热力学第一定律习题解答

热力学第一定律习题解答
热力学第一定律习题解答

第七章 热力学第一定律

一 选择题

1. 图为质量一定的某理想气体由

初态a 经两过程到达末状态c ,其中

abc 为等温过程,则 ( ) A .adc 也是一个等温过程

B .adc 和abc 过程吸收的热量相等

C .adc 过程和abc 过程做功相同

D .abc 过程和adc 过程气体内能变化相同

解:热量和功均是过程量,内能是状态量。

故答案选D 。

2. 有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气,(看成刚性分子),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气的温度升高,如果使氦气也升高同样的温度,则应向氦气传递热量是 ( )

A . 6J B. 5J C. 3J

D. 2J

选择题1图

解:氦气是单原子分子,自由度为3,氢气是双原子分子,自由度为5。根据理想气体的状态方程,两种气体的摩尔数相同。容器容积不变,气体吸收的热量全部转化为内能。再根据理想气体的内能公式,使氦气也升高同样的温度,应向氦气传递热量是3J。

答案选C。

3. 1mol 的单原子分子理想气体从状态A 变为状态B,如果不知是什么气体,变化过程也不知道,但A、B 两态的压强、体积和温度都知道,则可求出( )

A.气体所作的功

B.气体内能

的变化

C.气体传给外界的热量

D.气体的质

解答案:B

4. 已知系统从状态A经某一过程到达状态B,过程吸热10J,系统内能增量为5J。现系统沿原过程从状态B返回状态A,则系统对外作功是

( )

A. -15J

B. -5J

C. 5J

D. 15J

解 热力学第一定律的表达式W U Q +?=,系统从A 态经某一过程到达B 态时系统做的功为5510=-=?-=U Q W J 。因此当系统沿原过程从B 态返回A 态时,系统对外做功为-5J 。

因此答案选B 。

5. 用公式T C U V ?=?m ,ν计算理想气体内能增

量时,此式 ( )

A. 只适用于准静态的等体过程

B. 只适用于一切等体过程

C. 只适用于一切准静态过程

D. 适用于一切始末态为平衡态的过程

解 答案选D

6. 对于室温下的双原子分子理想气体,在等压

膨胀的情况下,系统对外所作的功与从外界吸收的热量之比W / Q 等

( )

A. 2/3

B.1/2

C.2/5

D.2/7

解答案选 D

7. 理想气体初态的体积为V1,经等压过程使体积膨胀到V2,则在此过程中,气体对外界作()

A.正功,气体的内能增加B.正功,气体的内能减少

C.负功,气体的内能增加D.负功,气体的内能减少

解等压膨胀过程系统对外作正功,由于压强不变体积增加,所以温度升高,因此气体的内能增加。

因此答案选A。

8. 理想气体内能不变的过程是()

A.绝热过程和等温过程

B.循环过程和等体过程

C.等温过程和循环过程

D.等体过程和绝热过程

解对于一定的理想气体,其内能仅取决于状态的温度,如果一个热力学过程的初末态温度没有变化,则内能也不变化。

因此答案选C。

9. 一定量的某种理想气体起始温度为T,体积为V,该气体在下面循环过程中经过下列三个平衡过程:(1)绝热膨胀到体积为2V;(2)等体变化使温度恢复为T;(3)等温压缩到原来体积V,则此整个循环过程中,气体()

A. 向外界放热

B. 对外界作正功

C.

内能增加 D. 内能减少

解:画出p-V图,这个循环是逆循环。在逆循环过程中,内能不变,外界对系统做功,因此系统向外界放热。

故答案选A。

10. 用下列两种方法:(1)使高温热源的温度T1升高?T;(2)使低温热源的温度T2降低同样的?T 值,分别可使卡诺循环的效率升高?η1和?η2。两者相比()

A . ?η1>?η2 B. ?η2>?η1 C.

?η1=?η2 D. 无法确定哪个大 解:)]1()1[()]1()1[(1

212121212T T T T T T T T T T --?+----?--=?-?ηη

0)

()(1121>?+?-≈T T T T T T 故答案选B 。

11. 在绝热良好的房间内有一台工作着的电冰

箱。若冰箱门一直敝开着,待一定时间后,房间的

温度将 ( )

A . 降低 B. 升高 C. 不变

D. 无法确定

解:电冰箱工作时是逆循环,它向环境放出的热

量大于从冰箱中吸收的热量。

故答案选B 。

12. 两个卡诺热机的循环曲线如图所示,一个工

作在温度为T 1与T 3的两个热源选择题12图

之间,另一个工作在温度为T2与T3的两个热源之间,已知这两个循环曲线所包围的面积相等,由此

可知:()

A.两个热机的效率一定相等

B.两个热机从高温热源所吸收的热量一定相等

C.两个热机向低温热源所放出的热量一定相等

D.两个热机吸收的热量与放出的热量的差值一定相等

解:循环曲线所包围的面积表示工作物质在整个

循环过程中对外做的净功,而循环过程的内能不变,

因此工作物质吸收的净热量相等。

故答案选D。

二填空题

1. 从任何一个中间状态是否可近似看成平衡态,可将热力学过程分为过程和过程,只有过程才可以用pV图上的一条曲线表示。

解:准静态, 非准静态;准静态

2. 在热力学中,系统作功是通过 来完成的;系统与外界之间传递热量是通过 来完成的。

解:物体的宏观位移;分子之间的相互碰撞

3. 一气缸内贮有10 mol 的单原子分子理想气

体,在压缩过程中外界作功209J ,气体升温1 K ,此过程中气体内能增量为 _____ ,外界传给气体的热量为____________。

解:124.7 J , -84.3 J

4. 理想气体状态变化满足p d V =νR d T 为 过程,满足V d p =νR d T 为 过程;满足p d V +V d p =0为 过程。

解:等压;等体;等温。

5. 一定量的某种理想气体在等压过程中对外做功200J 。若此种气体为单原子分子气体,则该过程中需吸热 J ;若为双原子分子气体,则需吸热 J 。

解:单原子分子气体

502002

5252525m ,=?=?=?=?=?=V p T R T R T C Q p p ννν

J

双原子分子气体

7002002

7272727m ,=?=?=?=?=?=V p T R T R T C Q p p νννJ

6. 如图所示,一定量理想气体从A 状态(2p 1、V 1)经历如题图所示的直线过程变到B 状态(p 1、2V 2),则AB 过程中系统作功W = ;内能增加?U = 。

解:AB 过程中系统作功等于AB 下的面积,即W =1123V p 。

从理想气体状态方程可知,B 状态的温度和A 状

态的温度相同,故内能不变,即?U =0。

7. 如图所示,1 mol 的单原子理想气体,从状态

A (p 1,V 1)变化至状态

B (p 2,V 2),如图所示,则此过程气体对外作的功为___________,吸收的热量为填空题7图

21V

p p V 112p p 填空题6图

___________。

解:))((211221V V p p W -+=,)(2

3))((2111221221V p V p V V p p Q -+-+= 8. 如图所示,已知图中两部分的面积分别为S 1和S 2,那么

(1) 如果气体膨胀过程为a —1—b ,则气体对外

做功W = ;

(2) 如果气体进行a —2—b —1—a 的循环过程,则它对外作W = 。

解:S 1+S 2;–S 1 。

9. 气体经历如图所示的一个循环过程,在这个循

填空题8图

3) p 填空题9图

环中,外界传给气体的净热量是______(J)。

解 循环过程热力学能不变,外界传给气体的净热量就是循环过程对外做的功。本题中这个功等于循环曲线(正方形)包围的面积,不难计算得到

55109)14(10)14(?=-??-=W J

10. 有一卡诺热机,用29kg 空气为工作物质,工作在27℃的高温热源与-73℃的低温热源之间,此热机的效率η = 。若在等温膨胀的过程中气体体积增大2.71倍,则此热机每一次循环所做的功为 。(设空气的摩尔质量为29×10-3kg . mol -1)

解:效率η = (T 1- T 2) / T 1=33.3%(或者1/3)。

43212121ln ln V V RT V V RT Q Q W νν-=-= 因71.24

312==V V V V ,故 5

3211031.871.2ln 10031.8102929

71.2ln )(?=????=-=-T T R W νJ

11. 有一卡诺致冷机,其低温热源温度为T 2=200K ,高温热源温度为T 1=350K ,每一循环,从低温热源吸热Q 2=400J ,则该致冷机的致冷系数ω= 。每一循环中外界必须做功W = 。

解:ω=T 2/(T 1- T 2)=4/3;3003/44002

===ωQ W J

三 计算题

1. 设有1mol 的氧气,体积V 1=4.92×10-3m 3,压强p 1=

2.026×105Pa ,今使它等温膨胀,使压强降低到p 2=1.013×105Pa ,试求此过程中氧气所作的功,吸收的热量以及内能的变化。(ln2=0.693)。 解 等温过程氧气所做的功2112ln ln p p RT V V RT W

T νν==,再利用物态方程p 1V 1=νRT ,得到

8.6902ln 1092.410026.2ln ln 35211121=????===-p p V p p p RT W T νJ

等温过程系统的内能不发生变化,即?U =0。 根据热力学第一定律,等温过程中系统吸收的热量等于系统对外作的功,即

=T Q 690.8J

V 2. 已知某单原子分子理想气体作等压加热,体积膨胀为原来的两倍,试证明气体对外所作的功为其吸收热量的40%。

解:设该理想气体体积为V ,摩尔数为ν ,由物态方程RT pV ν=,得

R

pV R pV V p T =-?=?2ν 对外作功为:pV V p W V V ==?

2d 吸收热量:R

pV C R pV V p C T C Q p p p p .)2.(m ,m ,m ,=-=?=ν %405225.m ,m ,=====R R C R pV C R pV Q W p p p

3. 压强为1atm ,体积为100cm 3的氮气压缩到20cm 3时,气体内能的增量、吸收的热量和所做的功各是多少?假定经历的是下列两种过程:(1)等温压缩;(2)先等压压缩,然后再等体升压到同样状态。(1atm=1.01325×105Pa )

解:两种过程如下图所示。

(1)视气体为理想气体,当气

体由初态Ⅰ等温压缩到终态Ⅲ

时,据热力学第一定律,其内能

不变。即

U 3- U 1=0

故系统吸收的热量和系统对外界所做的功相等,为

121112ln ln V V V p V V RT W Q ===ν

10100/1020ln(1010010013.16

665=---×××××J

负号表明外界向气体做正功而系统向外界放热。

(2)对于过程Ⅰ→Ⅱ→Ⅲ,由于Ⅰ、Ⅲ的温度相同,故Ⅰ、Ⅲ两态内能相等,即U 3- U 1=0。同样地,系统吸收的热量和系统对外界所做的功相等。

因Ⅱ→Ⅲ是等体过程,系统不做功,因此第二个过程中外界对系统所做的功即为Ⅰ→Ⅱ等压过程中系统对外界所做的功

W = p (V 2-V 1)= 1.013×105×(20×10-6 -100×

10-6)= -8.1 J

第二个过程中系统吸收的热量

Q = W = -8.1 J

4. 将1 mol 的刚性分子理想气体等压加热,使其温度升高72K ,气体吸收的热量等于1.60?103 J 。求:

(1) 气体所作的功;(2) 该气体的比热容比。

解 (1) 利用理想气体的物态方程,等压过程气体所作的功

3

.5987231.8=?=?=?=?=T R T R V p W p ν J

(2) 由题意,可知摩尔定压热容为

22.2272

1060.13m ,=?=?=T Q C p p J/(mol ?K) 根据迈耶公式R C C

V p =-m ,m ,,得到气体的摩尔定容热容

为 91.1331.822.22m ,m ,=-=-=R C C p V J

/(mol ?K)

因此该气体的比热容比为

60.191

.1322.22m ,m

,===V p C C γ 5. 把氮气放在一个绝热的汽缸中进行液化。开始时,氮气的压强为50个标准大气压、温度为300K ;经急速膨胀后,其压强降至 1个标准大气压,从而使氮气液化。试问此时氮的温度为多少?

解 氮气可视为理想气体, 其液化过程为绝热

过程。Pa 10013.15051

??=p ,K 3001=T ,Pa 10013.152?=p 。氮气为双原子气体,γ=7/5=1.4

K 0.98)(/)1(1

212==-γγp p T T 6. 5mol 的氦气(视为理想气体),温度由290K 升为300K 。若在升温过程中不与外界交换热量,试分别求出气体内能的改变、吸收的热量和气体所作的功。

解 气体内能的改变仅与始末态的温度有关而与过程无关,氦气是单原子分子,R C

V 23m ,=,因此 25.623)290300(31.82

35)(12m ,=-???=-=?T T C U V νJ 气体不与外界交换热量,因此是绝热过程,因此吸收的热量

Q =0

根据热力学第一定律,绝热过程中气体所作的功

25.623-=?-=U W J

负号表示外界对气体作了正功。

7. 已知2.0 mol 的氦,起

始的温度是27℃,体积是20

l 。此氦先等压膨胀至体积为

原体积的2倍,然后作绝热膨胀使其温度仍恢复到起始温度。(1) 在p -V 图上画出过程的曲线;(2) 在这过程中共吸热多少?(3) 氦的内能总改变多少?(4) 氦所作的总功为多少?

(5) 最后的体积为多少?(氦可看作为理想气体)。 解:(1) 曲线如下图所示。

(2)系统吸热为两个过程中吸热之和,而绝热过程无热量交换,故总热量即为等压膨胀过程中吸收的热量:

)()(2112m ,12m ,T T V V C T T C Q p p -=-=νν

焦耳×××12465)27273)(120

40(31.8250.2=+-= (3) 氦的最后温度与起始温度相同,作为理想气

体,内能不变。

(4)

因内能不变,系统吸收的热量全部用来对外作功。氦所作的总功W = Q -?U = Q =12465焦耳

V (L )

(5) 最后体积为V 3,根据绝热过程方程

22/31351113223101.1240)3003002040(40)(×××====--γT T V V L

8. 如图所示,abcda 为1 mol 单原子分子理想气体的循环过程,求:(1)气体循环一次,在吸热过程中从外界共吸收的热量;(2)气体循环一次对外作的净功;(3)证明T a T c = T b T d 。

解:(1)过程ab 与bc 为吸热过程,吸热总和为

J 800)(2

5)(23)

()(m ,m ,1=-+-=-+-=b b c c a a b b b c p a b V V p V p V p V p T T C T T C Q

(2) 循环过程对外所做总功为图中矩形面积

J 100)()(=---=a d d b c b V V p V V p W

(3)R

V p T R V p T R V p T R V p T d d d c c c b b b a a a / / / /====,,, 2

42/1012/R R V p V p T T c c a a c a ?== 242/1012/R R V p V p T T d d b b d b ?==

所以有 T a T c = T b T d

9. 1 mol 理想气体在T 1=400K 的高温热源与

3m 3)

计算题8图

T 2=300K 的低温热源之间作卡诺循环。在400K 的等温线上起始体积为V 1=0.001m 3,终止体积为V 2=0.005m 3,试求此气体在每一循环中:(1) 从高温热源吸收的热量Q 1;(2) 气体所做的净功W ;(3) 气体传给低温热源的热量Q 2 。

解:(1)31

2111035.5ln ×==V V RT Q J (2)25.011

2=-=T T η 311034.1×==Q W ηJ

(3)Q 2=Q 1-W =4.01×103J

10. 气缸贮有36g 水蒸汽(视为理想气体),经abcda 循环过程如图所示,其中

a →

b ,

c →

d 为等体过程,b →c

为等温过程,d →a 为等压过程,试求:(1)W da ;(2)?U ab ;(3)

循环过程水蒸汽所作的净功W ;

(4)循环效率η。

解:水的质量m =36×10-3kg ,水的摩尔质量M =18计算题10图

×10-3kg,故摩尔数ν=m/M=2 mol。水是刚性多原子分子,自由度i =6。

(1)W da =p a (V a-V d) = -0.0507×105 J

(2)?U ab =ν ( i /2 )R (T b -T a) = (i / 2) V a (p b -p a) =

3.039×104 J

(3)T b=p b V a/ (ν R) =914.3 K

W bc =ν R T b ln (V C / V b)=1.053×104 J 净功W=W bc+W da=5.47×103 J

(4)循环过程吸收的热Q1=Q ab+Q bc= ?U ab+W bc=

4.09×104J,循环效率

η= W/Q1=13.4%

第一章 热力学第一定律思考题(答案)教学文案

第一章热力学第一定律 思考题 1. 下列说法中哪些是不正确的? (1)绝热封闭系统就是孤立系统; (2)不作功的封闭系统未必就是孤立系统; (3)作功又吸热的系统是封闭系统; (4)与环境有化学作用的系统是敞开系统。 【答】(1)不一定正确。绝热条件可以保证系统和环境之间没有热交换,封闭条件可以保证系统和环境之间没有物质交换。但是单单这两个条件不能保证系统和环境之间没有其他能量交换方式,如作功。当绝热封闭的系统在重力场中高度发生大幅度变化时,系统和地球间的作功不能忽略,系统的状态将发生变化。 (2)正确。 (3)不正确。系统和环境间发生物质交换时,可以作功又吸热,但显然不是封闭系统。为了防止混淆,一般在讨论功和热的时候,都指定为封闭系统,但这并不意味着发生物质交换时没有功和热的发生。但至少在这种情况下功和热的意义是含混的。 (4)正确。当发生化学作用(即系统和环境间物质交换)时,将同时有热和功发生,而且还有物质转移,因此是敞开系统。 2. 一隔板将一刚性容器分为左、右两室,左室气体的压力大于右室气体的压力。现将隔板抽去,左、右室气体的压力达到平衡。若以全部气体作为系统,则△U、Q、W为正?为负?或为零? 【答】因为容器是刚性的,在不考虑存在其它功的情况下,系统对环境所作的功的W = 0 ;容器又是绝热的,系统和环境之间没有能量交换,因此Q = 0;根据热力学第一定律△U = Q +W,系统的热力学能(热力学能)变化△U = 0。 3. 若系统经下列变化过程,则Q、W、Q + W 和△U 各量是否完全确定?为什么? (1)使封闭系统由某一始态经过不同途径变到某一终态; (2)若在绝热的条件下,使系统从某一始态变化到某一终态。 【答】(1)对一个物理化学过程的完整描述,包括过程的始态、终态和过程所经历的具体途径,因此仅仅给定过程的始、终态不能完整地说明该过程。 Q、W 都是途径依赖(path-dependent)量,其数值依赖于过程的始态、终态和具体途径,只要过程不完全确定,Q、W 的数值就可能不确定。因为Q + W =△U,只要过程始、终态确定,则△U 确定,因此Q + W 也确定。 (2)在已经给定始、终态的情况下,又限定过程为绝热过程,Q = 0,Q 确定;W =△U,W和△U 也确定。 4. 试根据可逆过程的特征指出下列过程哪些是可逆过程? (1)在室温和大气压力(101.325 kPa)下,水蒸发为同温同压的水蒸气; (2)在373.15 K 和大气压力(101.325 kPa)下,蒸发为同温同压的水蒸气; (3)摩擦生热; (4)用干电池使灯泡发光; (5)水在冰点时凝结成同温同压的冰;

第一章 热力学第一、二定律试题及解答

第一章 热力学第一定律 一、选择题 1.下述说法中,哪一种正确( ) (A)热容C 不是状态函数; (B)热容C 与途径无关; (C)恒压热容C p 不是状态函数;(D)恒容热容C V 不是状态函数。 2.对于内能是体系状态的单值函数概念,错误理解是( ) (A) 体系处于一定的状态,具有一定的内能; (B) 对应于某一状态,内能只能有一数值不能有两个以上的数值; (C) 状态发生变化,内能也一定跟着变化; (D) 对应于一个内能值,可以有多个状态。 3.某高压容器中盛有可能的气体是O 2 ,Ar, CO 2, NH 3中的一种,在298K 时由5dm3绝热可逆膨胀到6dm3,温度降低21K ,则容器中的气体( ) (A) O 2 (B) Ar (C) CO 2 (D) NH 3 4.戊烷的标准摩尔燃烧焓为-3520kJ·mol -1,CO 2(g)和H 2O(l)标准摩尔生成焓分别为-395 kJ·mol -1和-286 kJ·mol -1,则戊烷的标准摩尔生成焓为( ) (A) 2839 kJ·mol -1 (B) -2839 kJ·mol -1 (C) 171 kJ·mol -1 (D) -171 kJ·mol -1 5.已知反应)()(2 1)(222g O H g O g H =+的标准摩尔反应焓为)(T H m r θ ?,下列说法中不正确的是( )。 (A). )(T H m r θ?是H 2O(g)的标准摩尔生成焓 (B). )(T H m r θ ?是H 2O(g)的标准摩尔燃烧焓 (C). )(T H m r θ?是负值 (D). )(T H m r θ?与反应的θ m r U ?数值相等 6.在指定的条件下与物质数量无关的一组物理量是( ) (A) T , P, n (B) U m , C p, C V (C) ΔH, ΔU, Δξ (D) V m , ΔH f,m (B), ΔH c,m (B) 7.实际气体的节流膨胀过程中,下列那一组的描述是正确的( ) (A) Q=0 ΔH=0 ΔP< 0 ΔT≠0 (B) Q=0 ΔH<0 ΔP> 0 ΔT>0 (C) Q>0 ΔH=0 ΔP< 0 ΔT<0 (D) Q<0 ΔH=0 ΔP< 0 ΔT≠0 8.已知反应 H 2(g) + 1/2O 2(g) →H 2O(l)的热效应为ΔH ,下面说法中不正确的是( ) (A) ΔH 是H 2O(l)的生成热 (B) ΔH 是H 2(g)的燃烧热 (C) ΔH 与反应 的ΔU 的数量不等 (D) ΔH 与ΔH θ数值相等 9.为判断某气体能否液化,需考察在该条件下的( ) (A) μJ-T > 0 (B) μJ-T < 0 (C) μJ-T = 0 (D) 不必考虑μJ-T 的数值 10.某气体的状态方程为PV=RT+bP(b>0),1mol 该气体经等温等压压缩后其内能变化为( )

热力学第一定律及其思考

热力学第一定律及其思考 摘要:在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械可以使系统不断的经历状态变化后又回到原来状态,而不消耗系统的内能,同时又不需要外界提供任何能量,但却可以不断地对外界做功。在热力学第一定律提出之前,人们经过无数次尝试后,所有的种种企图最后都以失败而告终。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 关键字:内能;热力学;效率;热机 1.热力学第一定律的产生 1.1历史渊源与科学背景 火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的理论。 十九世纪以来热之唯动说渐渐地为更多的人们所注意。特别是英国化学家和物理学家克鲁克斯(M.Crookes,1832—1919),所做的风车叶轮旋转实验,证明了热的本质就是分子无规则运动的结论。热动说较好地解释了热质说无法解释的现象,如摩擦生热等。使人们对热的本质的认识大大地进了一步。戴维以冰块摩擦生热融化为例而写成的名为《论热、光及光的复合》的论文,为热功提供了有相当说服力的实例,激励着更多的人去探讨这一问题。 1.2热力学第一定律的建立过程 19世纪初,由于蒸汽机的进一步发展,迫切需要研究热和功的关系,对蒸汽机“出力”作出理论上的分析。所以热与机械功的相互转化得到了广泛的研究。1836年,俄国的赫斯:“不论用什么方式完成化合,由此发出的热总是恒定的”。1830年,法国萨迪·卡诺:“准确地说,它既不会创生也不会消灭,实际上,它只改变了它的形式”。这时能量转化与守恒思想的已经开始萌发,但卡诺的这一思想,在1878年才公开发表,此时热力学第一定律已建立了。 德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。迈尔在一次驶往印度尼西亚的航行中,给生病的船员做手术时,发现血的颜色比温带地区的新鲜红亮,这引起了迈尔的沉思。他认为,食物中含有的化学能,可转化为热能,在热带情况下,机体中燃烧过程减慢,因而留下了较多的氧。迈尔的结论是:“因此力(能量)是不灭的,而是可转化的,不可称量的客体”。并在1841年、1842年撰文发表了他的观点,在1845年的论文中,更明确写道:“无不能生有,有不能变无。”“在死的或活的自然界中,这个力(能)永远处于循环和转化之中。” 焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。1845年,焦耳为测定机械功和热之间的转换关系,设计了“热功当量实验仪”,并反复改进,反复实验。1849年发表《论热功当量》,1878年发表《热功当量的新测定》,最后得到的数值为423.85公斤·米/千卡,焦耳测热功当量用了三十多年,实验了400多次,

高中物理-热力学第一定律

热力学第一定律 热力学第一定律 热力学第一定律内容是:研究对象内能的改变量,等于外界对它传递的热量与外界对它所做的功之和。 注:热量的传导与做功均需要注意正负性。 热力学第一定律公式 热力学第一定律公式: △U=W+Q 其中,△U——内能的变化量,单位焦耳(J),如果为负数,则说明研究对象内能减小。 Q——研究对象吸收的热量,单位焦耳(J),如果为负数,则说明研究对象向外释放热量。 在自然态下,Q传导具有方向性,即只能从高温物体向低温物体传递热量。 W——外界对研究对象做的功,单位焦耳(J),如果为负数,则说明研究对象对外界做功。

热力学第一定律理解误区之吸热内能一定增加? 老师:并非如此。如果对外做功,内能可能不变,甚至减小。 物体的内能是变大还是变小,取决于两个外在因素,其一是吸收(或放出)热量,另外一个是做功。 如果吸收了10J的热量,向外界做了20J的功,物体的内能不会增加,反而会减小(减小10J)。 热力学第一定律深入理解之温度与分子平均动能关系 老师:分子平均动能Ek与热力学温度T是正比例关系,即分子平均动能Ek越大,热力学温度T就越大。 分子平均动能Ek是微观表现方式,而热力学温度T是宏观表现方式。 热力学第一定律深入理解之做功与气体体积关系 老师:W与气体的体积相关,V减小,则是外界对气体做正功(压缩气体)。

反之,V增大,则是外界对气体做负功(气体膨胀向外界做功)。 热力学第一定律深入理解之能量守恒定律在热学的变形式 老师:从热力学第一定律公式来看: △U=W+Q 这与能量守恒定律是一致的。能量守恒定律的内容是:能量既不会凭空产生,也不会凭空消失,只能从一个物体传递给另一个物体,而且能量的形式也可以互相转换。 在热学领域,物体内能改变同样遵守能量守恒定律。物体内能的增加,要么是伴随着外界做功,要么是由外界热量传导引起的。 在物体A内能增加的同时,物体B因为向A做功能量减小,或者物体C把自身内能以热量形式向物体A传导,自身能量减小。 如果以A+B+C总系统为研究对象,这个系统的总能量,依然是守恒的。 热力学第一定律深入理解之理想气体的内能 老师:如果研究对象是一定量的理想气体,就不用考虑分子势能。 那么这部分气体内能变化△U,就只与分子平均动能Ek相关,宏观表现就是只和温度T相关。热力学第一定律的发展与意义简介 热力学第一定律本质上与能量守恒定律是的等同的,是一个普适的定律,适用于宏观世界和微观世界的所有体系,适用于一切形式的能量。 自1850年起,科学界公认能量守恒定律是自然界普遍规律之一。

第3节热力学第一定律

第3节热力学第一定律 目标导航 1?知道热力学第一定律的内容及其表达式 2?理解能量守恒定律的内容 3?了解第一类永动机不可能制成的原因 诱思导学 1.热力学第一定律 (1).一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。这个关系叫做热力学第一定律。 其数学表达式为:A U=W+Q (2).与热力学第一定律相匹配的符号法则 (3)热力学第一定律说明了做功和热传递是系统内能改变的量度,没有做功和热传递就不可能实现能量的转化或转移,同时 也进一步揭示了能量守恒定律。 (4)应用热力学第一定律解题的一般步骤: ①根据符号法则写出各已知量( W、Q、A U)的正、负; ②根据方程A U=W+Q求出未知量; ③再根据未知量结果的正、负来确定吸热、放热情况或做功情况。 2.能量守恒定律 ⑴自然界存在着多种不同形式的运动,每种运动对应着一种形式的能量。如机械运动对应机械能 ;分子热运动对应内 能;电磁运动对应电磁能。 ⑵.不同形式的能量之间可以相互转化。摩擦可以将机械能转化为内能;炽热电灯发光可以将电能转化为光能。 ⑶.能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。这就是能量守恒定律。 (4).热力学第一定律、机械能守恒定律都是能量守恒定律的具体体现。 (5).能量守恒定律适用于任何物理现象和物理过程。 (6).能量守恒定律的重要意义 第一,能量守恒定律是支配整个自然界运动、发展、变化的普遍规律,学习这个定律,不能满足一般理解其内容,更 重要的是,从能量形式的多样化及其相互联系,互相转化的事实岀发去认识物质世界的多样性及其普遍联系,并切实树立能 量既不会凭空产生,也不会凭空消失的观点,作为以后学习和生产实践中处理一切实际问题的基本指导思想之一。第二,宣 告了第一类永动机的失败。 3.第一类永动机不可能制成 任何机器运动时只能将能量从一种形式转化为另一种形式,而不可能无中生有地创造能量,即第一类永动机是不可能 制造出来的。 典例探究 例1一定量的气体在某一过程中,外界对气体做了8X104尚功,气体的内能减少了1.2杓勺,则下列

热力学第一定律在状态变化过程中的应用

1.3 热力学第一定律在状态变化过程的应用 1.3.1 简单状态变化(物理变化) (1) 凝聚态体系 特点是:△V ≈ 0,体积功W ≈ 0,且Cp ≈ CV 恒压变温有: ? 恒温变压有: (2)气体体系 ①自由膨胀: 特点是 p 外=0,则W = 0 速度快 Q ≈0,则△U = 0 对理想气体:△T = 0,则△H = 0 对非理想气体: △H = △U + △(pV ) = p 2V 2- p 1V 1 ②恒容过程 特点是 △V = 0,则 W = 0 △H = △U + V △p 对理想气体△U = nCV ,m △T , △H = nCp ,m △T ③恒压过程 特点是 p 体= p 外= p ,故 W = - p △V △U = △H - p △V 对理想气体: △U = nCV ,m △T ,△H = nCp ,m △T W = - p △V = nR △T Q H T nC T nC U p V =?=≈=?? ?2 1 21T T m ,T T m ,d d 0d 2 1 T T m ,===?? T nC Q U V p V V P V P PV U H ?≈-=?+?=?1122)(? ==?2 1 T T m ,d T nC Q U V ?==?2 1 T T m ,d T nC Q H p p ?==?2 1 T T m ,d T nC Q U V V

④恒温过程(只讨论理想气体的恒温过程) 特点是 △T = 0,对理想气体有 △U =△H = 0 ▲恒温可逆过程 ▲恒温不可逆过程: 计算要依过程特点而定 ⑤绝热过程 特点是 Q = 0,则△U = W ,△H =△U + △(pV ) 对理想气体: △U = nCV ,m △T ,△H = nCp ,m △T ▲绝热可逆过程 可以导出:理想气体绝热可逆过程方程: γpV =常数 ▲绝热不可逆过程: 绝热可逆过程方程不能用!!! 由热力学第一定律导出结果 1.3.2 2. 相态变化 (1)可逆相变 在正常相变点处进行的相变过程可视为恒温恒压可逆过程,则Qp =△H ,称为相变热,如蒸发热(△vap H ),升华热(△sub H ),熔化热( △fus H )等,或△vap H m , △sub H m ,△fus H m ,等等。 通过相变过程的量热或者热分析获得相变热 W =-p △V △U = Q +W =△trs H -p △V 注意计算过程中的近似处理: ※考虑融化时:△V 1 ≈ 0,则△U 1≈△H 1 ※考虑蒸发时: V 气>> V 液, 则△V = V 气 - V 液≈ V 气 , W =-p △V ≈ -pV 气 = -nRT 1 2 ln d )d (2 12 1 V V nRT V V nRT V p W Q V V V V ==--=-=? ?T nC H m p ?=?,??- =-=?=2 1 2 1 d )(d )(V V V V V V K V p U W T nC U m V ?=?,

第一章热力学第一定律练习题

第一章 热力学第一定律练习题 一、判断题(说法对否): 1.道尔顿分压定律,对理想气体和实际混合气体来说关系式PB=Nb(RT/V)都成立。 2.在两个封闭的容器中,装有同一种理想气体,压力、体积相同,那么温度也相同。 3.物质的温度越高,则热量越多;天气预报:今天很热。其热的概念与热力学相同。 4.恒压过程也就是恒外压过程,恒外压过程也就是恒过程。 5.实际气体在恒温膨胀时所做的功等于所吸收的热。 6.凡是温度升高的过程体系一定吸热;而恒温过程体系不吸热也不放热。 7.当系统的状态一定时,所有的状态函数都有一定的数值。当系统的状态发生变化时, 所有的状态函数的数值也随之发生变化。 8.体积是广度性质的状态函数;在有过剩NaCl(s) 存在的饱和水溶液中,当温度、压力 一定时;系统的体积与系统中水和NaCl 的总量成正比。 9.在101.325kPa 、100℃下有lmol 的水和水蒸气共存的系统,该系统的状态完全确定。 10.一定量的理想气体,当热力学能与温度确定之后,则所有的状态函数也完全确定。 11.系统温度升高则一定从环境吸热,系统温度不变就不与环境换热。 12.从同一始态经不同的过程到达同一终态,则Q 和W 的值一般不同,Q + W 的值一般也 不相同。 13.因Q P = ΔH ,Q V = ΔU ,所以Q P 与Q V 都是状态函数。 14.封闭系统在压力恒定的过程中吸收的热等于该系统的焓。 15.对于一定量的理想气体,当温度一定时热力学能与焓的值一定,其差值也一定。 16.在101.325kPa 下,1mol l00℃的水恒温蒸发为100℃的水蒸气。若水蒸气可视为理想 气体,那么由于过程等温,所以该过程ΔU = 0。 17.1mol ,80.1℃、101.325kPa 的液态苯向真空蒸发为80.1℃、101.325kPa 的气态苯。已 知该过程的焓变为30.87kJ ,所以此过程的Q = 30.87kJ 。 18.1mol 水在l01.325kPa 下由25℃升温至120℃,其ΔH = ∑C P ,m d T 。 19.因焓是温度、压力的函数,即H = f (T ,p ),所以在恒温、恒压下发生相变时,由于 d T = 0,d p = 0,故可得ΔH = 0。 20.因Q p = ΔH ,Q V = ΔU ,所以Q p - Q V = ΔH - ΔU = Δ(p V) = -W 。 21.卡诺循环是可逆循环,当系统经一个卡诺循环后,不仅系统复原了,环境也会复原。 22.一个系统经历了一个无限小的过程,则此过程是可逆过程。 23.若一个过程中每一步都无限接近平衡态,则此过程一定是可逆过程。 24.若一个过程是可逆过程,则该过程中的每一步都是可逆的。 25.1mol 理想气体经绝热不可逆过程由p 1、V 1变到p 2、V 2, 则系统所做的功为 V p C C V p V p W =--=γγ,11122。 26.气体经绝热自由膨胀后,因Q = 0,W = 0,所以ΔU = 0,气体温度不变。 27.(?U /?V )T = 0 的气体一定是理想气体。 28.因理想气体的热力学能与体积压力无关,所以(?U /?p )V = 0,(?U /?V )p = 0。 29.若规定温度T 时,处于标准态的稳定态单质的标准摩尔生成焓为零,那么该温度下

对热力学第三定律的理解及应用

对热力学第三定律的理解及应用 在学习了物理书中的“热学”篇后,对于书中提到的热力学四大定律很感兴趣。其中热力学第一定律与热力学第二定律在书中都有了较为详尽的介绍,并且我们也认真地做了相关的习题,可以说对于这两个定律较为熟悉,而对于热力学第零定律与第三定律却了解不多。因此,在课下,我查阅了相关资料。对于这两个定律有了一定了解。 热力学第零定律表述为:“如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。” 热力学第三定律表述为:“热力学系统的熵在温度趋近于绝对零度时趋于定值,特别地,对于完整晶体,这个定值为零。”可以用这一公式表达,0)(lim 0=?=s t 而另一种表述为:“不可能通过有限的步骤,将一个物体冷却到绝对温度的零度。” 对于第三定律中提到的,“不能通过有限步骤,达到绝对零度”我感到了困惑与好奇。 对于这一定律有这么一种解释:理论上,若粒子动能低到量子力学的最低点时,物质即达到绝对零度,不能再低。然而,绝对零度永远无法达到,只可无限逼近。因为任何空间必然存有能量和热量,也不断进行相互转换而不消失。所以绝对零度是不存在的,除非该空间自始即无任何能量热量。 另一种解释是:当原子达到绝对零度后,就会处于静止状态,而这违反了海森堡不确定原理指出的“不可能同时以较高的精确度得知一个粒子的位置和动量”。

尽管,绝对零度在实际生活中似乎无法达到,但科学家还是不遗余力的尝试着接近绝对零度。据报道,由德国、美国、奥地利等国科学家组成的一个国际科研小组在实验室内创造了仅仅比绝对零度高0.5纳开尔文的温度纪录,而此前的纪录是比绝对零度高3纳开。这是人类历史上首次达到绝对零度以上1纳开以内的极端低温。 而通过研究物体在接近绝对零度度过程中材料属性的变化,可以为工程应用提供材料,而在微观领域也可研究低温环境对于原子产生的影响,比如原子在接近绝对零度时是如何运动的,物体呈现一种什么样的状态,这对于原子物理的发展有巨大促进作用。 热力学第三定律在生活中也得到了应用。比如在研究过程中,发现了一些物体存在着超导现象,这一发现对于降低能耗,减少能源浪费都有着不可估量的意义。将一个金属样品放置在通有高频电流的线圈上时,高频电磁场会在金属材料表面产生一高频涡流,这一高频涡流与外磁场相互作用,使金属样品受到一个洛沦兹力的作用。在合适的空间配制下,可使洛沦兹力的方向与重力方向相反,通过改变高频源的功率使电磁力与重力相等,即可实现电磁悬浮。即磁悬浮。对于磁悬浮技术的应用,主要是磁悬浮列车,其优点在于耗能不仅低于普通火车,更大大低于汽车和飞机。在驱动功率相同时,其耗能仅为汽车的1/3,飞机的1/4,而降低能耗是环境保护的最主要问题。 通过科学家对于绝度零度都不断的追求,我们可以看出科学永无止境,作为科学工作者要有一种锲而不舍的精神。

热力学第一定律主要公式

热力学第一定律主要公式 1.?U 与?H 的计算 对封闭系统的任何过程 ?U=Q+W 2111()H U p V pV ?=?-- (1) 简单状态变化过程 1) 理想气体 等温过程 0T U ?= 0T H ?= 任意变温过程 ,21()V m U nC T T ?=- ,21()p m H nC T T ?=- 等容变温过程 H U V p ?=?+? (V U Q ?=) 等压变温过程 p U Q p V ?=-? ()p H Q ?= 绝热过程 ,21()V m U W nC T T ?==- ,21()p m H nC T T ?=- 2)实际气体van derWaals 气体等温过程 2 1 211U n a V V ?? ? ??? ?=- 2 22111 211()H U pV n a p V pV V V ?? ? ??? ?=?+?=-+- (2) 相变过程 等温等压相变过程 p tra H Q ?= (p Q 为相变潜热) p tra tra U Q p V ?=-? (3)无其她功的化学变化过程

绝热等容反应 0r U ?= 绝热等压反应 0r H ?= 等温等压反应 r p H Q ?= r r U H p V ?=?-? 等温等压凝聚相反应 r r U H ?≈? 等温等压理想气体相反应 ()r r U H n RT ?=?-? 或 r r B B H U RT ν?=?-∑ 由生成焓计算反应热效应 f ()(,)r m m B B H T H T B θθν?=?∑ 由燃烧焓计算反应热效应 c ()(,)r m m B B H T H T B θν?=-?∑ 由键焓估算反应热效应 ,,()(,(i m i i m i i i H T n H T n H ?=??∑∑反应物)-生成物) 式中:i n 为i 种键的个数;n i 为i 种键的键焓。 不同温度下反应热效应计算 2 1 21()()d T r m r m r p T H T H T C T ?=?+?? 2、体积功W 的计算 任意变化过程 W= d e p V -∑ 任意可逆过程 2 1 W= d V V p V -? 自由膨胀与恒容过程 W=0 恒外压过程 21()e W p V V =-- 等温等压→l g 相变过程(设蒸气为理想气体) 1()g g g W p V V pV n RT =--≈-=- 等温等压化学变化 ()W p V n RT =-?=? (理想气体反应) 0W ≈ (凝聚相反应) 理想气体等温可逆过程

第一章 热力学第一定律

第一章热力学第一定律 一、单选题 1) 如图,在绝热盛水容器中,浸入电阻丝,通电一段时间,通电后水及电阻丝的温度均略有升高,今以电阻丝为体系有:( ) A.W =0,Q <0,?U <0 B.W <0,Q<0,?U >0 C.W<0,Q<0,?U >0 D.W<0,Q=0,?U>0 2) 如图,用隔板将刚性绝热壁容器分成两半,两边充入压力不等的空气(视为理想气体),已 知p 右> p 左, 将隔板抽去后: ( ) A.Q=0, W=0, ?U=0 B.Q=0, W <0, ?U >0 C.Q >0, W <0, ?U >0 D.?U=0, Q=W≠0 3)对于理想气体,下列关系中哪个是不正确的:( ) A. (?U/?T)V=0 B. (?U/?V)T=0 C. (?H/?p)T=0 D. (?U/?p)T=0 4)凡是在孤立孤体系中进行的变化,其?U和?H的值一定是:( ) A.?U >0, ?H >0 B.?U=0, ?H=0 C.?U <0, ?H <0 D.?U=0,?H大于、小于或等于零不能确定。 5)在实际气体的节流膨胀过程中,哪一组描述是正确的: ( ) A.Q >0, ?H=0, ?p < 0 B.Q=0, ?H <0, ?p >0 C.Q=0, ?H=0, ?p <0 D.Q <0, ?H=0, ?p <0 6)如图,叙述不正确的是:( ) A.曲线上任一点均表示对应浓度时积分溶解热大小 B.?H1表示无限稀释积分溶解热 C.?H2表示两浓度n1和n2之间的积分稀释热 D.曲线上任一点的斜率均表示对应浓度时HCl的微分溶解热 7)?H=Q p此式适用于哪一个过程: ( ) A.理想气体从101325Pa反抗恒定的10132.5Pa膨胀到10132.5sPa B.在0℃、101325Pa下,冰融化成水 C.电解CuSO4的水溶液 D.气体从(298K,101325Pa)可逆变化到(373K,10132.5Pa ) 8) 一定量的理想气体,从同一初态分别经历等温可逆膨胀、绝热可逆膨胀到具有相同压力的终态,终态体积分别为V1、V2。( ) A.V1 < V2 B.V1 = V2 C.V1> V2 D.无法确定 9) 某化学反应在恒压、绝热和只作体积功的条件下进行,体系温度由T1升高到T2,则此过程的焓变?H:( )

热力学第一定律解读

2.3热容 2.3.1热容 在以下三种情况下体系与环境之间能量可能以热的形式进行传递: 1.体系中物质的化学性质和聚集状态不变而温度变化的过程或称单纯物理 变温过程。 2.相变过程; 3.化学反应过程。 本节着重讨论第一类情况。 任何一个物体(或系统),升高单位温度所吸收的热量称为该物体的热容。它属于热响应函数,自然是状态函数。 加热可以使体系温度升高,所需热量与温升程度成正比: Q∝ ΔT 或(2-16) 故(2-17) 称为“平均热容”,相当于在一定温度范围内体系温度升高1o 所需热量的平均值。当所取物质数量为一摩尔,则称为“摩尔平均热容”: (2-18) 或(2-19) 热容随温度变化,只有当所取温度间隔ΔT愈小时,所求得的值才愈接近于指定温度下热容的数值。定义“真实热容” C为: (2-20)

而摩尔热容 (2-21) 或 (2-22) 物质的摩尔热容C m与比热C s ()之间有如下关系 (2-23) 式中M为物质的摩尔质量。 以下谈及“热容”如无特别指明,均系指“摩尔热容”而言,“摩尔”二字从略。 2.3.2 等容热容与等压热容 热与途径有关,故热容也与只有在完成过程的途径指定之后,它们才有确定的数值。在物理化学中最常用到的热容有两种形式:“等容热容”C v(或C v.m)和“等压热容”C p(或C p.m)。它们也都称为热响应函数。 对于无非膨胀功发生的封闭体系,第一定律可以表示为: dU =δQ -pdV (2-24) 或δQ =dU +pdV (2-25) 等容条件下,dV =0 δQ v =dU (2-26) 而 (2-27) 故等容热容 (2-28) 若定义一新热力学函数H,称为“焓” H≡U +pV (2-29) 由于U、p、V均为状态函数,而U和pV均具有能量的量纲,故H必然为一具有能量量纲的状态函数。定义H之后,可以看到很有意义的结果: ∵δQ =dU +pdV (2-25) 在等压条件下:

热力学第一定律--说课稿--教案

热力学第一定律--说 课稿--教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

水,直至水沸腾。在这一过程中,铁块从周围水中吸收了热量使它温度升高,内能增加。这过程中水的一部分内能通过热量传递使铁块内能增加。铁块吸收多少热量,它内能就增加多少。公式Q=ΔE 表示吸收的热量与内能变化量的关系,也反映出铁块增加的内能数量与水转移给铁块的内能数量相等。 一般情况下,如果物体跟外界同时发生做功和热传递过程,那么,外界对物体所做的功W加上物体从外界吸收的热量Q,等于物体内能的增加ΔE,即W+Q=ΔE 上式所表示的是功、热量和内能之间变化的定量关系,同时它也反映了一个物体的内能增加量等于物体的机械能减少量和另外物体内能减少量(内能转移量)之和。进而说明,内能和机械能转化过程中能量是守恒的。 2.其他形式的能也可以和内能相互转化 (1)介绍其他形式能:我们学习过机械运动有机械能,热运动有内能,实际上自然界存在着许多不同形式的运动,每种运动都有一种对应的能量,如电能、磁能、光能、化学能、原子能等。 (2)不仅机械能和内能可以相互转化,其他形式能也可以和内能相互转化,举例说明:(同时放映幻灯片) ①电炉取暖:电能→内能 ②煤燃烧:化学能→内能 ③炽热灯灯丝发光:内能→光能 (3)其他形式的能彼此之间都可以相互转化。画出图表让学生回答分析: 3.能量守恒定律 大量事实证明:各种形式的能都可以相互转化,并且在转化过程中守恒。 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转

化为另一种形式,或者从一个物体转移到别的物体;在转化和转移过程中其总量不变.这就是能量守恒定律。 在学习力学知识时,学习了机械能守恒定律。机械能守恒定律是有条件限制的定律,而且实际现象中是不可能实现的。而能量守恒定律是存在于普遍自然现象中的自然规律。这规律对物理学各个领域的研究,如力学、电学、热学、光学等都有指导意义。它也对化学、生物学等自然科学的研究都有指导作用。 4.永动机不可能制成 历史上不少人希望设计一种机器,这种机器不消耗任何能量,却可以源源不断地对外做功。这种机器被称为永动机。虽然很多人,进行了很多尝试和各种努力,但无一例外地以失败告终。失败的原因是设计者完全违背了能的转化和守恒定律,任何机器运行时其能量只能从一种形式转化为另一种形式。如果它对外做功必然消耗能量,不消耗能量就无法对外做功,因而永动机是永远不可能制造成功的。 5.运用能的转化和守恒定律进行物理计算 例题:用铁锤打击铁钉,设打击时有80%的机械能转化为内能,内能的50%用来使铁钉的温度升高。问打击20次后,铁钉的温度升高多少摄氏度?已知铁锤的质量为1.2kg,铁锤打击铁钉时的速度是10m/s,铁钉质量是40g,铁的比热是5.0×102J/(kg·℃)。 首先让学生分析铁锤打击铁钉的过程中能量的转化。 归纳学生回答结果,指出铁锤打击铁钉时,铁锤的一部分动能转化为内能,而且内能中的一半被铁钉吸收,使它的温度升高。如果用ΔE表示铁钉的内能增加量,铁锤和铁钉的质量分别用M和m 表示,铁锤打击铁钉时的速度用v表示。依据能的转化和守恒定 律,有 铁钉的内能增加量不能直接计算铁钉的温度,我们把机械能转化为内能的数量等效为以热传递方式完成的,因此等效为计算打击过程中铁钉吸收多少热量,这热量就是铁钉的内能增加量。因此有 Q=cmΔt 上式中c为铁钉的比热,Δt表示铁钉的温度升高量。将上面两个

第一章热力学第一定律答案

第一章 热力学练习题参考答案 一、判断题解答: 1.错。对实际气体不适应。 2.错。数量不同,温度可能不同。 3.错。没有与环境交换能量,无热可言;天气预报的“热”不是热力学概念,它是指温度,天气很热,指气温很高。 4.错。恒压(等压)过程是体系压力不变并与外压相等,恒外压过程是指外压不变化,体系压力并不一定与外压相等。 5.错。一般吸收的热大于功的绝对值,多出部分增加分子势能(内能)。 6.错。例如理想气体绝热压缩,升温但不吸热;理想气体恒温膨胀,温度不变但吸热。 7.第一句话对,第二句话错,如理想气体的等温过程ΔU = 0,ΔH = 0,U 、H 不变。 8.错,两个独立变数可确定系统的状态只对组成一定的均相组成不变系统才成立。 9.错,理想气体U = f (T ),U 与T 不是独立的。描述一定量理想气体要两个独立变量。 10.第一个结论正确,第二个结论错,因Q+W =ΔU ,与途径无关。 11.错,Q V 、Q p 是过程变化的量、不是由状态决定的量,该式仅是数值相关而已。在一定条件下,可以利用ΔU ,ΔH 来计算Q V 、Q p ,但不能改变其本性。 12.错,(1)未说明该过程的非体积功W '是否为零; (2)若W ' = 0,该过程的热也只等于系统的焓变,而不是体系的焓。 13.对。因为理想气体热力学能、焓是温度的单值函数。 14.错,这是水的相变过程,不是理想气体的单纯状态变化,ΔU > 0。 15.错,该过程的p 环 = 0,不是恒压过程,也不是可逆相变,吸的热,增加体系的热力学能。吸的热少于30.87 kJ 。 16.错,在25℃到120℃中间,水发生相变,不能直接计算。 17.错,H = f (T ,p )只对组成不变的均相封闭系统成立,该题有相变。 18.错,Δ(pV )是状态函数的增量,与途径无关,不一定等于功。 19.错,环境并没有复原,卡诺循环不是原途径逆向返回的。 20.错,无限小过程不是可逆过程的充分条件。如有摩擦的谆静态过程。 21.错,若有摩擦力(广义)存在,有能量消耗则不可逆过程,只是准静态过程。 22.对。只有每一步都是可逆的才组成可逆过程。 23.对。() ()()12m ,121122n n 1T T C C C C T T R V p V p W V V V p -=--=--= γ。该公式对理想气体可逆、 不可逆过程都适用。 24.错,若是非理想气体的温度会变化的,如范德华气体。 25.错,该条件对服从pV m = RT + bp 的气体(钢球模型气体)也成立。 26.错,(?U /?V )p ≠(?U/?V )T ;(?U /?P )V ≠(?U/?V )T ,因此不等于零。 27.错,U = H -pV 。PV 不可能为零的。 28.错。CO 2在1000K 的标准摩尔生成焓可以由298K 标准摩尔生成焓计算出:由基尔霍夫定律得出的计算公式:

《热力学第一定律》教学设计教案

《热力学第一定律》 课题:热力学第一定律 科目:物理教学对象:高二选用教材:人教版选修3-3第十章第3节教师:师范班林琬晴 一、教学内容分析 本节内容选自人教版选修3-3第十章《热力学定律》的第3节《热力学第一定律能量守恒定律》。 从教材结构上来看,本章从研究绝热过程中功和内能关系开始,到讨论单纯的热传递过程中热与内能的关系,逐步剖析功、热量以及内能三者之间的关系,引出了热力学第一定律以及能量守恒定律的内容(能量守恒定律在人教版必修2第七章第10节已学习,因此并未在本课的设计范围内)。在学习了守恒律后,学生能够通过学习热力学第二定律来了解自然过程的不可逆性,认识自然界的一切自发过程都是朝着熵增大的方向进行的这一规律。 从课程标准来看热力学第一定律在高考中是I级要求,了解其内容及含义并且能进行简单运用即可。热力学第一定律为同学们建立了“做功与传热在改变系统内能方面是等价的”这一图像,是高中教学的重点但非难点。 从教材内容来看,教材的思路是从焦耳的实验出发得到“做功与传热在改变系统内能方面是等价的”的观念,从而总结出的规律,进而推广得到能量守恒定律,并介绍永动机的不可能性。而本节课的教学设计是在教材的基础上,用一个新颖的实验作为引入,承接原来学过的“单纯做功/热传递改变系统内能”引出“做功与传热在改变系统内能方面的等价性”,激发学生乐趣,有助学生理解物理图像。 从功能上讲,学习热力学第一定律完善了学生对于能量及其规律的知识体系,且让学生能更深一步了解热与内能,并且为下一节学习熵的原理打下基础。 二、教学目标 物理观念1.能够从能量转化的角度理解热力学第一定律的形式和内涵。 2.理解、掌握能量守恒定律,会用能量守恒的观点分析物理现象, 明确其优越性。 3.了解第一类永动机不能制成的原因。 科学思维会用解决一些简单的问题。了解建立热力学第一定律的

热力学发展史阅读感想

热力学发展史阅读感想 廖瑞杰 (北京航空航天大学能源与动力工程学院,北京 100191) “热”这一个字伴随着人类的发展,人们对热的本质及热现象的认识经历了一个漫长的、曲折的探索过程。在古代,人们就知道冷与热的差别,能够利用摩擦生热、燃烧、传热、爆炸等热现象,来达到一定的目的。温度对于热力学研究起着至关重要的作用。温度的定义以及测量是热力学的开端,三个热力学基本定律的发现是贯穿热力学发展史的线索。 在17 世纪中,虽然有些科学家对温度的测定及温标的建立,作出不同程度的贡献,提供了有益的经验和教训。但是,由于没有共同的测温基准,没有一致的分度规则,缺乏测温物质的测温特性的资料,以及没有正确的理论指导,因此,在整个17 世纪中,并没有制作出复现性好的、可供正确测量的温度计及温标。在18 世纪中,“测温学”有较大的突破。其中最有价值的是,1714 年法伦海脱所建立的华氏温标,以及1742 年摄尔修斯所建立的摄氏温标(即百分温标)。华氏温标是以盐水和冰的混合物作为基准点(0°F),而以水的冰点(32°F)及水的沸点(212°F)作为固定参考点。摄氏温标是以 水的冰点(100℃)及水的沸点(0℃)作为固定参考点及基准点,并把他们分作100等分,每个间隔定义为一度,故称之为百分温标。1749 年,该温标的基准点及固定参考点,被摄尔修斯的助手斯托墨颠倒过来,这就是后来常用的摄氏温标。 18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。于是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论,尤其是到了19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。一:热力学第一定律 1.热力学第一定律的文字表述 自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递中能量的数量保持不变。该定律就称为热力学第一定律,也称为能量转换与守恒定律,这一定律也被表示为:第一类永动机(不消耗任何形式的能量而能对外做功的机械)是不能制作出来的。 2.热力学第一定律建立的成因 1)理论——迈尔 迈尔是明确提出“无不能生有”,“有不能变无”的能量守恒与转化思想的第一人。而这理论正是建立热力学第一定律的基础。

热力学第一定律 说课稿 教案

热力学第一定律能量守恒定律 一、教材分析 前面学习的焦耳实验结果表明,在系统状态发生改变时,只要初末状态确定了,做功的数量或者热传递的数量就是确定的。而且,热功当量的测量结果表明,做功和热传递在改变内能上是等价的。从而得出热力学第一定律的数学表达式。又通过实例对表达式中物理量取值的正负意义进行了讨论。接着,讲述了能量守恒定律的确立。它具有重大的理论意义和实践意义。它对于制造永动机的不可能实现,给予了科学上的最后判决。 二、三维目标 知识与技能: 1、理解热力学第一定律。 2、能运用热力学第一定律解释自然界能量的转化、转移问题。 3、理解能量守恒定律,知道能量守恒定律是自然界普遍遵从的基本规律。 4、通过能量守恒定律的学习,认识自然规律的多样性和统一性。 5、知道第一类永动机是不能实现的。 过程与方法: 能够得出热力学第一定律,并会应用。 情感态度与价值观: 通过学习能量守恒定律的得出过程,学习科学家的探索精神 二、教学重点难点 重点:热力学第一定律 难点:能量守恒定律 四、学情分析 由于热力学第一定律是教学的重点及难点,因此应利用教学的相当多的时间进行热力学第一定律的教学,具体说△U=W+Q中各物理量的意义及正负号的确定对学生讲是很困难的,以通俗易懂的语言阐述;对于能量守恒定律的教学,调动学生相互讨论自然界中的各种能量间的转化,分析得出能量守恒定律。 五、教学方法 自主阅读与思考、精讲精练 六、课前准备 七、课时安排1课时 八、教学过程

(一)预习检查、总结疑惑 (二)情景引入、展示目标 焦耳的实验表明:只要系统初末状态是确定的,所需做功数量就是确定的。 另一方面,热功当量实验表明做功和热传递是等价的 (三)合作探究、精讲点播 1.热力学第一定律 (1).一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。这个关系叫做热力学第一定律。 其数学表达式为:ΔU=W+Q (2).与热力学第一定律相匹配的符号法则 ⑶.能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。这就是能量守恒定律。 (4).热力学第一定律、机械能守恒定律都是能量守恒定律的具体体现。 (5). 能量守恒定律的重要意义 第一,能量守恒定律是支配整个自然界运动、发展、变化的普遍规律,学习这个定律,不能满足一般理解其内容,更重要的是,从能量形式的多样化及其相互联系,互相转化的事实出发去认识物质世界的多样性及其普遍联系,并切实树立能量既不会凭空产生,也不会凭空消失的观点,作为以后学习和生产实践中处理一切实际问题的基本指导思想之一。第二,宣告了第一类永动机的失败。 3.第一类永动机不可能制成

相关文档
最新文档