工程光学课程论文

工程光学课程论文
工程光学课程论文

汉口学院机电与工程学院2014-2015学年第一学期光电信息工程专业《工程光学》课程论文

任课教师杨兴成绩

工程光学设计

摘要 摘要:设计三片库克照相物镜,给出三片镜子的结构参数按照设计要求合理设计。近轴光路追迹求出设计系统的焦距和后焦距。然后利用zemax光学设计软件仿真验证设计结果。 关键词:照相物镜;光学设计 设计要求: 设计要求:采用三片库克(cookie)结构,D/f=1/5,半像面尺寸:18mm 半视场角:20°设计波长:0.486um、0.587um、0.656um,口径D:10mm 计算:系统焦距f,,后焦距(BFL) 第一章绪论 我们设计光学系统采用光线模型方法,即利用几何光学和光学工程中涉及到的基本方法、基本公式设计三片库克照相物镜。利用光线模型设计光学系统是非常重要的方法。曾经有位美国学者在回答有关光线和波动理论应用问题时,睿智的说;“你用光线理论设计照相机镜头,尽管是近视理论,但你用一个星期可以完成;然而你若用衍射理论设计照相机镜头,虽然你用的理论很严格,也去你一辈子才能设计出一个镜头。”可见用几何光学和工程光学中的光线模型设计光学系统是多么的重要。而近轴光线的追迹公式又是利用光线理论设计光学系统的基础。 根据近轴光学公式的性质,它只能适用于近轴区域,但是实际使用的光学仪器,无论是成像物体的大小,或者由一物点发出的成像光束都要超出近轴区域。 这样看来,研究近轴光学似乎没有很大的实际意义。但是事实上近轴光学的应用并不仅限于近轴区域内,对于超出近轴区域的物体,仍然可以使用近轴光学公式来计算平面的位置和像的大小。也就是说把近轴光学公式扩大应用到任意空间。对于近轴区域以外的物体,应用近轴光学公式计算出来的像也是很有意义的: 第一,作为衡量实际光学系统成像质量的标准。根据共轴理想光学系统的成像性质:一个物点对应一个像点;垂直于光轴的共轭面上放大率相同。如果实际共轴球面系统的成像符合理想则该理想像的位置和大小必然和用近轴光学公式计算所得结果相同。因为它们代表了实际近轴光线的像面位置和放大率。如果光学系统成像不符合理想,当然就不会和近轴光学公式计算出的结果一致。二者间的差异显然就是该实际光学系统的成像性质和理想像间的误差。也就是说,可以用它作为衡量该实际光学系统成像质量的指标。因此,通常我们把用近轴光学公式计算出来的像,称为实际光学系统的理想像。 第二,用它近似地表示实际光学系统所成像的位置和大小。在设计光学系统或者分析光学系统的工作原理时,往往首先需要近似地确定像的位置的大小。能够满足实际使用要求的光学系统,它所成的像应该近似地符合理想。也就是说,它所成的像应该是比较清晰的,并且物像大体是相似的。所以,可以用近轴光学公式计算出来的理想像的位置和大小,近似地代表实际光学系统所成像的位置和大小。由此可见近轴光学系统具有重要的实际意义,它在今后的研究光学系统的成像原理时经常用到。

扬大工程光学课程设计20140412

工程光学课程设计 班级 学号 姓名 一、目的 了解光学系统外形尺寸计算在光学系统设计中的作用,学习和掌握外形尺寸计算的内容和一般方法。根据使用要求确定光学系统整体结构尺寸的设计过程称为光学系统的外形尺寸计算。光学系统的外形尺寸计算要确定的结构内容包括系统的组成、各光组元的焦距、各光组元的相对位置和横向尺寸。 外形尺寸计算基本要求: 第一,系统的孔径、视场、分辨率、出瞳直径和位置; 第二,几何尺寸,即光学系统的轴向和径向尺寸,整体结构的布局; 第三,成像质量、视场、孔径的权重。 二、要求 对题中所涉及的光学系统 ⑴按照工作原理正确作出光路图并能正确描述; ⑵完整叙述及列举计算的过程,步骤要详细不能省略中间中程; ⑶完成设计报告 三、内容 (一)只包括物镜和目镜的望远系统 计算一个镜筒长L=f1′+f2′=200+(学号最后两位)mm,放大率Γ= -24+(学号最后一位),视场角2ω=1°40′的刻普勒望远镜的外形尺寸。 1、求物镜和目镜的焦距;

图1只包括物镜和目镜的望远系统结构图 2、求物镜的通光孔径D1。可根据望远系统的有效放大率求出D1。 3、求出瞳直径D1’; 4、视场光阑的直径D3; 5、目镜的视场角2ω′; 6、求出瞳距lz′; 7、求目镜的口径D2; 8、目镜的视度调节(目镜相对视场光阑的移动量x); 9、选取物镜和目镜的结构。 (二)带有棱镜转像系统的望远镜 双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为: 1、望远镜的放大率Γ=8倍; 2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D=30mm); 3、望远镜的视场角2ω=10°; 4、仪器总长度在110mm左右,视场边缘允许50%的渐晕; 5、棱镜最后一面到分划板的距离 14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm。 6、lz′=8~10mm 要求计算棱镜转像望远镜的各类尺寸

光电技术 论文

专业概述 信息显示与光电技术作为信息科学技术的重要基础,在全球范围内发展迅猛,并已形成经济支柱性重大产业,我国已将其列入二十一世纪重点发展的技术与产业之一。信息显示技术与光电技术已成为综合学科交叉的新理论和新技术的结合,涉及到光学薄膜电子学、材料学、制造学、半导体电子学、大面积电子学、微电子集成系统学、真空微电子学、光电子学、信息系统等诸多领域,是推动电视、计算机、通信、网络、多媒体、教育、交通、广告、导航、军事、仪器仪表、测量、照明等高速发展的原动力。当前我国对信息显示与光电技术专业的毕业生需求正逐年增加,人才供不应求,并预计这种需求将保持持续增长趋势。 2培养目标 信息显示与光电技术专业学生主要学习信息显示与光电技术的基础理论和专业知识,受到科学实验与科学思维的基本训练,除具有良好的科学素质外,还将掌握新型显示器件及驱动电路的设计、制造及测试所必需的基本理论和方法,具有电路分析、工艺分析、器件性能分析和驱动电路设计的基本能力。 本专业培养具有光电材料与器件基本知识,掌握信息储存、显示、传输、以及驱动电路的设计和光电测试的基本理论和方法,具有信息显示实现、器件性能分析和设计、驱动电路设计的基本能力,具备信息显示与光电技术的基础理论和实际应用能力的高级工程技术应用型人才。毕业生能够胜任在现代通信、电子信息显示、半导体器件、光电成像、传感器、太阳能电池、半导体照明等相关企业从事技术工作,事业单位和其他社会组织中从事业务管理的高级工程技术岗位。 [1] 3主干课程 基础物理、工程光学、工程制图、工程计算与仿真、材料分析基础、信息显示技术、显示器件驱动电路设计、真空技术、光电材料与器件、发光原理基础、阴极电子学、电子光学及应用、液晶显示技术、有机电子材料与器件、固体摄像技术、纳米材料与器件、真空微电子学、视频接口技术、普通化学、C语言、半导体物理与器件、单片机应用基础、光电成像物理、可视化程序设计、信号与系统、光电电路设计与应用、光电测试技术、半导体光电子学、信息传送与接收技术、LED显示技术等。

工程光学基础教程-习题答案(完整)

第一章 几何光学基本定律 1. 已知真空中的光速c =38 10?m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s , 当光在金刚石中,n=2.417时,v=1.24 m/s 。 2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: ,所以x=300mm 即屏到针孔的初始距离为300mm 。 3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少? 2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 1mm I 1=90? n 1 n 2 200mm L I 2 x

88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0 . 5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式: 会聚点位于第二面后15mm 处。 (2) 将第一面镀膜,就相当于凸面镜

工程光学课程设计

工程光学课程设计 设计名称:工程光学课程设计 院系名称: 专业班级: 学生姓名: 学号: 指导教师: XXX教务处制 20 13 年12 月

工程光学课程设计评分表 最后成绩的以优(90~100)、良(80~89)、中(70~79)、及格(60~69)和不及格(少于60分)五级给出。

第1章引言 1.1 简单介绍 对于实际的光学系统来说,它的成像往往是非完善成像,对于怎样来判断一个光学系统的性能的优劣,是光学设计中遇到的一个重要问题.在当前计算机辅助科研、教学的迅猛发展过程中,计算机辅助光学系统设计已成为光学设计不可缺少的一种重要手段.其中,由美国焦点软件公司所发展出的光学设计ZEMAX,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是可以运算Sequential及Non-Sequential的软件.其主要特色有分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG等,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 但是,这里必须强调一点的是,ZEMAX软件只是一个光学设计辅助软件,也就是说,该软件不能教你怎么去进行光学设计,而只是能对你设计的光学系统进行性能的优化以达最佳成像质量所以,在应用本教程进行光学辅助设计之前,您最好先学习一下光学设计的有关知识:首先是几何光学基础,几何光学是光学设计的基础,要做光学设计必须懂得各种光学仪器成像原理,外形尺寸计算方法,了解各种典型光学系统的设计方法和设计过程.实际光学系统大多由球面和平面构成。记住共轴球面系统光轴截面内光路计算的三角公式,了解公式中各参数的几何意义是必要的,具体公式可参考有关光学书籍,在此就不一一介绍了。对于平面零件有平面反射镜和棱镜,它们的主要作用多为改变光路方向,使倒像成为正像,或把白光分解为各种波长的单色光.在光学系统中造成光能损失的原因有三点:透射面的反射损失、反射面的吸收损失和光学材料内部的吸收损失。其次是像差理论知识,对于一个光学系统,一般存在7种几何像差,他们分别是球差、彗差、像散、场曲、畸变和位置色差以及倍率色差.另外,还必须了解一点材料的选择和公差的分配方面的知识,以及一些光学工艺的知识,包括切割,粗磨,精磨,抛光和磨边,最后还有镀膜和胶合等。

光学设计软件Zemax在《工程光学》课程教学中 的应用

Advances in Education教育进展, 2019, 9(2), 108-112 Published Online March 2019 in Hans. https://www.360docs.net/doc/8815736658.html,/journal/ae https://https://www.360docs.net/doc/8815736658.html,/10.12677/ae.2019.92023 Application of Optical Design Software Zemax in Engineering Optics Course Teaching Yiqing Cao*, Zhijuan Shen, Zhixia Zheng School of Mechanical and Electronic Engineering, Putian University, Putian Fujian Received: Feb. 12th, 2019; accepted: Feb. 26th, 2019; published: Mar. 5th, 2019 Abstract Engineering Optics course is the core course of the control technology and instrument, and has the characteristics of more formulas and fairly theoretical; it plays a very important role in the pro-fessional learning. The traditional method of teaching of the course pays attention to the deriva-tion of the formula and the explanation of the abstraction, and thus students have a great difficulty in understanding and mastering. In order to adapt to the transformation of the university to the practical undergraduate university, and train the professional talents with strong practical ability and self-study ability, Zemax software is applied to the process of the explaining the important knowledge of Engineering course. According to the method of Zemax software simulation, the students’ understanding of optical knowledge and the practical application ability of the know-ledge are improved, and improve the teaching quality and meet the training goal of the practical talents. Keywords Zemax, Engineering Optics, Practical Talents, Aberration 光学设计软件Zemax在《工程光学》课程教学中的应用 曹一青*,沈志娟,郑志霞 莆田学院机电工程学院,福建莆田 收稿日期:2019年2月12日;录用日期:2019年2月26日;发布日期:2019年3月5日 *通讯作者。

工程光学设计A4 C1-C3

波面:某一瞬间光波动传播所到达的曲面 光线:能够传输能量的几何线 光束:和波面对应的法线束 基本定律:光的直线传播定律、光的独立传播定律、光的反射与折射定律 实物(像):实际光线相交形成。可由人眼或接收器所接收。 虚物(像):光线的延长线相交形成,只可以被人眼观察 完善成像条件:入射波面是球面波,出射波面也是球面波;入射光是同心光束,出射光也是同心光束;物点及其像点之间任意两条光路的光程相等 近轴方程:薄透镜: 无焦系统: 垂轴放大率: 轴向放大率: 角放大率 拉赫不变量 典型光线:平行于光轴入射的光线经过系统后过像方焦点;过物方焦点的光线,经过系统后平行于光轴;倾斜于光轴入射的平行光束,经过系统后会交于像方焦平面上的一点;自物方焦平面上一点发出的光束,经系统后成倾斜于光轴的平行光束;过节点的光线相互平行 近轴理论为基础,建立起理想光学系统模型,便于分析光学系统的成像性质和规律。近轴区成完善像, 但成像范围小,光束宽度小,能量小。实际光学系统,对具有一定大小的物(视场)以宽光束(孔径)成像,成像有缺陷 光学设计的概念:根据仪器的技术参数和要求,考虑和拟定光学系统的整体方案,并计算其中各个具有独立功能的组成部分的光学参数——选择并确定各组成部分的结构型式,查取或计算其初始结构参数(半径、厚度、间隔、材料等)——逐次修改结构参数,使像差得到最佳的校正和平衡——对设计结构进行评价 光学系统设计过程:1、外形尺寸计算 2、初始结构的计算和选择 3、像差校正和平衡 4、像质评价 5、绘制光学系统图、部件图和零件图 6、编写设计说明书 进行技术答辩 国内外光学设计软件:SOD88;Zemax,CODE V,OSLO,LightTools,ASAP,TracePro 孔径选择:Entrance Pupil Diameter(EPD): 入瞳直径(物体位于无限远时)Image Space F/#: 像方F 数(f/D,只用于物距无穷远);Object Space Numerical Aperture :物方数值孔径nsin θ(有限物距);Float by Stop Size :由光阑决定入瞳大小;Paraxial working F/#: 近轴F 数,忽略像差;Object Cone Angle:物方锥角(轴上物点发出的边缘光线的半角),最大可以达到90度(物在有限远) 视场类型:Angle: 设定物方视场主光线与光轴的夹角,多用于无限共轭平行光条件下。 Object height:设定被成像物体的尺寸大小,用在有限共轭系统。Paraxial Image height:近轴像高。使用近轴光束定义系统成像的像面大小。用于需要固定像大小的设计中,使用近轴方法计算,忽略系统畸变影响,适用于视场角度较小的系统。 Real image height: 实际像高。使用实际光线计算,考虑畸变大小,适用于大视场广角系统。Zemax 计算慢。 曲率求解: Marginal ray angle :控制边缘光线的角度 Chief ray angle :控制主光线的角度 Marginal ray normal :使光学面与近轴边缘的光线垂直,可产生没有球差或慧差的光学面 Chief ray normal :使光学面与近轴主光线垂直,可产生不具慧差,像散或畸变的光线 Alplanatic :可产生没有球差,慧差,像散的等光程光学面 Pick up :使光学面的曲率随所指定面的曲率而改变Element power :可控制指定镜片的光焦度,也可控制有效焦距,设于第二面 Concentric with surface :控制曲率使曲率中心落于指定面上Concentric with radius :控制曲率使曲率中心与指定面的曲率中心在同一点 F/#:控制曲率,控制有效焦距,设于第二面 厚度求解:Marginal ray height :控制近轴边缘光线在像面上的高度,Pupil zone 在正负1之间 Chief ray height: 控制近轴主光线高度 Edge thickness :控制镜片边缘厚度,以免优化过厚或过薄 Pick up :控制厚度随指定面的厚度变化 Optical path difference :控制厚度使指定光瞳坐标处光程差维持定值 Position :控制面至指定面之间的距离保持一定 Compensator :控制面厚度与参考面厚度之和保持定值 Center of curvature :控制厚度使后光学面的位置在指定面的曲率中心上 玻璃求解:Model :用于玻璃优化 Pick up :随指定面变化 Substitute :指定玻璃库优化 Offset :在折射率及Abbe 数上增加一偏移量,用于公差计算 光学系统特性:光学特性(焦距、放大率、物距、像距等):属于物像几何尺寸共轭关系 成像特性:光学系统所成像的清晰程度以及像与物的相似性。 实际光学系统成像:以一定宽度的光束对一定大小的物体成像,不能成完善像 实际像与理想像之间的差异是像差,是光学系统成像不完善程度的描述 像质评价方法:1、设计阶段----通过计算来评定系统成像质量优劣 2、系统制造完成后-----通过对系统进行实际检验测量来评价成像质量 像差分析方法:几何像差法:以特征光线经过光学系统后出射光线在横向或纵向与理想像的偏差分析像差的方法。以几何光学为基础。优点:计算简单、意义直观 波像差法:以波动光学为基础,以实际波面和理想像的波面的偏差分析像差的方法。波像差是几何像差的综合体现。尤其对于小像差系统,波像差更能反映像质。 球差:轴上物点发出的宽光束经透镜后,不同孔径区域的光束汇聚在光轴的不同位置,在像面上形成弥散斑。轴向球差、垂轴球差、边光球差。 球差是入射高度的函数;球差反映轴上点的像差,与视场无关;球差具有轴对称性。 球差的表示、查看:2D Layout 、点列图、球差曲线、赛德尔像差系数、评价函数操作数、光扇图 球差校正:正负透镜补偿法:实际设计时,常使初级球差与二级球差相补偿,将边缘光的球差校正为零。对边光校正球差时,0.707带光球差最大 非球面校正球差:二次曲面代替球面 无球差的三个位置:L=0,L ’=0; L=L ’=r;L ’=(n+n ’)r/n ’(齐明点、不晕点) 彗差:轴外物点发出的宽光束经系统后失对称,不会聚在一点,而在像面上形成彗星状弥散斑,左右对称,上下失对称 彗差度量:通常用子午面和弧矢面上对称于主光线的各对光线,经系统后的交点相对于主光线的偏离来度量。子午彗差以这对光线与理想像面交点高度的平均值与主光线交点高度之差来表征,弧矢度量以前后光线对与理想像面交点高度的平均值与主光线交点高度之差来表征 彗差的性质:彗差与孔径、视场均有关彗差是轴外点以大孔径成像时的像差,不仅随孔径增大而增大,视场越大,彗差也越大 彗差的校正:1、改变光阑位置2、组合透镜,一般能消除球差的组合,也可以使彗差得到改善3、对称结构光学系统 彗差的表示:2D Layout 、Spot Diagrams 、Ray Fans 、评价函数操作数COMA 、Seidel Aberration 像散:轴外物点发出的锥形光束通过光学系统聚焦后,光斑在像面上子午方向与弧矢方向不一致,子午像点与弧矢像点不重合,即一个物点的成像将被聚焦为子午和弧矢两个焦线,是光学系统在两个方向聚焦能力不同而形成的。子午细光束像点和弧矢细光束像点的轴向距离为像散 像散的校正:调节视场光阑的位置;使用对称结构系统;利用非球面透镜校正 场曲:平面物体通过透镜系统后,所有平面物点聚焦后的像面不与理想像面重合,而是呈现为一个弯曲的像面。每个物点通过系统自身能成一个清晰的像点,但所有像点的集合却是一个曲面 场曲随视场变化,不能用单一视场或某一物点成像光斑来描述,此时光斑图、光扇图等都失去作用 场曲校正:优化光阑位置;对称式光学系统 畸变:实际系统,视场较大时,一对共轭物像平面上的放大率不为常数,将使像相对于物失去相似性,使像变形的缺陷称畸变 畸变是视场的函数,畸变的大小随视场的三次方成正比,视场小的光学系统畸变不显著。正畸变:枕形畸变,垂轴放大率随视场角的增大而增大 负畸变:桶形畸变,垂轴放大率随视场角的增加而减少 畸变的度量:绝对畸变:线畸变 相对畸变:相对于理想像高的绝对畸变,通常用百分率表示 不能用几何光线、也不能通过光斑图或波前图来预测畸变量,只能对所有物点进行光线追迹得到像面高度,作为最终评价畸变量的大小 畸变的校正:全对称系统(结构对称,物像对称)不产生畸变 单色像差:球差:轴上点像差,与孔径有关。彗差:轴外点、宽光束,失对称,光线对与主光线不能会聚。场曲(像面弯曲):无法在平直像平面上获得中心与四周都清晰的像。像散:轴外点、细光束,光线对称,光线对与主光线能够会聚,但子午与弧矢光束会聚点位置不同。畸变:轴外,像、物不相似,但不影响像的清晰度 多种像差共存:物点在主轴上时,其它像差都不出现,只有球差单独出现。光束愈宽,球差愈显著;物点与主轴间距离不大时,除球差仍将出现外,彗差将显著,光束即使不太宽,彗差还可能比球差显著;物点与主轴间距离较大而光束很细窄时,像散将最为显著,因为对于狭窄的光束,球差和彗差都不显著;像面弯曲和畸变,仅在物面特别大时才比较显著,如果光束是细窄的,那么此时像面弯曲和畸变相对说来都将不再重要 色差:对白光成像的光学系统,由于材料对不同色光的折射率不同,使各色光线具有不同的成像位置和倍率。 位置色差(轴向色差):波长不同,折射率不同,焦距不同。像面上呈现彩色弥散斑。 像差曲线:①各单色光的球差随孔径的变化②位置色差随孔径的变化③球差随色光的变化(色球差)④二级光谱 倍率色差(垂轴色差):λ变——n 变——β变——y'变 度量:F 光、C 光主光线在D 光的理想像面上的交点高度之差 缺陷:物体的像有彩色的边缘,破坏了轴外点的清晰度,造成像的模糊,在大视场下尤为严重 色差校正:单透镜本身不能消色差,校正色差必须采用正负透镜组合 色光焦点漂移曲线:双胶合透镜在两波长处焦点位置重合,色差得到校正 波象差:根据光的波动性来描述实际波面和理想波面的偏差 瑞利判据:实际波面与理想波面之间的最大波像差不超过λ/4时, 此实际波面可看作是无缺陷的 缺点:只考虑波像差的最大允许公差,没有考虑缺陷部分在整个波面面积中所占比重(局部气泡、划痕等) 中心点亮度(斯特列尔比):无像差系统:高斯像面上像点中心有最大光强度 存在像差:像点光强度分布发生变化,中心光强降低,光能量向周围扩散 中心点亮度:系统存在像差时成像衍射斑的中心亮度和不存在像差时衍射斑的中心亮度之比,记作斯特列尔比(>=0.8,成像完善) 调制传递函数MTF :一定空间频率下像的对比度与物的对比度之比。能反映物体不同空间频率成分的传递能力。一般来说,高频部分是反映物体的细节传递情况,中频部分是反映物体的层次传递情况,而低频部分则是反映物体的轮廓传递情况。MTF 曲线所围面积越大,表明光学系统所传递的信息量越多,成像质量越好,图像越清晰。 系统制造完成后实测像质:星点检验:类似点列图考察一个点光源(星点)经系统所成的像及像面前、后不同截面衍射图形的光强变化及分布,定性地评价光学系统的成像质量。一般使用带有微孔的星点板 波面测量:波像差。各种干涉系统结构+图像传感技术+计算机技术 光学传递函数测量:光栅法;针孔法 分辨率测量:分辨率:光学系统能够分辨物体细节的能力。如果一个点光源的爱里斑中心刚好和邻近的另一个点光源的爱里斑边缘相重合,则这两个点光源被认为是刚刚可以被分辨——瑞利判据 分辨本领:望远镜: 显微镜: 照相机物镜: ??? ??+='sin 'sin 1'U I r L ''I I U U -+=φh nu u n =-''i i i i d u h h '1-=+11'+=i u h EFL 11'++=i i u h BFL 2121φφφφφd -+=l l '=β()()211C C n --=φ2βα=γ1=J y u n nuy =='''D λ?22.1=θλsin 61.0?=?n y ()D f y /22.1''λ=?

工程光学课程设计.

实习报告 实习名称:工程光学课程设计院系名称:电气与信息工程专业班级:测控12-1 学生姓名:张佳文 学号:20120461 指导教师:李静

黑龙江工程学院教务处制2014 年 2 月

工程光学课程设计任务书

目录 1摘要 ...................................................................... 错误!未定义书签。2物镜设计方案 . (1) 3物镜设计与相关参数 (2) 3.1物镜的数值孔径 (2) 3.2物镜的分辨率 (3) 3.3物镜的放大倍数 (4) 3.4物镜的鉴别能力 (4) 3.5设计要求参数确定 (4) 4 显微镜物镜光学系统仿真过程 (5) 4.1选择初始结构并设置参数 (5) 4.2自动优化 (5) 4.3物镜的光线像差(R AY A BERRATION)分析 (6) 4.4物镜的波像均方差(OPD)分析 (7) 4.5物镜的光学传递函数(MTF)分析 (8) 4.6物镜的几何点列图(Stop Diagrams)分析 (10) 4.7仿真参数分析 (11) 5心得体会 (11) 6参考文献 (12)

1摘要 ZEMAX是Focus Software 公司推出的一个综合性光学设计软件。这一软件集成了包括光学系统建模、光线追迹计算、像差分析、优化、公差分析等诸多功能,并通过直观的用户界面,为光学系统设计者提供了一个方便快捷的设计工具。十几年来,研发人员对软件不断开发和完善,每年都对软件进行更新,赋予ZEMAX更为强大的功能,因而被广泛用在透镜设计、照明、激光束传播、光纤和其他光学技术领域中。 ZEMAX采用序列和非序列两种模式模拟折射、反射、衍射的光线追迹。序列光线追迹主要用于传统的成像系统设计,如照相系统、望远系统、显微系统等。这一模式下,ZEMAX 以面作为对象来构建一个光学系统模型,每一表面的位置由它相对于前一表面的坐标来确定。光线从物平面开始,按照表面的先后顺序进行追迹,追迹速度很快。许多复杂的棱镜系统、照明系统、微反射镜、导光管、非成像系统或复杂形状的物体则需采用非序列模式来进行系统建模。这种模式下,ZEMAX以物体作为对象,光线按照物理规则,沿着自然可实现的路径进行追迹,可按任意顺序入射到任意一组物体上,也可以重复入射到同一物体上,直到被物体拦截。与序列模式相比,非序列光线追迹能够对光线传播进行更为细节的分析。但此模式下,由于分析的光线多,计算速度较慢。 ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表整合在一起。ZEMAX 不只是透镜设计软件而已,更是全功能的光学设计分析软件,具有直观、功能强大、灵活、快速、容易使用等优点,与其它软件不同的是ZEMAX 的CAD 转文件程序都是双向的,如IGES 、STEP 、SAT 等格式都可转入及转出。而且ZEMAX可仿真Sequential 和Non-Sequential 的成像系统和非成像系统。 ZEMAX光学设计程序是一个完整的光学设计软件,是将实际光学系统的设计概念,优化,分析,公差以及报表集成在一起的一套综合性的光学设计仿真软件。包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户光学设计程界面中。而且工作界面简单,快捷,很方便的就能找到我们想哟实现的功能,ZEMAX功能强大,速度快,灵活方便,是一个很好的综合性程序。ZEMAX能够模拟连续和非连续成像系统及非成像系统。 2物镜设计方案 消色差物镜(Achromatic)是较常见的一种物镜,由若干组曲面半径不同的一正一负胶合透镜组成,只能矫正光谱线中红光和蓝光的轴向色差。同时校正了轴上点球差和近轴点慧差,这种物镜不能消除二级光谱,只校正黄、绿波区的球差、色差,未消除剩余色差和其他波区的球差、色差,并且像场弯曲仍很大,也就是说,只能得到视场中间范围清晰的像。使用时宜以黄绿光作照明光源,或在光程中插入黄绿色滤光片。此类物镜结构简单,经济实用,常和福根目镜、校正目镜配合使用,被广泛地应用在中、低倍显微镜上。在黑白照相时,可采用绿色滤色片减少残余的轴向色差,获得对比度好的相片。消色差通常由两个分离的双胶组合透镜组成,这类物镜也称为里斯特物镜,它的倍率一般在6×至30×

光学设计

大连民族学院 工程光学课程设计(论文)平行光管物镜设计 学院(系):物理与材料工程学院 专业:光电子技术科学 学生姓名:任增鑫 学号:2010053216 指导教师:芦永军 完成日期:2013-11-18 大连民族学院

摘要 平行光管是通过它取得来自无限远的光束,此光束谓之平行光。是装校调整光学仪器的重要工具,也是光学量度仪器中的重要组成部分,配用不同的分划板,连同测微目镜头,或显微镜系统,则可以测定透镜组的焦距,鉴别率,及其他成像质量。将附配的调整式平面反光镜固定于被检运动直的工件上,用附配于光管的高斯自准目镜头,通过光管上的高斯目镜观察,可以进行运动工件的直线性检验。在实际成像过程中,物体成的像应该与设计的光学系统一致,达到设计要求的放大倍数。所以,可以通过近轴光学公式计算出理想成像的位置和大小,近似地代表实际光学系统中所要求成的像的位置和大小。近轴光学公式对于工程光学设计有着重要的意义和作用,根据近轴光学公式的性质,它只能适用于近轴区域,但是实际使用的光学仪器,无论是成像物体的大小,或者由一物点发出的成像光束都要超出近轴区域。平行光管物镜物镜采用双胶合结构。双胶合结构能够很好的校正几种初级像差,而且结构简单,所以大多用此结构进行设计。 关键词:平行光管物镜;微小角度;近轴光学公式;双胶合结构

目录 摘要...........................................................................................I 设计要求: (2) 第一章绪论 (2) 第二章Zmeax光学设计软件简介 (3) 第三章平行光管物镜参数的手工计算 (5) 第四章课程设计结果Zmeax验证 (7) 致谢 (9)

三片式物镜设计+Zemax文件截图-北交大工程光学设计作业

三片式物镜的设计 小组成员: 执笔人:

1.设计任务的具体指标及其要求 35mm相机胶片50mm焦距F/3.5 玻璃最小中心厚度与边缘厚度4mm,最大中心厚18mm 空气间隔最小2mm 可见光波段光阑位于中间透镜各透镜所用材料SK4---F2----SK4 2.入瞳直径的设定 点击Gen打开General窗口,在General系统通用数据对话框中设置孔径。在孔径类型中选择Image Space F/#,并根据设计要求在Aperture Value中输入3.5.

3.视场的设定 由于使用35mm相机胶片,其规格尺寸为36mm*24mm,Zemax中一般使用圆形像面,因此该矩形像面的外接圆半径经计算为21.7mm,0.707像高的视场高度为15.3mm。 点击Fie打开Field Data窗口,设置三个视场分别为0mm、15.3mm、21.7mm。

4.工作波长的设定 选择可见光波段,点击Wav按钮,设置Select-F,d,C(Visible),自动输入三个特征波长。

5.评价函数的选择 执行命令Editors----Mreit Function打开Mreit Function Editor编辑窗口,在Mreit Function Editor编辑窗口中执行命令Tools---Default Merit Function,打开默认评价函数对话窗口,选择RMS---Spot Radius--Centroid评价方法,并将厚度边界条件设置为玻璃最小中心厚度与边缘厚度4mm,最大中心厚18mm,空气间隔最小2mm。

6.系统的透镜参数设定 在Lens Data Editor中输入部分初始结构,设置中间透镜为光阑,设置各透镜所用玻璃材料类型。 因为此时的焦距为49.7684

光学课程设计大纲

《光学软件课程设计》教学大纲 适用专业:光电、通信工程、电子信息工程专业 (学分:1学分,学时:20学时) 一、课程的性质和任务 光学软件课程设计是在学习工程光学,光学等基础课程的基础上,基于光学软件进行光学系统的设计,让学生了解光学设计中的主要环节,掌握光学系统的设计、开发的基本方法,以便今后从事光学仪器的设计、研发工作。 通过光学软件课程设计,以求达到如下目的: 1)要求综合运用工程光学课程中所学到的理论知识,独立完成一个设计课题。 2)通过查阅手册和文献资料,培养学生独立分析和解决实际问题的能力。 3)培养学生严肃认真的工作作风和严谨的科学态度。 二、课程的教学内容 题目1:双高斯物镜的优化设计 设计一组双高斯物镜镜头,镜头的技术指标要求如下: 1、焦距:f’=40mm; 2、相对孔径D/f’不小于1/2 ; 3、视场 5、在可见光波段设计(取d、F、C三种色光,d为主波长); 6、成像质量,MTF 轴上>35% @100 lp/mm,轴外0.707 >25%@100 lp/mm。 7、校正球差、色差、场曲、像散。 在满足前面要求的前提下,尽可能减少镜头的片数,在相同的结构情况下,MTF值越高越好。 题目2:摄影物镜的优化设计 镜头的技术指标要求如下 1、焦距:f’=12mm; 2、相对孔径D/f’不小于1/2.8; 3、图像传感器为1/2.5英寸的CCD,成像面大小为4.29mm×5.76mm; 4、后工作距>6mm

5、在可见光波段设计(取d、F、C三种色光,d为主波长); 6、成像质量,MTF 轴上>40% @100 lp/mm,轴外0.707 >35%@100 lp/mm。 7、最大畸变<1% 在满足前面要求的前提下,尽可能减少镜头的片数,在相同的结构情况下,MTF值越高越好。 三、课程的教学基本要求 1)要独立完成设计任务,通过课程设计,锻炼自己综合运用所学知识的能力,并 初步掌握镜头优化设计的方法和步骤。 2)学会查阅资料和手册,根据我们的设计目标,选择合适的初始结构。 3)ZEMAX是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、 分析、公差以及报表集中在一起,学生可以运用是ZEMAX进行镜头的优化设计,并对设计的镜头系统进行像质评价。 4)学会进行镜头优化设计及像差分析,并得出像质评价报告。 5)能够写出完整的课程设计总结报告。 四、课程的学时分配 教学内容进度 布置任务,仿真软件介绍第一周 学习ZEMAX像差控制和优化方法第一周 查询资料,确定初始结构,并进行优化设计第二周 验收设计结果第三周 验收课程设计报告第四周 五、实践性教学环节(含实验、设计、实习等)的内容安排及要求 (1)设计报告需包含:设计要求、初始结构选择与分析、像差校正、评价函数的设置、优化方法的选择、像差结果分析与评价报告、总结与体会、参考文献和辅助软件。 ①说明设计题目及要求。 ②对题目进行剖析并选择合适的初始结构。 ③对初始结构的像差结果进行分析,与我们设计目标进行比较。 ④根据选择的初始结构,进行像差控制和优化设计 ⑤对设计优化结果给出像质评价报告并与我们的设计目标进行比较。 ⑥写出自己在仿真的过程中遇到的问题、如何排除故障以及仿真结果。

天津大学《工程光学》课程教学大纲

天津大学《工程光学》课程教学大纲 课程代码:2020015/2020016 课程名称:工程光学 学时:64 学分: 4 学时分配:授课:52 实验:12(内容及要求见实验教学大纲)授课学院:精仪学院更新时间:2011-6-14 适用专业:测控技术与仪器、电子科学与技术、信息工程(光电信息工程方向)、光电子技术科学、生物医学工程 先修课程:高等数学、大学物理 一.课程性质、教学目的与任务 本课程是一门专业基础课,主要讲授几何光学和物理光学方面的基本理论、基本方法和典型光学系统实例及应用。通过本课程的学习,学生应能对光学的基本概念、基本原理和典型系统有较为深刻的认识,为学习光学设计、光信息理论和从事光学研究打下坚实的基础。 二.教学基本要求 任课教师应以本课程大纲为依据,合理安排教学内容,认真备课;课堂教学中应尽可能充分利用多媒体课件、课程网站等现有教学资源,根据实际条件开展不同程度的双语教学实践;课堂教学后,要留一定数量的作业题,并坚持批改,以利掌握学生的学习情况;习题讲解和分析均不占课内学时;要及时与实验指导人员取得联系,安排相应课程实验,课程主讲教师必须全程参加实验指导1个班次。 学生应按要求参加全部的课堂教学活动,按要求完成作业;参加期中、期末考试,获得该课程学分。 通过本课程的学习,学生应掌握或了解以下基本内容: 1.系统掌握几何光学的基础理论,包括基本定律、球面和共轴球面系统理论、理想光学系统理论,平面镜与棱镜系统理论和光学系统中光阑的概 念。 2.掌握光学系统像差的基本概念、产生原因、危害和校正方法,了解像差的计算。 3.掌握三种典型的光学系统,即:显微系统、望远系统和摄影系统,并了解一些特殊的光学系统知识。 4.掌握光的电磁理论及光波叠加的相关知识。

工程光学教材教参

教材教参 一、课外补充书籍目录 1、TB133/S38 1987 工程光度学与辐射度学(美)斯廷森(Scimson,A.)著刁永言等译 2、TB133/F25 1991 工程光学Engineering optics (加)利兹卡(Lizuka,Kelgo)著胡淑琴等译 3、TB133/Z47 1988 工程光学张凤林,孙学珠主编 4、XX(356923.1) 1999 工程光学郁道银,谈恒英主编 5、K6491753 2003 工程光学李林、林家明等编著 6、TH74/X65 1988 工程光学基础徐家骅主编 7、TH74/X65=2 1994 工程光学基础徐家骅主编 8、102-1511 2003 工程光学基础:高等学校适用教材曹俊卿主编 9、TB133/Z55 1980 工程光学情报年会文集中国光学学会情报专业委员会工程光学分组[编辑] 10、K6471235 2003 工程光学设计萧泽新编著 11、TB133/L36 1987 工程光学系统设计林大键著 12、TB133/W66 1983 工程光学原理王其祥著 13、K6511139 2003 工程前沿美国国家工程院“工程前沿学术研讨会”1999年及2000年会议文集中国工程院译 14、TH74/S73 1979 工业光学史雷德尔(Schroder,G.)著陈诗勤译 15、TH74/M57 1979 工业上的光学配置( )麦格拉埃(Mcgrac,J.D.)著蒲慕明等译 16、[K]76.6/K1 1990 光电工程= Opto-Electronic Engineering 中国光学学会光电技术专业委员会, 中国科学院光电所林祥棣主编 17、TB133/F78 1988 光学的近代主题(法)M.弗朗松著徐森禄译

单透镜——应用光学课程设计报告

广东海洋大学 《工程光学》课程设计 题目:单透镜设计 姓名:李力飞 学号:201211911114 学院:理学院 班级:电科1121 指导老师:陈劲民

广东海洋大学 一.设计目的 查阅光学设计软件ZEMAX资料,初步了解ZEMAX在光学系统设计中实现建模、分析的功能;对上学期《应用光学》课程作一扼要系统的复习。根据设计要求,运用ZEMAX进行辅助设计按要求给出设计结果及撰写设计报告和个人心得总结。 二.设计要求 入瞳直径:30mm 曲率半径:75,-85mm 厚度5mm 材质为BK7玻璃 光源为可见光(F,d,C) 视场角为0°、7°、10° 三.设计思路 直接将要求作为初始结构参数,输入 ZEMAX,并得出初始结果 选取透镜两面半径,焦距作为变量进 行优化 对第一次优化结果进行像质评价,针对 不同像差用对应的评价函数优化,直到 像差符合要求 1

李力飞 四.设计过程 1)入瞳设置 入瞳直径为30mm 2)视场设置 视场角为0度,7度,10度 2

广东海洋大学 3)波长设置 波长为F光(0.486),D光(0.587),C光(0.656)单位:um 4)透镜参数设置 OBJ 和IMA分别为物面,像面。物面厚度(Thickness)为无穷远,即物距为无穷远。 1.在光阑面(STO)后插入一个新的面2,作为透镜的第二个面。 2.透镜第一面,第二面半径分别为75mm和-85mm。 3.由公式f’=nR1R2/(n-1)[n(R2-R1)+(n-1)d],得出透镜焦距f’=78mm,并将f’作为第二面厚度;透镜厚度d=5mm作为第一面厚度。(BK7玻璃折射率:1.5168) 3

相关文档
最新文档