正弦型函数练习题.docx

正弦型函数练习题.docx
正弦型函数练习题.docx

4 3 P0Q (y

例1.若角Q 的终边过点卩( ----- , ---- ),且 -------< 0 ,求sin a + tana.

5m 5m tana

例2.函数f(&)=

(;:;二

的最大值和最小值分别是()

4

3

(A)最大值亍和最小值0 (B)最大值不存在和最小值

4

3

(C)最大值一亍和最小值0

(D)最大值不存在和最小值一才

变式训练:(1 )设 a = sin(-l),/? = cos(-l),c = tan(-l),则 a,b,c 的大小关系 是 ____________ ;

(2) ______________________________________________________________ 已知 /(x) = 2cos-x,则/X0)+ /(1) + /(2) + ???+ /(2006) = ________________________________ ;

6

二、同角三角函数基本关系式与诱导公式

例 3:若cosG + 2sina =—书,贝ij tan a =

(

)

A. %

B. 2

C. -%

D. -2

变式训练:己知sina + cosa = -l,则 sin 2008 6Z + COS 2008 a 的值为 ____________ ; 例 4、如果 sin? cosa>0,且 sincctana>0,

变式训练:(1)己知A 为锐角,lg(l+cos/) = zw,仗]_:0$昇=〃,则lgsin4的值为

变式训练:(1) sinS+》sin(2?r+为sin(37r+方…sin(2010?r+彳)的值等于

B. m —n

D ?办加_,7)

例 5、( 1 )(08?惠州模拟)已知 f(a) = sin("「")cos(2" — "),则 /(_吃)的值为()

1 A. 一

2

cos(—;r-G )? tana

1 V3 B. ------

C. ------

2 2

(2)已知/=

伙龙+ ")+ C°s'“ + °) gZ),则力的值构成的集合是(

)

sin a cos a

A. {1, -1, 2, -2}

B. {-1, 1}

C. {2, -2}

D. {1, -1, 0, 2, -2}

(3)若X COS .Y )=COS 3X ,则Xsin30°)的值为 ___________ .

化简:

(2)已知/(x)=asin(7rx+a) + bcos(7rx+”),其中a、b、

=一1,则./(2 010)等于( )A. —1 B. 0 ”都是非零常数,若夬2 009) C. 1 D. 2

例6、在ZXABC 中,sin A+cos A= 41 , V^cos A=—血cos(7t—B),求AABC 的三个内角.

题型三三角函数的定义域、值域问题

例7 (1)求函数y=\g sin 2x+y)9—x2的定义域;

(2)求函数y = ^-sin%的值域;

(3)若cos20 + 2msinO-2m-2< 0对0WR恒成立,求实数m的取值范围。变式练习:⑴)求函数y=lg(2sinx—迈)—p 1 —2cos^的定义域.

⑵己知函数./(x)=2Qsin(2x—咼+ b的定义域为0,申,函数的最大值为1,最小值为一5,求a和b

的值.

(3)求函数门心曲T的最大值和最小值。

sinx + 2

(4)求函数^=cos2x+sinx (|x|寸)的最大值与最小值.

题型三三角函数的单调性与周期性

例8写出下列函数的单调区间及周期:

7T

⑴函数y = 2sin(--2x)(xe[0,龙])为增函数的区间 _______________________

6

(2)(8)设函数/(x)=2sin(p;+^).若对任意xGR,都有./(切勻⑴次切成立,则\x\~x2\ 的最小值为() A. 4 B. 2 C. 1 D.|

4

⑶已知偶函数y = f(x)满足f(x + l) = f(x-l),且当XG[-1,0]时,f(x) = 3x+-,

29 101

则 / (logj 5)的值等于()A. -1 B. — C.—— D. 1

冷50 45

变式训练:(1)已知函数y=logo.5(2sinx-l),

①写出它的值域.②写出函数的单调区间.

③判断它是否为周期函数?如果它是一个周期函数,写出它的最小正周期.

(2)求函数_y=sin咅+4x)+cos(4x—3的周期、单调区间及最大、最小值.

(3)设函数y = f(x)是定义在R上的偶函数,它的图象关于直线x = 2对称,已知

XG[-2,2]时,函数f(x) = -x2 + l,则XG [-6,-2]时,f(x) = ____________________________ . 题型三三角函数的对称性与奇偶性

例9. (1)判断下面函数的奇偶性:f (x) =lg (sinx+JT + sin $ x )o

4兀

(2)(文)(2011,滨州月考)如果函数y=3cos(2x+°)的图象关于点(寺0)中心对称,那么洌

的最小值为()

A.|

B.》

C.y

D.号

变式练习:(1) (2001上海春)关于x 的函数f (jv) =sin (x+0)有以下命题: ① 对任意的0, fix)都是非奇非偶函数;

② 不存在°,使/(x)既是奇函数,又是偶函数; ③ 存在0,使/(x)是奇函数;

④ 对任意的0, f (x)都不是偶函数。 其中一个假命题的序号是 _____ ?因为当0二 ___ 时,该命题的结论不成立。

(2)同时具有性质“ (1)最小正周期是龙;(2)图像关于直线x =-对称;(3)在 3

6 3

上是增函数"的一个函数是(

)

X ]l

JI

71

A y - sin(— H ——)

B y - cos(2x + —)

C y - sin(2x ----------------- ) Dy = cos(2x ----------- )

2 6

3 6 6

题型四:正弦型函数y=Asin(cDx+(/))

⑴求它的振幅.周期、初相;(2)ffl “五点法”作出它在[0,龙|上的图彖; ⑶说明尹=2sin (2x+另的图象可由y=sinx 的图象经过怎样的变换而得到.

例11如图所示,某地夏天从8?14吋用电量变化曲线 近似满足函数y=As\x\((i)x+(p)+b,卩W(0, 7T ).

(1)求这一天的最大用电量及最小用电量;

⑵写出这段曲线的函数解析式.

变式练习:(2011 ?江苏)已知 /(x)=/sin(ex+e) (A, 的部分图象如图所示,则用)的值是 _______ .

专项基础训练

1.

函数y=5sin(2x+0的图象关于y 轴对称,则<9= ( )

TT

7T

(A) 2乃r+ -(A :ez )

(B) 2k 兀十兀(k eZ)

(C) k 兀+ -(k^Z)

(D)后 + 兀(k eZ)

6

2

2. _______________________________________________ 函数尸一 I sin (x+- ) I 的单调区间为 __________________________________________________ o

4 3. 关于函数f(x)=4sin(2x+| ) (x^R),有下列命题:

TT

(1) y=f(x )的表达式可改写为y=4cos(2x ?g ); (2) y=f (x )是以2兀为最小正周期的周期函数;

71

已知函数卩=

(3)y=f(x )的图象关于点(丰,0)对称;

(4)y=f(x )的图象关于直线x二?对称;

其屮正确的命题序号是____________ ?

4. ____________________________________ 设点P是函数/(x)=sin cox(话0)的图象

C的一个对称屮心,若点P到图象C的对称轴的距离的最小值是*则/(X)的最小正周期是 .

5.(2012-天津)将函数,/(.r)=sinM其屮?>0)的图象向右平移扌个单位长度,所得图象经过

点(乎,0),则少的最小值是()A* B. 1 C.j D. 2

6.(2012?上海)若S“ = sin 号+sin 琴+...+sin 爭〃GN*),则在S】,S?,…,Sg 中,正数

的个数是()A. 16 B. 72 C. 86 D. 100

■ ■

7.已知函数/(x)=2sin亦@>0)在区间一扌,手上的最小值是一2,则co的最小值等于

2 3

)A.y B.二 C. 2 D. 3

qin Y+ 1

8.函数尹=弋仁一(0

£>111 兀

9.已灿/(x)=sin@x+3仙>0),.詹)=居),且/(x)在区间6咼上有最小值,无最大值,

则CD= _________________ .

10.把函数_y=sin(5x—另的图彖向右平移扌个单位,再把所得函数图象上各点的横坐标

缩短为原来的*,所得的函数解析式为()

A. y=sin(10x_乎) C. y=sin(10x-乎)

B. j^=sii(10x_¥) D. y=sin(10x-乎)

11.(13 分)已知a>0,函数/(x)=-2a?sin(2x+3+2a+b,当xW 0,号时,-50,求g(x)的单调区间.

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

正弦型函数的性质和图象教案

重庆市渝中区职业教育中心 数学课程教案 教师 周名昆 第 1 页 第 1 页 共 2 页 [课 题] 5.8函数)sin(?ω+=x A y 的性质和图象 [课 时] 第一课时 [课 型] 新授课 [目 标] 1. 了解正弦型函数的解析表达式中各个符号的实际背景意义; 2. 理解正弦型函数的图象与正弦函数的图象之间的关系; 3. 能够根据表达式正确地指出A 、ω、?并求出最值、最小正周期 [重 点]根据表达式正确地指出A 、ω、?并求出最值、最小正周期 [难 点] 理解正弦型函数的图象与正弦函数的图象之间的关系 [教 法] 讲授法、启发式教学法 [教 具] 教材、实物展示台、多媒体投影 [教学过程] 一、复习引入 1正弦函数在区间[-π,π]上的图象(五点法作出) 2正弦型函数引出:见教材实例 二、新课讲授 1正弦型函数)sin(?ω+=x A y 中各个字母的意义 1)A ——振幅 2)ω——频率(弧度/秒) 3)?——初相 4)??+t ——t 时刻的相位 2正弦型函数的性质:A 、T A ——最值 T ——最小正周期(? π2=T ) 例1已知函数求A (最大值、最小值)、T (ω) x y 5sin 3= )115sin(3π-=x y )875sin(3π+=x y )11 5sin(π+=x y 练习已知函数求A (最大值、最小值)、T (ω) )351sin(6π+=x y )11100sin(24ππ+=x y )4 21sin(2π+=x y x y 5.0sin 13= 3正弦型函数与正弦函数图象之间的关系(利用课件演示) ⑴x A y sin =与x y sin = 振幅变换:y=Asinx ,x ∈R(A>0且A ≠1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(00且ω≠1)的图象,可看作把正弦曲线上

正弦型函数的图像变换

课堂练习: 1. 将函数y=sin2x 的图象向左平移6 π 个单位,则平移后的图象的解析式为( ) A .y=sin(2x+6π) B .y=sin(2x+3π) C .y=sin(2x -6π) D .y=sin(2x -3 π ) 2. 要得到函数2sin(2)4 y x p =+(x ?R )的图象,只需将函数2sin 2y x =(x ?R ) 的图象上所有的点( ) A .向左平行移动4p 个单位长度 B. 向右平行移动4p 个单位长度 C. 向左平行移动8p 个单位长度 D. 向右平行移动8 p 个单位长度 3. 4.把函数sin(2)4 y x π =+的图象向右平移 8 π 个单位,再把所得图象上各点的横坐标缩短到原来的1 2 ,则所得图象的解析式为 ( ) A .3sin(4)8y x π=+ B .sin(4)8 y x π =+ C .sin 4y x = D .sin y x = 5. 将函数sin()3 y x π =- 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再 将所得的图象向左平移 3 π 个单位,得到的图象对应的解析式是 ( ) A 1sin 2y x = B 1sin()22y x π=- C 1sin()26y x π=- D sin(2)6 y x π =- 6.要得到函数)3 2sin(2π +=x y 的图象,只须将函数x y sin 2=的图象 ( ) A .向左移3π 个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变 B .向右移3π 个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变 C .向左移3 π个单位,再把所有点的横坐标缩短到原来的21 倍,纵坐标不变 D .向右移3 π个单位,再把所有点的横坐标缩短到原来的21 倍,纵坐标不变 7.要得到函数y=cos(42π-x )的图象,只需将y=sin 2 x 的图象( )

正弦函数的图像和性质

1 定义编辑数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x 都对应着唯一的角(弧度制中等于这个实数) ,而这个角又对应 着唯一确定的正弦值Sin X ,这样,对于任意一个实数X都有唯一确定的值Sin X与它对应, 按照这个对应法则所建立的函数,表示为f(x)=sin X ,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/Sin A=b/Sin B=c/Sin C 在直角三角形ABC中,/ C=90 ,y为一条直角边,r为斜边,X为另一条直角边(在坐标 系中,以此为底),贝U Sin A=y∕r,r= √( x^2+y^2) 2 性质 编辑图像 图像是波形图像(由单位圆投影到坐标系得出) ,叫做正弦曲线(Sine curve) 正弦函数X∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当X=2k ∏+ ( ∏/2) , k ∈Z 时,y(max)=1 ②最小值:当X=2k ∏+ (3∏/2), k∈Z 时,y(min)=-1 零值点:( kπ ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1) 对称轴:关于直线X= ( π /2) +kπ , k∈Z 对称 2) 中心对称:关于点(k ∏ , 0), k∈Z对称 周期性最小正周期:y=SinX T=2 π 奇偶性 奇函数(其图象关于原点对称) 单调性 在[-∏∕2+2k ∏ , ∏∕2+2k ∏], k∈Z 上是单调递增. 在[∏∕2+2k ∏ , 3∏∕2+2k ∏], k ∈Z 上是单调递减. 3 正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin (ω x+ φ )+h

正弦型函数的图像

函数sin()y A x ω?=+的图像 一、教学目标 1. 会用TI 图形计算器作出函数sin()y A x ω?=+(其中0,0A ω>>)的图像。通过观察图像,猜想,,A ω?对函数图像的影响; 2. 会借助计算器的图像功能, 领会控制变量法,体会定量地分析问题的过程; 3. 通过实践, 感受数学解决问题的方式, 获取定量地处理问题的经验. 二、教学难点与重点 重点: ,,A ω?对函数sin()y A x ω?=+图像的影响; 难点:定量分析,,A ω?对图像的影响. 三、教学过程 1. 引例. 动点P 绕原点O 作逆时针匀速圆周运动,初始位置如图所示,已知圆半径为3,角速度为2/rad s ,试建立点P 纵坐标y 与运动时间x 之间的函数关系,并作出该函数的图像。 [学生建立函数关系式:3sin(2)6y x π=+,并利用TI 图形计算器画出该函数的图像。] 观察这个函数的图像走势,与我们学过的哪个函数图像很接近? [学生:正弦函数] 这两个函数图像虽然很接近,但仍有差异。是什么因素造成这种差异? [学生: 3,2,6π ] 那么这三个参数对函数图像分别带来什么影响呢? 如果从正弦函数sin y x =的图像入手,可以通过怎样的变换得到3sin(2)6y x π =+的图像呢? {目的:引出控制变量法} [学生:操作TI 图形计算器观察函数图像的变化。] 教师引导学生想到利用控制按钮建立对应的参量,并想到控制变量法。 2. 提出课题 sin()y A x ω?=+ 形如sin()y A x ω?=+(其中,,A ω? 为常数)的函数,我们称为正弦型函数。 根据我们已有的知识,知道这个函数是周期函数,那么我们研究这类型函数时可以根据需要,锁定它的一个周期进行研究。对于一个函数,我们可以探究这个函数的哪些方面? [学生:研究函数的性质和函数的图像。]

正弦函数的性质

正弦函数的性质:编辑本段 解析式:y=sinx 图象:波形图象 定义域:R 值域:【-1,1】 最值: ①最大值:当x=(π/2)+2kπ时,y(max)=1 ②最小值:当x=-(π/2)+2kπ时,y(min)=-1 零值点: (kπ,0) 对称性: 1)对称轴:关于直线x=(π/2)+kπ对称 2)中心对称:关于点(kπ,0)对称 周期:2π 奇偶性:奇函数 单调性:在【-(π/2)+2kπ,(π/2)+2kπ】上是增函数,在【(π/2)+2kπ,(3π/2)+2kπ】上是减函数 余弦函数的性质:编辑本段 余弦函数 图象:波形图象 定义域:R

值域:【-1,1】 最值: 1)当x=2kπ时,y(max)=1 2)当x=2kπ+π时,y(min)=-1 零值点:(π/2+kπ,0) 对称性: 1)对称轴:关于直线x=kπ对称 2)中心对称:关于点(π/2+kπ,0)对称 周期:2π 奇偶性:偶函数 单调性:在【2kπ-π,2kπ】上是增函数 在【2kπ,2kπ+π】上是减函数 tan15°=2-√3 tan30°=√3/3 tan45°=1 tan60°=√3 性质 1、定义域:{x|x≠(π/2)+kπ,k∈Z} 2、值域:实数集R 3、奇偶性:奇函数 4、单调性:在区间(-π/2+kπ,π/2+kπ),(k∈Z)上是增函数 5、周期性:最小正周期π(可用T=π/|ω|来求) 6、最值:无最大值与最小值 7、零点:kπ,k∈Z 8、对称性: 轴对称:无对称轴 中心对称:关于点(kπ/2,0)对称(k∈Z) 9、图像(如图所示) 实际上,正切曲线除了原点是它的对称中心以外,所有x=(2/n)π点都是它的对称中心. 诱导公式 tan(2π+α)=tanα tan(-α) =-tanα tan(2π-α)=-tanα tan(π-α) =-tanα tan(π+α) =tanα tan(α+β) =(tanα+tanβ)/(1-tanα×tanβ) 12.正弦(sin)等于对边比斜边;

正弦型函数教案

正弦型函数y=Asin(ψx+φ)的图象变换教学设计 一、教学目标: 1、知识与技能目标: 能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三角函数图象各种变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。 2、过程与方法目标: 通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。 3、情感、态度价值观目标: 通过学习过程培养学生探索与协作的精神,提高合作学习的意识。 二、教学重点:考察参数ω、φ、A对函数图象的影响,理解由y=sinx的图象到y=Asin(ωx+φ)的图象变化过程。这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。 三、教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这 种图象变化,不会观察,造成认知的难点,在教学中,抓住“对图象的影响”的教学,使学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。 学情分析: 本节课在高一第二学段,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影响,还要研究三个参数对函数图象的综合影响,且方法不唯一,知识密度较大,理解掌握起来难度较大。 教学内容分析:

15.3(1)正弦型函数教案

邳州市中等专业学校理论课程教师教案本(2015—2016学年第1学期) 班级名称 课程名称数学 授课教师 教学部

课题15.3 正弦型函数 一、正弦型函数的概念 教材分析 《正弦型函数的概念》是学生在学习了三角函数线及诱导公式后,为学习函数图像的周期、相位变换提供了依据;在正弦函数的图像和性质的基础上,进一步地加深对三角函数的认识,为刻画物理学中简谐振动和电工学中交流电的电压、电流变化提供数学模型,它是三角函数知识从理论到生活实践中的连接桥梁。 学情分析 1、知识方面:学生已经掌握了三角函数线及诱导公式,以及正弦函数的图像和性质。对具体形象的实例比较感兴趣,具有一定的数学基础及分析解决问题能力。 2、能力方面:职业学校学生普遍学习缺乏自觉,学习主动性不强,但是爱动手,对于通过自己的探索得出的结论格外感兴趣。 教学目标一、知识与技能 1、认识正弦型函数图像及其表达式的特征, 2、理解正弦型函数的概念, 3、会根据正弦型函数的图像或表达式求参数A,ω,?的值。 二、过程与方法 1、通过学生动手实践,分组讨论,培养学生分析问题解决问题的能力; 2、通过多媒体辅助教学,使学生学会将复杂问题进行分解的能力 三、情感、态度与价值观 1、通过主动探索,感受探索的乐趣和成功的体验,培养学生合作交流的意识,体会数学的理性和严谨; 2、让学生感受“从特殊到一般、从具体到抽象、数形结合”的数

学思想方法。 重难点1、教学重点: 正弦型函数的概念,根据已知条件求参数A,ω,?和最大最小值。 2、教学难点: 实际问题中的正弦型函数的理解。 教法与学法一、教法分析 教法上主要体现启发、探究、分组讨论等形式,同时利用学案导学优化课堂教学。 1、充分利用学生的好奇心与创造性,加强师生互动,生生互动,提高学生课堂参与程度。 2、通过采用设疑的形式启发、引导学生参与 二、学法分析 在学生已有的认知基础上,通过教师的引领,学生在已有认知结构的基础上自主探究,合作交流。 教学资源1、江苏省职业学校文化课教材《数学》第四册 2、教师编写的学案 3、多媒体课件(PPT),几何画板 教学 准备 1、制作多媒体课件,编写本节课学案,从而优化课堂教学; 2、布置学生复习正弦函数的图像和性质。

正弦型函数的图像

正弦型函数的图像 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

教学设计――正弦型函数概念及性质

案例名称 科目 课时正弦型函数的概念及性质(职业模块工科类) xx数学 一课时教学对象xx (2)提供者xx 一、教材内容分析 1、主要内容: 函数y Asin(x)(A0,0)的概念及性质处于中等职业教育课程改革国家规划新教材《数学》(职业模块工科类)第一章第2节,主要利用正弦函数的性质和图像研究y Asin(x)(A0,0)的性质和图像。 2、地位与作用: 这节知识是学生在学习了正弦、余弦和正切三个基本三角函数的性质与图像的基础上,进一步加深对三角函数图像的认识,其地位与作用从以下两点可以体现: Ⅰ、它在三角函数知识从理论到生活实践中扮演了连接桥梁的角色。 Ⅱ、学好它可以进一步领会函数图像的研究方法,以及实际生活中的应用。 3、教学建议: 结合具体的实例,了解y Asin(x)(A0,0)的实际意义。 了解正弦函数在电工学和物理学中的应用,培养学生解决问题的能力。 二、教学目标(知识与技能,过程与方法,情感态度与价值观)及重点、难点

1、教学目标: 知识与能力: 掌握正弦型函数的性质. 过程与方法: 通过“变量替换”、概括、归纳的方法,让学生理解并掌握三角函数的周期和最值;通过分析例题和练习,巩固知识。 情感态度与价值观: 通过学生参与教学活动提高认真、积极、自信态度;遇到困难时,通过自己的努力加以克服。养成乐于学习的好习惯。 2、重点及难点 重点: 利用正弦型函数的性质,求三角函数的周期和最值. 难点: 正弦型函数的转化过程。 三、学习者特征分析 1、通过在基础模块上册中三角函数——正弦函数的学习,已经掌握了三角函数的概念、性质及图像,具备了一定的分析、理解能力,对于正弦型函数只需要“变量替换”而形成。 2、学生认为函数很难理解,但是在已有的知识结构基础上,通过“变量替换”总结知识点。加强了学生的运算能力及推导能力。 四、教学策略选择与设计 1、问题激发策略:

根据正弦型函数的图象求解析式

根据正弦型函数的图象求其解析式(一)课前系统部分 1、设计思想 建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。而且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,另起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”出新的知识经验。 为此我们根据“用已知知识去探讨新知识”的教学方式,沿着“复习已知知识--提出由简单到复杂的问题--解决问题--反思解决过程”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境--问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计: 创设一个现实问题情境作为提出问题的背景,并且用示波器演示电压的图形,让学生对数学的学习产生形象直观的感觉,逐步将现实问题转化、抽象成过渡性数学问题,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质。 2、课标及教材分析 “根据正弦型函数的图象求其解析式”是职高教科书数学第一册第七章第三节的延展内容,它是在学习好正弦函数,正弦型函数后的一个升华内容,是三角函数图象知识的高层次运用,也是解决生活实际问题的一个重要思想方法,因此具有一定的应用价值。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“根据正弦型函数的图象求解析式”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。

正弦型函数图像变换

1.5正弦型函数y=Asin(ψx+φ)的图象变换教学设计 贺力光 2008212004 教学目标: 知识与技能目标: 能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三角函数图象各种变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。 过程与方法目标: 通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。 情感、态度价值观目标: 通过学习过程培养学生探索与协作的精神,提高合作学习的意识。 教学重点:考察参数ω、φ、A对函数图象的影响,理解由y=sinx的图象到y=Asin(ωx+φ)的图象变化过程。这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。 教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这种 图象变化,不会观察,造成认知的难点,在教学中,抓住“对图象的影响”的教学,使 学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。 教学环境: 普通多媒体教室,电脑上需要装有几何画板软件,以及Flash播放器。 学情分析: 本节课在高一第二学期,学生进入高中学习已经有一学期了,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影

正弦型函数的图像及应用教案

龙文教育数学学科导学案(第15 次课) 教师:郑俊朝学生: 年级:高一日期: 12月16日星期: 时段: 课题正弦函数的图像及应用 学情分析学生已经学习了三角函数的图像和性质,三角函数图象的平移变换是一个难点,学生刚刚学习,需要及时加强巩固。 教学目标与考点分析1.掌握正弦型函数y=A sin(ωx+φ)的图象变换; 2.结合平移变换理解y=A sin(ωx+φ)的性质及简单应用;3.掌握y=sin x到y=A sin(ωx+φ)的图象的两种变换途径. 教学重点图象的三种变换方法是本节课的重点 教学方法导入法、讲授法、归纳总结法 学习内容与过程 基础梳理 1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示 x 0-φ ω π 2-φ ω π-φ ω 3π 2-φ ω 2π-φ ω ωx+φ0π 2 π 3π 2 2π y=A sin(ωx+φ)0 A 0-A 0 2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤 3.当函数y=A sin(ωx+φ)(A>0,ω>0,x∈[0,+∞))表示一个振动时,A叫做振幅,T=2πω叫

A .T =6π,φ=π 6 B .T =6π,φ=π 3 C .T =6,φ=π 6 D .T =6,φ=π 3 3.函数y =cos x (R x ∈)的图象向左平移π 2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ). A .-sin x B .sin x C .-cos x D .cos x 4.设ω>0,函数y =sin )3(π ω+x +2的图象向右平移4π3个单位后与原图象重合,则ω的最小值 是( ). A .23 B .43 C .3 2 D .3 5.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________. 考向一 作函数)sin(φω+=x A y 的图象 【例1】?设函数f (x )=cos(ωx +φ))02 ,0(<<->?π ω的最小正周期为π,且23 )4(= πf . (1)求ω和φ的值; (2)在给定坐标系中作出函数f (x )在[0,π]上的图象. 【训练1】 已知函数f (x )=3sin )421(π -x ,x ∈R . (1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?

正弦型函数的图像和性质(教学设计)

正弦型函数的图像和性质教学设计 教学目标:使学生掌握正弦型函数的图像及其性质,掌握图像 的变化规律。 重点:掌握正弦型函数的图像及其性质,掌握图像的变化规律。 难点:正弦型函数图像的变化规律。 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时, A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振 动一次需要的时间2T π ω =称为这个振动的周期,单位时间内往复振动的次数 12f T ω π == ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =, 先画出它在长度为一个周期内的闭区间上的简x 6 π- 12π 3π 712π 56 π 23 x π + 0 2 π π 32 π 2π 3sin(2)3 x π + 3 0 3- 0 x y O π 3 π- 6 π- 53 π 2π sin()3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(2)3 y x π =+

函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上; ②再把图象上所点的横坐标缩短到原来的1 2 ,得到sin(2)3y x π=+的图象;③再把 图象上所有点的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图 象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还 可看作由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移 6 π 个单位,得到函数sin 2()6 y x π =+的图象; ③再把函数sin 2()6 y x π=+的图象上所有点的纵坐标伸长到原来的3倍,得到 3sin 2()6 y x π =+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,

高中正弦型函数图像变换 优秀教学设计

【课题】 1.5 函数)sin(?ω+=x A y 的图像 【教材】 高中数学人教版必修4第49页至55页. 【课时安排】 1个课时. 【教学对象】 高一(上)学生.【授课教师】 【教学目标】 ? 知识与技能 (1)理解A 、ω、?的变化对函数图像的形状及位置的影响; (2)掌握由x y sin =的图像到)sin(?ω+=x A y 的图像的变换规律. ? 过程与方法 (1)使学生经历图像变换的过程,培养学生的实践能力和分析问题、解决问题的能力; (2)锻炼学生归纳总结和逻辑思维的能力. ? 情感态度价值观 经历图像变换的实际操作过程,培养学生“由简单到复杂、由特殊到一般”的化归思想和辩证思想. 【教学重点】 1.考查参数A 、ω、?对函数图像变换的综合影响; 2.理解如何由x y sin =图像变换到)sin(?ω+=x A y 图像的过程. 【教学难点】 ω对)sin(?ω+=x A y 的图像的影响规律的概括. 【教学方法】 讲练结合、讨论交流、合作探究。【教学手段】计算机、flash 。 【教学过程设计】 教学流程设计 问题情境 探究一 参数?对 )sin(?+=x y 探究二 x y 2sin =如何平移得到 ) (3 2sin π + =x y 探究三 参数()0>ωω对 ()?ω+=x y sin 图像探究四 参数()0>A A 对()?ω+=x A y sin 图像完成例题 解答 提出问 题的解决方法 学生思考讨论 并归纳规律 学生思考讨论 并归纳规律 学生思考讨论 并归纳规律 学生思考讨论 并归纳规律 寻找解题方法总结规律 函数)sin(?ω+=x A y 的图像

教案___正弦型函数的图像和性质

正弦型函数的图像和性质 教学目标:1、理解正弦型函数的定义及其中参数的意义; 2、会采用五点法画正弦函数的图像; 3、掌握函数图像之间的关联。 重点、难点: 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时, A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振 动一次需要的时间2T π ω =称为这个振动的周期,单位时间内往复振动的次数 12f T ω π = =,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(23 y x π =+ sin y x = 3sin(2)3 y x π =+

函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3π个单位,得到sin()3y x π =+的图象上;②再把图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把 图象上所有点的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图 象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍 (纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还 可看作由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移 6 π 个单位,得到函数sin 2()6 y x π =+的图象; ③再把函数sin 2()6 y x π =+ 的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2()6 y x π =+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,

正弦型函数的图像-教学设计

§1.5 《函数()sin y A x ω?=+的图像(第1课时)》教学设计 一、基本说明 1. 课题:函数()sin y A x ω?=+的图像 2. 课时:1课时 3. 年级:高一年级 4. 模块:高中数学必修4 5. 所用教材版本:人民教育出版社A 版 6. 所属章节:第一章第五节 7. 课型:新授课 二、教材分析 本节课是新课标高中数学A 版必修4中第一章第5节第一课时内容。此内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生已初步了解函数()sin y A x ω?=+的图象,并会运用五点法作图,本节内容是对该部分知识的深化,为后续参数的物理意义教学做准备,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。 三、学情分析 本节课在高一第二学段,学生进入高中学习已经三个月,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但学生第一次接触图象伸缩变化,容易造成认知的难点,此外,对于本节内容学生要理解并掌握三个参数对函数图象的影响,还要研究三个参数对函数图象的综合影响,且方法不唯一,知识密度较大,理解掌握起来难度较大。在教学中,抓住“对图象的影响”的教学,使学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。 四、教学目标 1、理解?对()sin y x ?=+图象的影响,ω对sin y x ω=图象的影响,A 对sin y A x =图象的影响. 2、通过探究图象变换,会用图象变换法由sin y x =画出()sin y A x ω?=+图象的简图. 五、教学重难点 教学重点:讨论字母?、ω、A 变化时对函数图像的形状和位置的影响,理解由sin y x =的图象到 ()sin y A x ω?=+的图象变化过程.掌握函数()sin y A x ω?=+图像的简图做法; 教学难点:由正弦函数sin y x =得到()sin y A x ω?=+的图像变化过程.

正弦型函数

科目___________ 班级__________ 任课教师_______ 使用时间____年____月____日 章(单元)_________ 课题___正弦型函数_ 课时_____ 课型_______ 一.学习目标: 掌握正弦型函数的性质. 二.学习过程: (一)自我研学:) 1、我们已经学习了正弦函数sin y x =,图像五点法的五点 定义域 值域 ;单调区间 ; x= y 最大值是 。 x= y 最小值是 。 最小正周期 。对称中心 对称轴 2、在物理、电工和工程技术中,经常遇到形如sin()y A x ω?=+的函数,这类函数叫做正弦型函数.一般地,可以证明,正弦型函数sin()y A x ω?=+(0,0)A ω>>的定义域为R ,周期为T = . A 表示这个量振动时离开平衡位置的最大距离,所以通常把A 叫做振动的 ,函数的最大值 max y = ,最小值m i n y = ;往复振动一次所需要的时间2π T ω = 叫做这个振动 的 .单位时间内往复振动的次数12π f T ω == 叫做振动的 .x ω?+叫做 ,0x =时的相位?叫做 . *运用知识 强化练习 指出下列各函数的周期 (1)πsin(3)3y x =+;(2)π3sin()3y x =-;(3)1π sin()23 y x =-; 3由函数sin y x =的图象通过变换得到sin )y A x ω?=+(的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”. 先平移后伸缩: 先画出函数sin y x =的图像;再把正弦曲线_________(0?>)或_______(0?<) 平行移动?个单位长度,得到函数sin )y x ?=+(的图像;然后把曲线上各点的横坐标

1.2.1 正弦型函数的周期教案(高教版拓展模块)

1.2.1 正弦型函数的周期 一、教学目标 1.使学生理解函数周期性的概念。 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力。 二、教学重、难点 1. 教学重点:(1)周期函数的定义; (2)正弦、余弦函数、正切函数的周期性; 2. 教学难点:周期函数与最小正周期的意义。 三、教学设想: (一)情境导入: T :今天是星期一,7天之后星期几? S :星期一 T :14天之后呢? S :还是星期一 T :自然界还有许多类似的现象,比如每个星期都是从星期一到星期天。你能找到类似的实例吗? S :每年都有春、夏、秋、冬,地理课上的地球的自转,公转。。。 T :这些现象有什么共同特点呢? S :都给我们重复、循环的感觉 T :同学总结的很好,它们都可以用“周而复始”来描述,我们把这些现象叫做周期现象。 [设计思路:通过生活实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,激发学生的求知欲] 我们已经学习了正弦函数和余弦函数,在物理、电工和工程技术中,经常会遇到形如()sin y A x ω?=+的函数,这类函数叫做正弦型函数,它与正弦函数有着密切的联系。正弦函数的周期是2π,那么()sin y A x ω?=+的周期又是多少呢? (二)探讨过程: 1、我们先看函数周期性的定义. 定义 对于函数()f x ,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,()()f x T f x +=都成立,那么就把函数()f x 叫做周期函数,不为零的常数T 叫做这个函数的周期. 需要注意的几点: ①T 是非零常数。 ②任意x D ∈,都有x T D +∈,0T ≠,可见函数的定义域无界是成为周期函数的必要条件。

2020高中数学 1.3.1正弦型函数课标分析 新人教B版必修4

关于人教B版必修四——正弦型函数的新课标要求分析 普通高中数学新课程标准指出数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具.数学教育使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界. 高中数学课程对于提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用,有助于学生增强应用意识,形成解决简单实际问题的能力;高中数学课程倡导自主探索、动手实践、合作交流等学习方式,有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的"再创造"过程;高中数学课程设立"数学探究"、"数学建模"等学习活动,以激发学生的数学学习兴趣,养成独立思考、积极探索的习惯,体验数学发现和创造的历程,发展创新意识. 新课标下对三解函数的教学要求,是探究式的模式设计,注重激发学生的数学学习兴趣.我们应当认真学习领会新课程标准,积极转变教学思想和研究教学方法,提高对素质教育的认识. 三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用.三角函数的本质是一点在单位圆圆周上运动的“动态描述”,它的性质以及公式都是和单位圆的几何性质密切相关的,这是研究三角函数的重要思想方法.在本模块中,将通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律的问题中的作用. 在三角函数的教学中,教师应根据学生的生活经验,创设丰富的情境,使学生体会三角函数模型的意义.例如,通过单摆、弹簧振子、观览车座椅的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型. 结合新课标要求,我认为正弦型函数的图象与性质的基本要求是: ①了解y=Asin(ωx+?)的实际意义,能借助计算器或计算机画出它的图象,观察参数A,ω,?对函数图象变化的影响; ②会用“五点法”画函数y=Asin(ωx+?)的图象.

相关文档
最新文档