电子显微技术发展

电子显微技术发展
电子显微技术发展

电子显微技术的发展

电子显微镜,简称电镜,经过几十年的发展已成为现代科学技术中不可缺少的重要工具,尤其在表面形貌分析方面有重要应用。常见的电子显微技术有透射式电子显微镜( TEM),扫描电子显微镜( SEM),扫描隧道显微镜( STM),环境扫描电子显微镜(ESEM),原子力显微镜(AMF),以及光扫描隧道显微镜(PSTM),近场扫描光学显微术(NSOM),弹道式电子发射显微术(BEEM),扫描片化学显微术(SECM)等。

1.透射式电子显微镜( TEM)

1897 年布劳恩发明了阴极射线管,尽管结构简单,但已是现代电子束管的雏形。同年汤姆孙测定了电子的荷质比,指出以前发现的阴极射线也是一种物质粒子流(现称电子流) 。1926 年布许发表了有关磁聚焦的论文,因此可以利用电子来成像(与光学透镜成像极为相似) 。这样,就为发明电子显微镜作好了技术上和理论上的准备。

恩·鲁斯卡,1906 年12 月25 日出生于德国的海德堡,1929 年从事电子透镜的实验研究。1931 年4~6月鲁斯卡和克诺尔采用二级磁透镜放大,获得了光阑孔的16 倍放大像,制成了世人公认的第一台电子显微镜的最初雏型。当时得到的分辨率为40nm ,获得了比光学显微镜清楚得多的大肠杆菌的电子像,这一成就在显微学史上是一项重大的突破。1931 —1932 年鲁斯卡在德国《物理学进展》杂志上发表了以“几何电子光学的进展”为题的论文,第一次使用了电子显微镜的名称。1932 年成为了发明电子显微镜的年份。

据理论计算,电子在100kV 的加速电压下运动时,其波长仅为0. 0037nm ,竟比可见光波长小5 个量级。即使考虑到各种技术上的困难,电子显微镜的分辨本领也会比光学显微镜高得多。

1933 年鲁斯卡用短磁透镜,在75kV 下获得了12000 倍的放大率。1937 年鲁斯卡等开始研制商品电子显微镜。1938 年得到了放大30000 倍的照片,点分辨本领为13nm ,比光学显微镜高了20 倍。西门子公司1939 年推出了世界上第一台商品电子显微镜,1949 年又推出了分辨本领达10nm 的UM -100 型电子显微镜,1954 年又推出了当时最先进的新一代高分辨Elmiskop Ⅰ型电子显微镜。其主要指标为:分辨本领1. 0 —1. 5nm ,加速电压100kV ,放大倍数16 万倍。

到了80 年代,电子显微镜不论实际达到的分辨率还是应用性能都有很大进

展。现代加速电压为1250kV 的超高压、超高分辨电子显微镜,分辨本领已达0. 1nm ,放大倍数在150 万倍以上。电子显微镜的问世成为显微镜发展史上的第二个里程碑。

2.扫描电子显微镜( SEM)

当聚焦得很细的电子束在试样表面扫描时,用探测器收集相关信息,逐点逐行地在显像管上显示出来,用这种原理制成的电子显微镜称为扫描电子显微镜。

马·克诺尔等在1935 年制成了让电子束在材料表面扫描的仪器,把这个装置作为电子显微镜则是偶然的。受电子束直径所限,当时的分辨率只有100 微米左右。

第一台真正的扫描电镜是冯·阿登纳在1937 年制成的。电子束直径聚焦、缩小到0. 01 微米、探针电流只有10 12A 的量级。这台仪器原理虽然正确,但由于调试困难、记录时间长、分辨本领低,而以失败告终。

现代扫描电镜的设计制造应归功于英国剑桥大学工程系的奥特莱及其研究小组。1958 年剑桥大学向该研究所提供了一台新的扫描电镜。1965 年英国剑桥仪器公司生产出了商品Sterecoscan。从此开创了扫描电镜的新纪元。

SEM的分辨本领虽没有TEM那么高,但试样制备简单、焦深长、视场大,可直接观察很大很厚的实物试样,而且还能让它作上下、前后、左右、倾斜和旋转运动,从各个角度来仔细观察。SEM 的放大倍数还能方便地从几倍连续地增大到几十万倍,既可对感兴趣的细节仔细研究,又可看到全貌,知道这些细节在整个物体中的部位。现代常规SEM 的分辨本领已达3. 5nm。这是一种非破坏性的分析测试装置。

采用场发射电子枪的超高分辨SEM 的分辨本领已高达0. 6nm ,接近TEM的水平。现在SEM不但在科学研究而且在工农业生产中得到了广泛的应用,特别是电子计算机产业的兴起使其得到了飞速发展。SEM成为半导体集成电路芯片的常规检测工具。

3. 环境扫描电子显微镜(ESEM)

扫描电子显微镜(SEM)的出现,使人类观察微小物质的能力有了质的飞跃。由于扫描电子显微镜的高分辨率、良好的景深和简易的操作方法,它迅速成为一种不可缺少的工具而广泛应用于科学研究和工程实践中。但是,由于(SEM) 的工作原理及结构上的一些限制,使(SEM)) 在使用性和适用范围方面受到很大影响。首先,由于肮脏潮湿的样品会使仪器真空度下降,降低成像性能,甚至会损坏探头或电子枪;同时,各种含水样品不能在自然状态下被观察。挥发性样品也

不能观察,所以,被观察样品必须洁净、干燥。其次,当高能电子束打到样品表面时,会在样品内沉积相当可观的电荷。如样品导电,电荷经样品流入大地;如样品不导电,这些电荷累积起来,形成了附加的干扰电场,从而使成像信号发生变化,使图象失真。因此,观察绝缘样品时,必须对样品预处理,如在样品表面涂以导电薄层,从而使样品准备工作繁琐、复杂,并带来其它一些新问题:涂层是否会显著地改变样品外貌?涂层后的样品图象是涂层图象而非样品的图象,这两者是否完全相同?再次,仪器对光、热信号敏感,不能观察发光、发热的样品。仪器工作时,照明灯、观察窗都不能打开,给观察过程带来不便。

针对(SEM)的缺陷,人们提出了各种解决办法,其中以近年开发的环境扫描电子显微镜(ESEM)技术最引人注目。(ESEM)最大的优点就在于它允许改变显微镜样品室的压力、温度及气体成分。它不仅保留了(SEM)的全部优点,而且消除了对样品室环境必须是高真空的限制。潮湿、细腻、肮脏、无导电性的样品在自然状态下都可检测,无需任何处理。在气体压力高达5000Pa,温度高达1500C,含有任何气体种类的多气体环境中ESEM都可提供高分辨率的二次电子成像,从而使SEM 的使用性能及适用范围大幅度改善。

由于ESEM 的结构特点,ESEM使SEM的适用范围和操作性能带来了革命性突破。在抗污染、对光热不敏感、不破坏样品组织结构、使样品准备工作大为简化以及能直接观察并记录样品的动态过程等方面显示了其显著的优势。ESEM 具有传统的SEM的一切主要性能,还在观察绝缘样品和含液体的样品这两个主要方面大大拓展了SEM的功能,因而,可以直接观察研究一些在自然状态下活的生物组织,甚至是活着的生命;也可观察研究一些绝缘或含液体样品的动态变化过程,得到一些人们从未见过的显微世界的真实图像。ESEM同样可以X射线能谱仪相配接,进行元素分析,采集元素的面分布图或线扫描曲线。即使对于超轻元素,分析精度也不受影响。

4. 扫描隧道显微镜( STM)

扫描隧道显微镜是从1982 年以后才逐渐发展起来的。相对而言,仪器结构较为简单,其主要功能是在原子级水平上分析表面形貌和表面能级分布、表面态密度分布、表面电荷密度分布和能量分布。它的横向分辨本领高达0. 1 —0. 2nm ,而深度分辨本领为0. 01nm ,是各类显微镜中最高的。而其放大倍数可达数千万倍,比一般电子显微镜还高数百倍。它还克服了电子显微镜中高能电子束对试样的损伤、深度分辨本领低以及试样必须处于真空中的限制,既可以在超高真空、真空,也可以在大气下甚至液体中无损伤地直接观察物质表面结构。

扫描隧道显微镜利用的原理是量子世界的隧道效应。由于隧道效应,在两块

金属片之间形成隧道电流,而且这个电流有个奇特的性质,在一定的电压下,隧道电流随间距的增加而急剧地减小。当间距改变一个原子的尺度时,电流就改变数十或数百倍。利用这种关系,可用来制造新型的显微镜。

1981 年,瑞士苏黎世国际商用公司实验室的科学家罗雷尔和来自德国的研究生宾尼格研制成功了第一台扫描隧道显微镜(STM) ,终于使人们实现了看到原子真面目的愿望。这台显微镜的针尖只有几个原子大小,针尖离样品的间距也只有1 纳米,它的水平分辨率在0. 2nm 以下,垂直分辨率可以达到远小于0. 1nm。

扫描隧道显微镜经历了4 代的发展演变。1981年的第一代非常复杂:真空室放在气垫防震台上,而隧道主体单元则靠强磁体与碗状铅超导体磁场之间的排斥作用悬浮起来,以减轻实验室环境中低频震动的影响。第二代则用磁体产生的涡流来代替超导体悬浮,结构就简单多了。现已为大家所仿效。第三代又变得复杂起来,体积也相当大,整个用石英制造以防止针尖的热漂移,也很快被淘汰了。现在广泛应用的第四代,所谓“口袋式”扫描隧道显微镜。设计得精致小巧,但非常稳固。本身的谐振频率极高,不需特殊防震措施。放在一般工作台上针尖与试样间的相对位置仍可保持不变而获得原子分辨本领。

5. 原子力显微镜(AMF)

原子力显微镜的主要功能类同扫描隧道显微镜(STM),但一般而言,STM 适于研究导体样品,而难于研究绝缘样品。由此发展起来的AFM克服了STM 的局限性,对导体和非导体样品都适用。

与STM类似,原子力显微镜也利用一个紧贴表面的小探针进行表面测量。但这种扫描探针,不依赖于隧道电流。利用一个安装在柔性悬臂上的尖针,悬臂起了弹簧作用,在样品表面来回移动。压电元件使针尖移向样品,直至针尖与样品间的原子间作用力使悬臂偏转。采用光学方法如激光束的偏转,来检察悬臂的偏转。

AMF可以工作在常压下,悬臂和样品可以浸没在液体中,因而,可以在生理状态下成像。空气中物体表面通常覆盖有水和未知污染层的吸附层,针尖接近这种污染层时,有一种粘附力将针尖驱向样品。在液体中工作可以消除这种现象,从而较好地操作控制,因此,AMF可以实时跟踪生物过程。连续的图像可用于将过程形象化,快如跃迁,慢如细胞分裂。AMF还有使化学过程成像的潜力,使科学家直接洞察如血块相关纤维素的聚合和玻璃试管中膜研究的动态过程。

AMF还可用于DNA研究和染色体分析。分子技术一直未能弥补由传统显微术局限性造成的基因组染色体组织信息的缺乏。光学显微镜没有足够高的分辨率,电子显微镜虽有高分辨率,但制样时,样品的损伤干扰了正常测定。AMF

则提供了非破坏性成像和分析染色体结构的新方法。

与STM 类似,随着AMF技术的日益成熟,AMF正全面应用到各个领域。在研究生物分子,研究晶体表面原子结构、研究阳离子多聚物吸附、观察等离子聚合膜、人工制造纳米级结构、绘制相互作用力图、对流体表面成像、范德华力校正等方面,AMF提供了灵敏、可靠的测量分析技术。

目前,各种电子显微技术以得到广泛应用,它们的应用已渗透到科学研究的各个领域。同时,它们之间或与其它分析手段的组合使用,为人类进一步探索微观世界的奥秘提供了可靠的保证。

数电的发展

世界上第一台电子计算机于1946年在美国研制成功,取名ENIAC(Electronic Numerical ENIAC问世以来的短短的四十多年中,电子计算机的发展异常迅速。迄今为止,它的发展大致已经了下列四代。第一代(1946~1957年)是电子计算机,它的基本电子元件是电子管,内存储器采用水银延迟线,外存储器主要采用磁鼓、纸带、卡片、磁带等。第二代(1958~1970年)是晶体管计算机。1948年,美国贝尔实验室发明了晶体管,10年后晶体管取代了计算机中的电子管,诞生了晶体管计算机。第三代(1963~1970年)是集成电路计算机。随着半导体技术的发展,1958年夏,美国德克萨斯公司制成了第一个半导体集成电路。第四代(1971年~日前)是大规模集成电路计算机。随着集成了上千甚至上万个电子元件的大规模集成电路和超大规模集成电路的出现,电子计算机发展进入了第四代。 数字电子技术发展前景1958年界上第一台激光器的诞生,标志着人类进入能够驾驭实物光发射的时代。激光器不仅全面革新了原来的光学技术。光子学技术和光电子学技术也随之蓬勃发展起来。光电子产业在我国是一个新兴产业。早在20世纪60年代,我国就在长春、上海、北京、合肥等地开展了激光技术的研究,70年代在武汉开展了光通信技术的研究,到90年代,激光加土、光存储(主要是影碟)、光通信等产业得到迅速发展,光电子产业初步形成规模。与世界其他国家相比,我国的光电子产业与发达国家几乎同时起步,技术水平与该领域的国际水平差距小大,在激光、光纤光缆、光电器件等领域已达到或接近国际先进水平。近10年来我国光电子技术研究在国家“863”计划和有一关部门的支持卜有一了突飞猛进的进展,在很多领域同国外先进国家只有一两三年的距离,个别领域还处于世界领先地位。中国光谷的发展潜力很大,在信息光电子技术及产业应用方而,我国具有一较好基础。我国的通信网络规模位居世界第二,国产通信传输、交换、路山等系统设各亦达到世界先进水平,已形成一定产业规模。我国政府对于发展信息光电产业非常重视。“十五”期间,国家专门制定了以发展“信息光电子器件与集成技术”为主题的“863计划”。在"863计划”的推动卜,我国的信息光电子技术在科研与产业化方而取得了很多成果。光电子科研、技术突破方而,已进人世界先进行列:在推动产业化方而,建立了北京、武汉、石家庄、深圳等十几个成果转化基地。中国光电子技术发展前景21世纪,我们将进入信息时代,光电子技术及其产业必将有高速的发展;第一,光电子器件在军事和民用方面将得到更大的发展和广泛应用;第二,互联网的发展要求建立更完善的以光纤联接的数字综合服务网络;第三,要进行高度并行运算和自由空间中不受串扰的互连能力的光子计算机的研发必需大力发展光电子技术。在21 世纪的知识经济时代,光电子技术和产业的发展必将对人类产生深远的影响。发展光电子产业对我国的经济发展也必将产生深远影响。 Protel99 SE共分5个模块,分别是原理图设计、PCB设计(包含信号完整性分析)、自动布线器、原理图混合信号仿真、PLD设计。 Protel 99内容简介 Protel 99采用全新的管理方式,即数据库的管理方式。Protel 99 是在桌面环境下第一个以独特的设计管理和团队合作技术为核心的全方位的印制板设计系统。所有Protel99设计文件都被存储在唯一的综合设计数据库中,并显示在唯一的综合设计编辑窗口。 Protel 99软件沿袭了Protel以前版本方便易学的特点,内部界面与Protel 98大体相同,

项目一数字电子技术基础

项目一数字电子技术基础 习题 一、选择题 1、以下代码中为无权码的为()。 A.8421BCD码 B.5421BCD码 C.余三码 D.格雷码 2、以下代码中为恒权码的为()。 A.8421BCD码 B.5421BCD码 C. 余三码 D. 格雷码 3、一位八进制数可以用()位二进制数来表示。 A.1 B.2 C.3 D.4 4、十进制数25用8421BCD码表示为()。 A.10101 B.00100101 C.100101 D.10101 5、与十进制数(53.5)10等值的数或代码为()。 A.(01010011.0101)8421BCD B.(35.8)16 C.(110101.1)2 D.(65.4)8 6、与八进制数(47.3)8等值的数为:()。 A.(100111.011)2 B.(27.6)16 C.(27.3 )16 D. (100111.11)2 7、常用的BCD码有()。 A.2421码 B.格雷码 C.8421码 D.余三码 8、以下表达式中符合逻辑运算法则的是()。 A.C·C=C2 B.1+1=10 C.0<1 D.A+1=1 9、逻辑变量的取值1和0可以表示:()。 A.开关的闭合、断开 B.电位的高、低 C.真与假 D.电流的有、无 10、当逻辑函数有n个变量时,共有()个变量取值组合? A.n B.2n C.n2 D.2n 11、逻辑函数的表示方法中具有唯一性的是()。 A.真值表 B.表达式 C.逻辑图 D.卡诺图 12、求一个逻辑函数Y的对偶式,可将Y中的()。 A.“·”换成“+”,“+”换成“·” B.原变量换成反变量,反变量换成原变量

电子技术发展史概述-首次

电子技术发展史概述 电子技术是十九世纪末、二十世纪初发展起来的新兴技术。由于物理学的重大突破,电子技术在二十世纪发展最为迅速,应用最为广泛,成为近代科学技术发展的一个重要标志。 从20世纪60年代开始,电子器件出现了飞速的发展,而且随着微电子和半导体制造工艺的进步,集成度不断提高。CPLD/FPGA、ARM、DSP、A/D、D/A、RAM和ROM等器件之间的物理和功能界限正日趋模糊,嵌入式系统和片上系统(SOC)得已实现。以大规模可编程集成电路为物质基础的EDA技术打破了软硬件之间的设计界限,使硬件系统软件化。这已成为现代电子设计的发展趋势。 现在,人们已经掌握了大量的电子技术方面的知识,而且电子技术还在不断的发展着。这些知识是人们长期劳动的结晶。 我国很早就已经发现电和磁的现象,在古籍中曾有“磁石召铁”和“琥珀拾芥”的记载。磁石首先应用于指示方向和校正时间,在《韩非子》和东汉王充著《论衡》两书中提到的“司南”就是指此。以后由于航海事业发展的需要,我国在十一世纪就发明了指南针。在宋代沈括所著的《梦溪笔谈》中有“方家以磁石磨针锋,则能指南,然常微偏东,不全南也”的记载。这不仅说明了指南针的制造,而且已经发现了磁偏角。直到十二世纪,指南针才由阿拉伯人传入欧洲。 在十八世纪末和十九世纪初的这个时期,由于生产发展的需要,在电磁现象方面的研究工作发展的很快。库仑在 1785 年首先从实验室确定了电荷间的相互作用力,电荷的概念开始有了定量的意义。

1820 年,奥斯特从实验时发现了电流对磁针有力的作用,揭开了电学理论的新的一页。同年,安培确定了通有电流的线圈的作用与磁铁相似,这就指出了此现象的本质问题。有名的欧姆定律是欧姆在 1826 年通过实验而得出的。法拉第对电磁现象的研究有特殊贡献,他在1831 年发现的电磁感应现象是以后电子技术的重要理论基础。在电磁现象的理论与使用问题的研究上,楞次发挥了巨大的作用,他在1833 年建立确定感应电流方向的定则(楞次定则)。其后,他致力于电机理论的研究,并阐明了电机可逆性的原理。楞次在 1844 年还与英国物理学家焦耳分别独立的确定了电流热效应定律(焦耳 - 楞次定律)。与楞次一道从事电磁现象研究工作的雅可比在 1834 年制造出世界上第一台电动机,从而证明了实际应用电能的可能性。电机工程得以飞跃的发展是与多里沃 - 多勃罗沃尔斯基的工作分不开的。这位杰出的俄罗斯工程师是三相系统的创始者,他发明和制造出三相异步电机和三相变压器,并首先采用了三相输电线。在法拉第的研究工作基础上,麦克斯韦在 1864 年至 1873 年提出了电磁波理论。他从理论上推测到电磁波的存在,为无线电技术的发展奠定了理论基础。1888 年,赫兹通过实验获得电磁波,证实了麦克斯韦的理论。但实际利用电磁波为人类服务的还应归功于马克尼和波波夫。大约在赫兹实验成功七年之后,他们彼此独立的分别在意大利和俄国进行通信试验,为无线电技术的发展开辟了道路。 人类在自然界斗争的过程中,不断总结和丰富着自己的知识。电子科学技术就是在生产斗争和科学实验中发展起来的。 1883 年美国发明

数字电子技术项目教程课程设计

摘要 随着人们物质生活水平的提高,人们对精神生活的追求也愈加强烈,在娱乐方面也多元化,其中电子产品占了其中相当大的一部分。一件好的电子产品总能给人们带来耳日一新的感受。而现代工具务求简捷化、便携化,因此,摇动显示装置的到来,必将会给人们带来一种新的视觉冲击。“摇动显示装置”,俗称“摇摇棒”,是基于人的视觉暂留原理的,通过分时刷新12个发光二极管来显示输出文字或图案等信息的显示装置。输出信号频率的控制通过单片机来实现,用摇动传感器检测当前摇动状态。当进行摇动时,由于人的视觉暂留原理,会在发光一极管摇动区域产生一个视觉平面,在视觉平面内的二极管通过不同频率的刷新,会在摇动区域内产生图像,从而达到在该视觉平面上传达信息的作用。: 制作目的: 1、非常重要的实践教学环节; 2、培养理论知识与生产实际相结合的能力; 3、了解单片机技术; 4、锻炼实际动手能力,掌握电子线路焊接、装配的基本技能; 5、了解并掌握本专业软硬件设计的一此基本问题; 6、提高团队合作能力。设计功能要求:1、静态的时候发光二极管能够正常闪烁; 2、摇动的时候可以正确显示文字或图形; 3、显示“一生平安”字样; 4、显示“i love you !”字样; 5、显示动画心跳图样; 6、按键可以切换不同画面; 7、自动转换图形,轮流显示并循环。随着人们物质生活水平的提高,人们对精神生活的追求也愈加强烈,对信息的渴求已成为了人们必不可少的需要,更加简捷与新颖的信息传递方式无疑会给人们带来耳目一新的感受。而现代工具务求简捷化、便携化,因此,摇动显示装置的到来,必将会给人们带来一种新的方便的文化传递方式。 前言

单片机是随着大规模集成电路的出现极其发展,将计算机的CPU,RAM,ROM,定时/计数器和多种I/O接口集成在一片芯片上,形成了芯片级的计算机,因此单片机早期的含义称为单片微型计算机(single chipmicrocomputer).它拥有优异的性价比、集成度高、体积小、可靠性高、控制功能强、低电压、低功耗的显著优点.主要应用于智能仪器仪表、工业检测控制、机电一体化等方面,并且取得了显著的成果.单片机应用系统可以分为:(1)最小应用系统是指能维持单片机运行的最简单配置的系统。这种系统成本低廉,结构简单,常构成一些简单的控制系统,如开关状态的输入/输出控制等。片内有ROM/EPROM的单片机,其最小应用系统即为配有晶振,复位电路,电源的单个单片机.片内无ROM/EPROM的单片机,其最小应用系统除了外部配置晶振,复位电路,电源外,还应外接EPROM 或EEPROM作为程序存储器用.(2)最小功耗应用系统是指为了保证正常运行,系统的功耗最小.(3)典型应用系统是指单片机要完成工业测控功能所必须的硬件结构系统。 本文将使用单片机对摇动显示进行实例化,设计一个LED摇动显示器来显示文字、图像等信息。掌握利用8051型单片机对发光二极管阵列进行摇动控制的方法。输出信号频率的控制通过单片机来实现,用摇动传感器检测当前摇动状态,用16个发光二极管进行不同频率的亮灭刷新,通过手动摇动可显示输出文字及图案等信息。当进行摇动时,由于人的视觉暂留原理,会在发光二极管摇动区域产生一个视觉平面,在视觉平面内的二极管通过不同频率的刷新,会在摇动区域内产生图像,从而达到在该视觉平面上传达信息的作用。LED显示棒,又称摇摇棒,是一种利用视觉暂留效应制作的“高科技”玩具。可以用“静如处子,动如脱兔”来形容它,即当静止时,它只是几个LED发光二极管(后简称LED),而一旦按照一定的频率去摇晃它,它就会随着位置的变化而变化(亮或灭),最终显示一幅图片或字符串。 目录

有关数字电子技术的应用与发展的研究

有关数字电子技术的应用与发展的研究分析数字电子技术 在“雷达接收器”中的应用 数字电子技术在雷达接收器中的应用,主要体现在:它让雷达接收器具备了四个功能,分别是变频、滤波、放大以及解调功能。其中,滤波的作用是滤除无用的干扰信息,保留有用的目标回波信号;放大和解调的作用是从回波信号中提取目标距离以及角度信息,并以数字信号的形式传输给某一计算机终端设备。另外,数字电子技术也赋予了雷达接收器极高的灵敏度、可靠性以及抗干扰性。其中,雷达接收器中所应用到的数字电子技术,主要有数字变频以及数字滤波技术等。总之,数字电子技术在雷达接收器中的应用,使传统的接收器具备了强大的功能,也正是因为如此,雷达接收器也被广泛地应用在了我国的军事领域当中。 基于USB总线的“微波功率测量计” 分析数字电子技术的未来发展形势 众所周知,当今社会正在朝着数字化以及信息化的方向在不断发展,而这样的一个发展过程,必定也会提高社会经济市场对数字电子技术的要求。为了让数字电子技术能够满足社会经济市场对其的要求,也为了让数字电子技术能够契

合社会发展的趋势,国家相关部门就必须要对已有的数字电子技术进行更为深入的分析和探究,并在这一基础之上,研发出更具有高科技效力的新型数字电子技术及其产品。 另外,传统的电子技术要想在当代社会中站稳脚跟,也必须要实现数字化,且研究人员在对传统的电子技术进行研究的过程当中,也让其发生了翻天覆地的变化,而其中最为重要的一个变化就是:电子技术的数字化。因此,在目前,我国各行各业中所应用到的数字电子技术,也都是经过电子技术逐渐演变而来的,且这样的一个演变过程,也会让数字电子技术更为广泛的被应用到可编程逻辑器件当中,比如:半导体芯片,这种芯片因具有极高的性能,所以它必须要借助于更先进的数字电子技术,才能得以很好地实现。因此,数字电子技术的发展是具有必要性的。 模拟电子技术和数字电子技术的有机结合 把模拟电子技术和我国目前已有的数字电子技术合理地融入在一起,就可以在很大程度上提高研究人员对新型数字电子技术及其产品的研发效率,比如:电位器的研发进程,该仪器的使用寿命原来是比较短的,且其也不具备很高的可靠性。但是,研究人员在把线性电子等技术应用在该仪器当中之后,它就变成了一种具备数字化功能的电位器,而这种具备数字化功能的电位器,同时也具备了较强的性能和较长

再谈数字电路发展史

再谈数字电路发展史 随着社会的发展和进步,数字技术也在不断的日新月异,并且不断的影响甚至改变我们的生活,学完《数字逻辑设计与应用》后,我想谈一下我对数字技术的一些看法,以及通过这学期学习《数字逻辑设计与应用》的过程及学完本门课程掌握的内容总结在学习本门课程应该重点学习哪些内容以及该怎样学这门课程。 学完《数字逻辑设计与应用》掌握的内容:理论课上学到了数字逻辑电路的基本理论与基本分析方法、数字逻辑电路的的分析设计方法和基本的系统设计技巧、各种逻辑分析与设计的工程方法、典型逻辑功能部件的内部结构和其工作原理;课程设计环节初步了解学习verilog硬件设计语言,能够使用multisim,maxplus,quatus,modelsim等仿真软件;数字电路同步实验环节给了我们理论联系实践的机会,给出了许多与基础实验相关的设计性试验为我们提供了很多好的想法,我们不仅要做基础性试验也需要做设计性试验。 第二章引入必要的数制和码制知识,数字系统只处理数字信号0,1,需要我们将任意信息用(0,1)表达,数制用(0,1)表达数量,符号编码用(0,1)表达不同对象。数字逻辑体系中信息主要有两种:数值信息和非数值信息,数值信息通过数制(二进制,八进制,十进制,十六进制等表示),我们要能熟练进行不同数制之间的转换及各种数的加减乘除运算;非数值信息以编码(BCD码、2421码、余三码、格雷码、ASCΠ等编码方法)的形式表征。 第三章讲述数字系统中的电气知识:如何在模拟的世界中表征数字系统(将物理上的实际值映射为逻辑上的0和1)正逻辑表示,负逻辑表示,我们基本使用正逻辑,三种基本逻辑运算:与、或、非,CMOS和TTL逻辑系列,CMOS反相器的构成及工作状态分析。了解电路的静态、动态特性分析涉及到逻辑电压电平和噪声容限,带电阻负载的电路特性、扇出,非理想输入、电流尖峰和去藕电容器件,不用CMOS悬空相当于接高电平,对逻辑器件的速度与功耗要了解。 第四章介绍组合逻辑设计原理,主要内容是逻辑代数的基本定律、规则、常用公式以及开关代数,组合电路分析、综合与最小化。重点学习掌握逻辑代数的公理、定理、对偶关系,以及在逻辑代数化简时的作用;逻辑函数的表达式:积之和与和之积标准型、真值表;组合电路的分析:逻辑函数表达式的产生过程及表达式的化简;组合电路的综合过程:将功能叙述表达为组合逻辑函数表达形式使用开关代数原理化简或卡诺图化简,要注意无关项的处理冒险问题和多输出逻辑化简方法。 至此我们初步建立了数字逻辑的基本概念。组合电路、时序电路分析与设计中的基本方法、逻辑工具以及硬件描述语言建模技术是我们必须深入学习的。 第六章主要讲述组合逻辑设计原理、组合电路设计实践及常用中规模集成器件MSI(译码器、编码器、数据选择器、数据分配器、加法器、减法器、比较器、奇偶校验电路、三态器件等),了解文档标准和电路定时。而第七,八章讲述了时序电路的设计原理与设计实践,以及常用中规模集成器件MSI(74x163计数器,74x194通用移位寄存器等)。重点需要掌握(1)锁存器、触发器的区别;(2)D型、J-K型、T型触发器的时序特性,功能表,特征方程表达式,不同触发器之间的相互转换;(3)钟控同步状态机的模型图,状态机类型及基本分析方法和步骤,使用状态图表示状态机状态转换关系;(4)钟控同步状态机的设计:状态转换过程的建立,状态的化简与编码赋值、未用状态的处理——风险最小方案和成本最小方案、使用状态转换表的设计方法、使用状态图的设计方法。(5)学习利用基

电子技术发展史概述-首次

电子技术发展史概述电子技术是十九世纪末、二十世纪初发展起来的新兴技术。由于物理学的重大突破,电子技术在二十世纪发展最为迅速,应用最为广泛,成为近代科学技术发展的一个重要标志。 从20世纪60年代开始,电子器件出现了飞速的发展,而且随着微电子和半导体制造工艺的进步,集成度不断提高。CPLD/FPGA、ARM、DSP、A/D、D/A、RAM和ROM等器件之间的物理和功能界限正日趋模糊,嵌入式系统和片上系统(SOC)得已实现。以大规模可编程集成电路为物质基础的EDA技术打破了软硬件之间的设计界限,使硬件系统软件化。这已成为现代电子设计的发展趋势。 现在,人们已经掌握了大量的电子技术方面的知识,而且电子技术还在不断的发展着。这些知识是人们长期劳动的结晶。 我国很早就已经发现电和磁的现象,在古籍中曾有“磁石召铁”和“琥珀拾芥”的记载。磁石首先应用于指示方向和校正时间,在《韩非子》和东汉王充着《论衡》两书中提到的“司南”就是指此。以后由于航海事业发展的需要,我国在十一世纪就发明了指南针。在宋代沈括所着的《梦溪笔谈》中有“方家以磁石磨针锋,则能指南,然常微偏东,不全南也”的记载。这不仅说明了指南针的制造,而且已经发现了磁偏角。直到十二世纪,指南针才由阿拉伯人传入欧洲。 在十八世纪末和十九世纪初的这个时期,由于生产发展的需要,在电磁现象方面的研究工作发展的很快。库仑在1785年首先从实验室确定了电荷间的相互作用力,电荷的概念开始有了定量的意义。1820年,奥斯特从实验时发现了电流对磁针有力的作用,揭开了电学理论的新的一页。同年,安培确定了通有电流的线圈的作用与磁铁相似,这就指出了此现象的本质问题。有名的欧姆定律是欧姆在1826年通过实验而得出的。法拉第对电磁现象的研究有特殊贡献,他在1831年发现的电磁感应现

数字电子技术的未来和发展趋势

数字电子技术的现状和未来发展趋势 摘要数字电子技术在科学的发展和市场的巨大需求的带带东下迅速的发展着,数字电子技术的应用邻域也得到了很大的扩大,数字电子技术的发展和壮大已经逐渐占领了全球信息化进程的主导地位,本篇文章简单的介绍了数字电子技术的发展现状,分析了数字电子技术的未来发展趋势。 关键词数字电子技术应用现状发展趋势 0前言 数字电子技术是当前发展最快的学科之一,电子技术可以分为数字电子技术和模拟 电子技术,就逻辑器件而言,已经从20世纪40年代的电子管、20世纪50年代的 晶体管和20世纪60年代的小规模集成电路,从中等到大规模集成,至今已发展到 超大规模集成电路。近几年又出现了可编程逻辑电路,提供了更加完善方便的设计 器件世纪过程和方法也再不断的演变和发展。半导体技术的大力发展推动应用,数 字电子技术作为电子时代的支撑技术,在全球电子信息化的进程中起着巨大的推动 作用。 1 发展现状 随着科学技术的发展和人类的进步,电子技术已经成了各种工程技术的核心,特别是进入信息时代以来,电子技术更是成了基本技术,其具体应用领域涵盖了通信领域、控制系统、测试系统、计算机等等各行各业。电子技术的出现和应用,使人类进入了高新技术时代,电子技术诞生的历史虽短,但深入的领域却是最广最深,而且成为人类探索宇宙宏光世界和微观世界的物质技术和基础。电子科学技术是人类在生产斗争和科学实验中发展起来的。1883年美国发明家爱迪生发现了热电子效应,随后在1904年弗莱明利用这个效应制成了电子二极管,并证实了电子管具有“阀门”作用,它首先被用于无线电检波。1906年美国的德福雷斯在弗莱明的二极管中放进了第三电极—栅极而发明了电子三极管,从而建树了早期电子技术上最重要的里程碑。半个多世纪以来,电子管在电子技术中立下了很大功劳;但是电子管毕竟成本高,制造繁,体积大,耗电多,从1948年美国贝尔实验室的几位研究人员发明晶体管以来,在大多数领域中已逐渐用晶体管来取代电子管。但是,我们不能否定电子管的独特优点,在有些装置中,不论从稳定性、经济性或功率上考虑,还需要采用电子管。集成电路的第一个样品是在1958年见诸于世的。集成电路的出现和应用,标志着电子技术发展到了一个新的阶段。它实现了材料、元件、电路三者之间的统一;同传统的电子元件的设计与生产方式、电路的结构形式有着本质的不同。随着集成电路制造工艺的进步,集成度越来越高,出现了在规模和超大规模集成电路(例如可在一块6平方毫米的硅片上制成一个完整的计算机),进一步显示出集成电路的优越性。按元器件集成度(芯片上所集成的元件数量)分为小规模集成电路(100个元件以上)SSI、中规模集成电路(100—1000个元件)MSI,大规模集成电路(1000—100000个元件)LSI,超大规模集成电路(100000个以上元件)VLSI等四种,现在集成度已达到数千亿。随着半导体技术的发展和科学研究、生产、管理和生活等方面的要求,电子计算机应时而兴起,并且日益完善。从1946年诞生第一台电子计算机以来,已经经历了电子管、晶体管、集成电路及大规模集成电路、超大规模集成电路,每秒运算速度已达百亿次。现在正在研究开发第五代计算机(人工智能计算机),他们不依靠程序工作,而是依靠人工智能工作。特别是从70年代微型计算机以来,由于价廉、方便、可靠、小巧,大大加快了电子计算机的普及速度。例如个人计算机,它从诞生至今不过经历十多年时间,但是它的发展却跨越了多个阶段,走进了千家万户。集计算机、电视、电话、传真机、音响等于一体的多媒体计算机也纷纷问世。以多媒体计算机、光纤电缆和互联网络为基础的信息高速公路已成为计算机诞生以来的又一次信息变革。未来的人工智能更将给人们的生活与工作方式带来前所未有的变化,随身携带微型计算机已成为一种时尚。数字控制和数字测量也在不断发展和得到日益广泛的应用。数字控制机床

电子技术发展历程

电子技术发展历程 术是十九世纪末、二十世纪初开始发展起来的新兴技术,二十世纪发展最迅速,应用最广泛,成为近代科学技术发展的一个重要标志。 一代电子产品以电子管为核心。四十年代末世界上诞生了第一只半导体三极管,它以小巧、轻便、省电、寿命长等特点,很快地被各国应用起来,在很大范围内取代了电子管。五十年代末期,世界上出现了第一块集成电路,它把许多晶体管等电子元件集成在一块硅芯片上,使电子产品向更小型化发展。集成电路从小规模集成电路迅速发展到大规模集成电路和超大规模集成电路,从而使电子产品向着高效能低消耗、高精度、高稳定、智能化的方向发展。由于,电子计算机发展经历的四个阶段恰好能够充分说明电子技术发展的四个阶段的特性,所以下面就从电子计算机发展的四个时代来说明电子技术发展的四个阶段的特点。 世界上第一台电子计算机于1946年在美国研制成功,取名ENIAC (Electronic Numerical Integrator and Calculator)。这台计算机使用了18800个电子管,占地170平方米,重达30吨,耗电140千瓦,价格40多万美元,是一个昂贵耗电的"庞然大物"。由于它采用了电子线路来执行算术运算、逻辑运算和存储信息,从而就大大提高了运算速度。ENIAC每秒可进行5000次加法和减法运算,把计算一条弹道的时间短为30秒。它最初被专门用于弹道运算,后来经过多次改进而成为能进行各种科学计算的通用电子计算机。从1946年2月交付使用,到1955年10月最后切断电源,ENIAC服役长达9年。尽管ENIAC还有许多弱点,但是在人类计算工具发展史上,它仍然是一座不朽的里程碑。它的成功,开辟了提高运算速度的极其广阔的可能性。它的问世,表明电子计算机时代的到来。从此,电子计算机在解放人类智力的道路上,突飞猛进的发展。电子计算机在人类社会所起的作用,与第一次工业革命中蒸汽机相比,是有过之而无不及的。ENIAC问世以来的短短的四十多年中,电子计算机的发展异常迅速。迄今为止,它的发展大致已经了下列四代: 第一代(1946~1957年)是电子计算机,它的基本电子元件是电子管,内存储器采用水银延迟线,外存储器主要采用磁鼓、纸带、卡片、磁带等。由于当时电子技术的限制,运算速度只是每秒几千次~几万次基本运算,内存容量仅几千个字。程序语言处于最低阶段,主要使用二进制表示的机器语言编程,后阶段采用汇编语言进行程序设计。因此,第一代计算机体积大,耗电多,速度低,造价高,使用不便;主要局限于一些军事和科研部门进行科学计算。 第二代(1958~1970年)是晶体管计算机。1948年,美国贝尔实验室发明了晶体管,10年后晶体管取代了计算机中的电子管,诞生了晶体管计算机。晶体管计算机的基本电子元件是晶体管,内存储器大量使用磁性材料制成的磁芯存储器。与第一代电子管计算机相比,晶体管计算机体积小,耗电少,成本低,逻辑功能强,使用方便,可靠性高。 第三代(1963~1970年)是集成电路计算机。随着半导体技术的发展,1958年夏,美国德克萨斯公司制成了第一个半导体集成电路。集成电路是在几平方毫米的基片,集中了几十个或上百个电子元件组成的逻辑电路。第三代集成电路计算机的基本电子元件是小规模集成电路和中规模集成电路,磁芯存储器进一步发展,并开始采用性能更好的半导体存储器,运算速度提高到每秒几十万次基本运算。由于采用了集成电路,第三代计算机各方面性能都有了极大提高:体积缩小,价格降低,功能增强,可靠性大大提高。 第四代(1971年~日前)是大规模集成电路计算机。随着集成了上千甚至上万个电子元件的大规模集成电路和超大规模集成电路的出现,电子计算机发展进入了第四代。第四代计算机的基本元件是大规模集成电路,甚至超大规模集成电路,集成度很高的半导体存储器替代了磁芯存储器,运算速度可达每秒几百万次甚至上亿次基本运算。 (一)电子管(1883年到1904年电子管问世)

数字电子技术的应用及发展趋势探析

数字电子技术的应用及发展趋势探析 摘要:随着电子设备的普及,数字电子技术应用到 各个领域,发展前景良好。数字电子作为一种具有高科技效力的技术,它的应用与发展对我国各个行业来说都是尤为重要的。本文主要分析数字电子技术数字电子技术的应用领域,并在此基础上探析了其未来的发展趋势。 关键词:数字电子技术;应用;发展趋势数字电子技术是当前发展最快的学科之一。近年来,数字电子技术作为电子技术领域中的一项新兴科技,越来越受到关注,尤其是数字电子技术在各行各业的广泛应用,更使它拥有了广阔的发展前景。 1、数字电子技术概述 1.1数字电子技术的概念 数字电子技术属于信息电子学科,集成电路、发光二极管等都是数字电子技术具体的物质体现,它以集成芯片、电路、逻辑门电路为研究对象,伴随信息技术的发展,其电路对于信号处理显示出了明显的优势。以处理信号为例,信号处理过程中,按照一定比例在数字电路上,把模拟信号转换成数字信号,再经数字电路将数字信号进行处理,完成处理之后,根据需要反复转化成模拟信号。

1.2电子技术的分类 电子技术包括数字电子技术和模拟电子技术两大类。这两大类技术有着相辅相成的联系,其中最明显和被广泛使用的就是数字电路信号的处理,即模拟信号(“0101”信号) 与数字信号的相互转换。但这两者之间也存在着一些不同之处。首先,与模拟信号相比,数字信号波形更简单易识,没有太多的变化,只有高电平和低电平两种,出现误差的几率很小,这无疑也给信号的接收和处理方面提供了更加便捷的条件,这一点本文将在后文进行详细的论述。其次,因为数字电子技术的诸多优点,例如稳定性强、可靠性高等,很多模拟信息被电子信息所取代,其中最明显的就是在声音和图像的存储方式上,过去声音和图像是由模拟信号组成的磁带、磁盘来储存,而现在这些都变成了光盘存储,无疑更加便捷也更易保存。 1.3数字电子技术的优势 数字电子技术作为一种具有重要作用的新兴技术,在我国电子信息化的进程中发挥着巨大的推动作用。近年来,数字电子技术以其波形简单、精确度高、抗感染能力强等多重优势,在多种方面的应用中发挥了重要的作用,为我国经济社会和信息产业的发展作出了巨大的贡献。 2、数字电子技术的应用 2.1在雷达接收机中的应用

数字电子技术的未来和发展趋势之欧阳学文创编之欧阳家百创编

数字电子技术的现状和未来发展趋 势 欧阳家百(2021.03.07) 摘要数字电子技术在科学的发展和市场的巨大需求的带带东下迅 速的发展着,数字电子技术的应用邻域也得到了很大的扩大,数字电子技术的发展和壮大已经逐渐占领了全球信息化进程的主导地位,本篇文章简单的介绍了数字电子技术的发展现状,分析了数字电子技术的未来发展趋势。 关键词数字电子技术应用现状发展趋势 0前言 数字电子技术是当前发展最快的学科之一,电子技术可以分 为数字电子技术和模拟电子技术,就逻辑器件而言,已经从 20世纪40年代的电子管、20世纪50年代的晶体管和20世 纪60年代的小规模集成电路,从中等到大规模集成,至今已 发展到超大规模集成电路。近几年又出现了可编程逻辑电路,提供了更加完善方便的设计器件世纪过程和方法也再不断的 演变和发展。半导体技术的大力发展推动应用,数字电子技 术作为电子时代的支撑技术,在全球电子信息化的进程中起 着巨大的推动作用。 1 发展现状 随着科学技术的发展和人类的进步,电子技术已经成了各种工程技

术的核心,特别是进入信息时代以来,电子技术更是成了基本技术,其具体应用领域涵盖了通信领域、控制系统、测试系统、计算机等等各行各业。电子技术的出现和应用,使人类进入了高新技术时代,电子技术诞生的历史虽短,但深入的领域却是最广最深,而且成为人类探索宇宙宏光世界和微观世界的物质技术和基础。电子科学技术是人类在生产斗争和科学实验中发展起来的。1883年美国发明家爱迪生发现了热电子效应,随后在1904年弗莱明利用这个效应制成了电子二极管,并证实了电子管具有“阀门”作用,它首先被用于无线电检波。1906年美国的德福雷斯在弗莱明的二极管中放进了第三电极—栅极而发明了电子三极管,从而建树了早期电子技术上最重要的里程碑。半个多世纪以来,电子管在电子技术中立下了很大功劳;但是电子管毕竟成本高,制造繁,体积大,耗电多,从1948年美国贝尔实验室的几位研究人员发明晶体管以来,在大多数领域中已逐渐用晶体管来取代电子管。但是,我们不能否定电子管的独特优点,在有些装置中,不论从稳定性、经济性或功率上考虑,还需要采用电子管。集成电路的第一个样品是在1958年见诸于世的。集成电路的出现和应用,标志着电子技术发展到了一个新的阶段。它实现了材料、元件、电路三者之间的统一;同传统的电子元件的设计与生产方式、电路的结构形式有着本质的不同。随着集成电路制造工艺的进步,集成度越来越高,出现了在规模和超大规模集成电路(例如可在一块6平方毫米的硅片上制成一个完整的计算机),进一步显示出集成电路的优越性。按元器件集成度(芯片上所集成的元件数量)分为小规模集成电路(100个元件以上)SSI、中规模集成电路(100—1000个元件)MSI,

项目一数字电子技术基础

For personal use only in study and research; not for commercial use 项目一数字电子技术基础 习题 一、选择题 1、以下代码中为无权码的为()。 A.8421BCD码 B.5421BCD码 C.余三码 D.格雷码 2、以下代码中为恒权码的为()。 A.8421BCD码 B.5421BCD码 C. 余三码 D. 格雷码 3、一位八进制数可以用()位二进制数来表示。 A.1 B.2 C.3 D.4 4、十进制数25用8421BCD码表示为()。 A.10101 B.00100101 C.100101 D.10101 5、与十进制数(53.5)10等值的数或代码为()。 A.(01010011.0101)8421BCD B.(35.8)16 C.(110101.1)2 D.(65.4)8 6、与八进制数(47.3)8等值的数为:()。 A.(100111.011)2 B.(27.6)16 C.(27.3 )16 D. (100111.11)2 7、常用的BCD码有()。 A.2421码 B.格雷码 C.8421码 D.余三码 8、以下表达式中符合逻辑运算法则的是()。 A.C·C=C2 B.1+1=10 C.0<1 D.A+1=1 9、逻辑变量的取值1和0可以表示:()。 A.开关的闭合、断开 B.电位的高、低 C.真与假 D.电流的有、无 10、当逻辑函数有n个变量时,共有()个变量取值组合?

A.n B.2n C.n2 D.2n 11、逻辑函数的表示方法中具有唯一性的是()。 A.真值表 B.表达式 C.逻辑图 D.卡诺图 12、求一个逻辑函数Y的对偶式,可将Y中的()。 A.“·”换成“+”,“+”换成“·” B.原变量换成反变量,反变量换成原变量 C.变量不变 D.常数中“0”换成“1”,“1”换成“0” 13、A+BC=()。 A.A+B B.A+C C.(A+B)(A+C) D.B+C 14、在何种输入情况下,“与非”运算的结果是逻辑0。() A.全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是1 15、在何种输入情况下,“或非”运算的结果是逻辑0。() A.全部输入是0 B.全部输入是1 C.任一输入为0,其他输入为1 D.任一输入为1 16、矩形脉冲信号的参数有。 A.周期 B.占空比 C.脉宽 D.扫描期 17、与模拟电路相比,数字电路主要的优点有。 A.容易设计 B.通用性强 C.保密性好 D.抗干扰能力强 二、判断题(正确打√,错误打×) 1、方波的占空比为0.5。() 2、数字电路中用“1”和“0”分别表示两种状态,二者无大小之分。() 3、格雷码具有任何相邻码只有一位码元不同的特性。() 4、八进制数(18)8比十进制数(18)10小。() 5、十进制数(9)10比十六进制数(9)16小。() 6、逻辑变量的取值,1比0大。() 7、异或函数与同或函数在逻辑上互为反函数。() 8、若两个函数具有相同的真值表,则两个逻辑函数必然相等。() 9、因为逻辑表达式A+B+AB=A+B成立,所以AB=1成立。() 10、若两个函数具有不同的真值表,则两个逻辑函数必然不相等。()

电子技术发展历程

电子技术发展历程 Prepared on 22 November 2020

电子技术发展历程术是十九世纪末、二十世纪初开始发展起来的新兴技术,二十世纪发展最迅速,应用最广泛,成为近代科学技术发展的一个重要标志。 一代电子产品以电子管为核心。四十年代末世界上诞生了第一只半导体三极管,它以小巧、轻便、省电、寿命长等特点,很快地被各国应用起来,在很大范围内取代了电子管。五十年代末期,世界上出现了第一块集成电路,它把许多晶体管等电子元件集成在一块硅芯片上,使电子产品向更小型化发展。集成电路从小规模集成电路迅速发展到大规模集成电路和超大规模集成电路,从而使电子产品向着高效能低消耗、高精度、高稳定、智能化的方向发展。 由于,电子计算机发展经历的四个阶段恰好能够充分说明电子技术发展的四个阶段的特性,所以下面就从电子计算机发展的四个时代来说明电子技术发展的四个阶段的特点。 世界上第一台电子计算机于1946年在美国研制成功,取名ENIAC (Electronic Numerical Integrator and Calculator)。这台计算机使用了18800个电子管,占地170平方米,重达30吨,耗电140千瓦,价格40多万美元,是一个昂贵耗电的"庞然大物"。由于它采用了电子线路来执行算术运算、逻辑运算和存储信息,从而就大大提高了运算速度。ENIAC每秒可进行5000次加法和减法运算,把计算一条弹道的时间短为30秒。它最初被专门用于弹道运算,后来经过多次改进而成为能进行各种科学计算的通用电子计算机。从1946年2月交付使用,到1955年10月最后切断电源,ENIAC服役长达9年。尽管ENIAC还有许多弱点,但是在人类计算工具发展史上,它仍然是一座不朽的里程碑。它的成功,开辟了提高运算速度的极其广阔的可能性。

电子技术基础数字部分期末试卷

电子技术基础数字部分期末试卷 姓名 学号 成绩 一、填空题(每空1分,共15分) 1、组合电路没有 记忆 功能,因此,它是由 门电路 组成。 2、将BCD 码翻译成十个对应输出信号的电路称为二十进制译码器,它有 4 个 输入端, 10 输出端。 3、 下图所示电路中,()C B A Y 1⊕=;B A Y 2+=;=+=? +?=B A B A AB A AB B Y 3。 4、二进制数A=1011010;B=10111,则A-B=n Q R S +(1000011)20RS =。 5、判断图1.5电路, b 是组合电路的框图, a 是时序电路的框图。从中可以看 出,时序电路与组合电路相比,在电路结构上的特点是 时序电路有记忆元件,由存储电路构成,组合电路无记忆元件,由门电路构成。 6、一个逻辑函数除了用函数式、真值表和逻辑图之外,还有二种表示方法,它们是 卡诺 图, 波形图。 二、选择题(每题3分,共15分) A 1 B Y 2 A B C Y 1 A B Y 3

1、以下式子中不正确的是( C ) a .1?A =A b .A +A=A c .B A B A +=+ d .1+A =1 2、下列说法不正确的是( C ) a .集电极开路的门称为OC 门 b .三态门输出端有可能出现三种状态(高阻态、高电平、低电平) c .OC 门输出端直接连接可以实现正逻辑的线或运算 d 利用三态门电路可实现双向传输 3、电路如下图(图中为下降沿Jk 触发器),触发器当前状态Q 3 Q 2 Q 1为“011”,请问时钟作用下,触发器下一状态为( B ) a .“110” b .“100” c .“010” d .“000” 4、以下错误的是( B ) a .数字比较器可以比较数字大小 b .实现两个一位二进制数相加的电路叫全加器 c .实现两个一位二进制数和来自低位的进位相加的电路叫全加器 d .编码器可分为普通全加器和优先编码器 5、下列描述不正确的是( B ) a .EEPROM 具有数据长期保存的功能且比EPROM 使用方便 b .集成二—十进制计数器和集成二进制计数器均可方便扩展。 c .将移位寄存器首尾相连可构成环形计数器 d .上面描述至少有一个不正确 三、证明或化简下列函数(每小题5分,共15分) 1、证明 C AC C AB C B A =++ 证明:

应用电子技术发展史

《应用电子技术导论》 第1篇应用电子技术发展史 主讲教师:王震宇 联系方式:wzy2000@https://www.360docs.net/doc/87628858.html, 教学单位:信息学院电子工程系 引子: 欲了解一门学科,最好的办法是先读读它 的历史。 发展史的主要内容 〓1.1经典理论的主要成果 〓1.2重要发明及其应用 〓1.3历史的启示 1.1重要的经典理论发现 1、早期的磁学研究 〓我国古代早就发现了磁现象。公元前 2637年,黄帝利用磁制成了罗盘针,罗 盘的发现是我国四大发明之一。据司马 迁记载,公元前9世纪,航海家已使用 指南针导航了。 〓1600年,(相差4227年)英国物理学家吉尔伯特经过自己实验得到了大量磁力现象,建立了重 要的理论体系。他还证明了诺曼发现的磁倾角

的存在。他曾预言在地球的北极,磁针将会变 成竖直的,后来被赫德森在1609年所证实。他 发现过两极装有铁帽的磁石,磁力大大增加, 并且发现磁石与铁块越靠近,吸引力越大,同 时证明了磁石越大对铁块的吸引也越大。他还 发现吸引是相互作用的。 〓吉尔伯特被世人称之为磁学之父。 2、早期的电学研究 〓1600年,德国科学家库里克制成了第一台产生静电的装臵。 〓1749年,(相差145年)美国科学家富兰克林,他在电的研究方面作了大量实验,他借用了数学上 正负数的概念,第一个科学地用正电、负电概念 表示电荷性质。并提出了电荷不能创生、也不能 消灭的思想,后人在此基础上发现了电荷守恒定律。他最先提出了避雷针的设想,由此而制造的 避雷针,避免了雷击灾难,破除了迷信。 富兰克林简介 〓他出身贫寒,10岁便辍学做工,12岁起 在印刷所当学徒、帮工.但他刻苦好学, 因而,他以仅读过两年小学的学历,被美 国的哈佛大学、耶鲁大学,英国的牛津大

数字电源的特点与发展现状分析

数字电源的特点与发展现状分析 随着半导体工艺技术的不断升级,电路板上的元器件运行速度更快、体积更小,而且还要求更多、更低的供电电压和更大的供电电流;最终系统的功能不断增加,平均售价却不断下降。此外,用户对电源的故障修复时间、电源运行状态的感知与控制的要求越来越高,电源设计人员不再满足于实时监控电流、电压、温度,还提出了诊断电源供应情况、灵活设定每个输出电压参数的要求。这些需求已是今日的模拟解决方案难以满足的。因此,作为电源管理发展的新思路的数字电源应运而生,其目标就是将电源转换与电源管理架构用数字方法集成到单芯片中,实现智能、高效的转换与控制及通信。 数字电源是采用数字方式实现电源的控制、保护回路与通信接口的新型电源技术。可编程、响应性和数字环路控制是表征数字电源的3个主要特征。 随着电源系统的性能和功率的不断提高,实现电源性能指标所必需的元件数量和成本也随之增加,越来越多的控制需要通过具有成本效益的数字电路实现。一般认为,在设计DC/DC变换器时,通常100W以上的系统中会应用数字控制技术;而在设计AC/DC变换器时,250W以上的系统会应用数字技术,这样电源的经济 性会更高一些。因此,在未来的电源系统中,模拟与数字技术将共存相当一段时间。30年前,电源行业转向开关电源是一个很大的变化,而电源数字化趋势将 会是一个更大的变化。 模拟电源的优势与不足 目前,除了一些专门用于微处理器的转换器之外,市场上大多数砖形转换器、中间总线转换器及负载点POL转换器仍采用模拟控制。这是因为许多模拟电源系统经过了多年的检验,可靠性还是很高的。 可尽管模拟电源解决方案的成本、性能(如负载变化时的电源响应时间)、占板面积等指标都优于当前的数字电源解决方案,但对开发人员来说,它完全是一种固定模式的黑盒应用,抑制了开发人员发挥创造力的激情。对电源进行同步跟踪、电压排序、故障诊断及适应环境变化的能力还是比较差的。 目前,许多高性能的DC/DC转换器仍通过简单的无源器件产生的模拟信号进行设置和控制。即使是具有最先进拓扑结构的高性能转换器,也还需要使用外部电阻、电容来确定诸如启动时间、输出点值及开关频率等参数。这些电阻、电容的值都是设计调试时确定的,制造完成后不可轻易更改,因此自适应的电源管理方案也就不可能实现。而且,为实现更多功能,就要设计更多的直接反馈电路,所以模拟控制环路会变得非常复杂。 传统的模拟控制架构已经使用多年,但仍有不少缺陷。举例来说,模拟控制电路因为使用许多元器件而需要很大空间,这些元器件本身的值还会随使用时间、温度和其他环境条件的变化而变动,从而对系统稳定性和响应能力造成负面影响。模拟控制的控制-响应特性是由分立元器件的值决定的,它总是面向一个范围狭

相关文档
最新文档