公式,可得齿轮齿面接触时的应力公式,用其算出齿轮接触应力值,校核该值必须小于其许用应力。 齿轮在传递动力时,轮齿处于悬臂状态,在齿根产生弯曲应力和其它应力,并有较大的应力集中,为使齿轮在预定的寿命期内不发生断齿事故,必须使齿根的最大应力小于其许用应力。 1.1.2 抛物线法力作用于齿顶齿轮强度计算 1、计算理论: 假定力作用于齿顶(如图2-1所示),力与齿对称线的交点距齿轮中心的距离为 cos /cos an Ln αω?,与齿根圆弧相切的抛物线的顶点距齿轮中心线的距离为L ',它是刀 具齿顶高,刀尖圆角半径,变位系数,压力角,和θ角的函数,当其他参数不变而θ角变化时,将产生不同的抛物线,它们与齿根圆弧的切点将不相同, L '也不相同, n p 与抛物线顶点的偏离值R 也就不同。当对应于0R =时的抛物线与两边齿根圆弧的切点就是要求的齿的危险断面。该两切点的之间的距离就是危险断面齿厚f S ,抛物线顶点至危险断面的

轴承寿命试验

实验一:滚动轴承疲劳寿命 一、实验目的 1.了解影响轴疲劳承寿命的影响因素 2.了解实验的原理及试验方法 二、实验设备 ABLT-1A型轴承寿命强化试验机 三、实验原理及方法 ABLT-1A型轴承寿命强化试验机适用于内径为10-60mm的滚动轴承寿命强化实验。该试验机主要由实验头、实验头座、传动系统、加载系统、润滑系统、电器控制系统、计算机监控系 统等部分组成。实验头装在实验头座内。传动系统传递电机的运动,使试验轴按一定转速旋转。加载系统提供试验所需的的

载荷。润滑系统使实验轴承在正常情况下充分润滑进行实验。电气控制系统提供电气和动力保护,控制电机和液压油缸等的动作。计算机记录试验温度和振动信息,监控机器的运行情况。强化是在保持滚动轴承接触疲劳失效机理一致的前提下被实验的轴承上所加的当量动载荷应接近或达到额定动载荷C的一半,以达到缩短试验周期的目的。 实验轴承外圈温度自动显示,试验时间自动累计显示,疲劳剥落自动停机,用工控机将实验结果每隔一定时间将寿命实验通过时间、振动、温度自动打印一份。 主要技术指标: 实验轴承类型:深沟球轴承、角接触球轴承、圆柱滚子轴承、圆锥滚子轴承、滚针轴承、汽车水泵轴连轴承和汽车轮毂轴承。实验轴承内径:Φ10-60mm 实验轴承数量:2-4套 最大径向载荷:25KN/100KN 最大轴向载荷:50KN 试验轴承转速:1000-10000r/min(有级可调) 供电电源:380v 50hz 三相 功率:约4.5KW 环境温度:5-40 ℃ 四、实验步骤

1.在同一批同型号经检验合格的的产品中随机轴承实验样品在同一批同型号经检验合格的的产品中随机轴承实验样品,每批轴承必须在同一结构的试验机,在相同实验条件下进行试验。 2.在样品内外套圈非基准端面上逐套编号。 3.试验主体组装:试验主体是指主轴,承载体,左右衬套,左右法兰盘,拆卸环,左右锁紧螺母,承载轴承实验轴承等。各零部件要清洗干净。严格按照标准和图样要求组装。 4.在压装轴承时只允许内圈受力,压装后手感检查每套轴承是否旋转灵活。试验主体与机身组装后,用手转动主轴无障碍、无异常。检查各系统(载荷传递、润滑、电气、控制、检测等),使功能正常,安全可靠。 5.采用油润滑实验时,实验轴承外圈温度不允许超过95℃;采用脂润滑时,实验轴承温度不允许超过80℃。 6.寿命试验连续运转,要随时对载荷、转速、油压、振动、噪声、温度等进行监控,每两小时记录一次实验轴承外圈温度,作为实验通过时间的依据。除自动检测外,还要随时用听诊器监听轴承噪音变化,判断轴承运转情况,若有异常情况,立即停机检查处理。 7.试验结束后,有关检测记录、实验报告、实验记录等有关资料保持其原始面目,并妥善保管。试验后典型失效样品送有关部门进行失效分析,其余防锈保存。 五、实验报告

相关文档
最新文档