常见辅助线的作法有以下几种

常见辅助线的作法有以下几种
常见辅助线的作法有以下几种

常见辅助线的作法有以下几种

常见辅助线的作法有以下几种:

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.

2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.

3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.

4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”

5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.

一、倍长中线(线段)造全等

例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.

例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.

应用:

1、(09崇文二模)以△ABC的两边AB、AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当△ABC为直角三角形时,AM与DE的位置关系是,线段AM与DE的数量关系是;

(2)将图①中的等腰Rt△ABD绕点A沿逆时针方向旋转θ (0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.

二截长补短

2、如图,AC∥BD,EA,EB分别平分∠CAB,∠DBA,CD过点E,求证;AB=AC+BD

3、如图,已知在△ABC内,∠BAC=60,∠C=40,P,Q分别在BC,CA上,并且AP,BQ分别是∠BAC,∠ABC的角平分线。求证:BQ+AQ=AB+BP

4、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180度

5、如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC

应用:

二、平移变换

例1 AD为△ABC的角平分线,直线MN⊥AD于A.E为MN上一点,△ABC周长记为AP,△EBC周长记为BP.求证BP>AP.

例2 如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE.

四、借助角平分线造全等

1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD

2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F. (1)说明BE=CF的理由;(2)如果AB=a,AC=b,求AE、BE的长.

应用:

1、如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:

(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA 的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;

(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。

五、旋转

例1 正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.

例2 D为等腰Rt△ABC斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。(1)当MDN

绕点D转动时,求证DE=DF。(2)若AB=2,求四边形DECF的面积。

例3 如图,△ABC是边长为3的等边三角形,∠BDC是等腰三角形,且∠BDC=120,以D为顶点做一个60度角,使其两边分别交AB于点M,交AC于点N,连接MN,则AMN的周长为;

应用:

1、已知四边形ABCD中,AB┴AD,BC┴CD,AB=BC,∠ABC=120,∠MBN=60。∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.

当∠MBN绕B点旋转到AE=CF时

(如图1),易证AE+CF=EF.

当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AECF,,EF又有怎样的数量关系?请写出你的猜想,不需证明.

2、(西城09年一模)已知:PA=2,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧. (1)如图,当∠APB=45°时,求AB及PD的长; (2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.

3、在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为ABC外一点,且∠MDN=60,∠BDC=120,BD=DC. 探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及AMN

的周长Q与等边ABC的周长L的关系.

(I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时L Q ;

(II)如图2,点M、N边AB、AC上,且当DM DN时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明;(III)如图3,当M、N分别在边AB、CA的延长线上时,若AN=x,则Q= (用x、L表示).

初中数学证明题常见辅助线作法规律.

初中数学证明题常见辅助线作法规律 初中数学证明题常见辅助线作法记忆歌诀;及几何规律汇编;人们从来就是用自己的聪明才智创造条件解决问题的,;初中几何常见辅助线作法歌诀;人说几何很困难,难点就在辅助线;辅助线,如何添?把握定理和概念;还要刻苦加钻研,找出规律凭经验;三角形;图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试 初中数学证明题常见辅助线作法记忆歌诀 及几何规律汇编 人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 初中几何常见辅助线作法歌诀 人说几何很困难,难点就在辅助线。 辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。圆

半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。

常见辅助线作法

正确熟练地掌握辅助线的作法和规律,也是迅速解题的关键,如何准确地作出需要的辅助线,简单介绍几种方法: 方法一:从已知出发作出辅助线: 例1.已知:在△ABC 中,AD 是BC 边的中线,E 是AD 的中点,F 是BE 延长线与 AC 的交点,求证:AF=FC 2 1 分析:题设中含有D 是BC 中点,E 是AD 中点,由此可以联想到三角形中与边中点有密 切联系的中位线,所以,可有如下2种辅助线作法: (1)过D 点作DN ∥CA ,交BF 于N ,可得N 为BF 中点,由中位线定理得 DN=FC 21,再证△AEF ≌△DEN ,则有AF=DN ,进而有AF=FC 2 1 (2)过D 点作DM ∥BF ,交AC 于M ,可得FM=CM ,FM=AF ,则有AF=FC 2 1 方法二:分析结论,作出辅助线 例2:如图,AD 是△ABC 的高,AE 是△ABC 的外接圆直径, 求证:AB ·AC=AE ·AD 分析:要证AB ·AC=AE ·AD ,需证 AC AE AD AB = (或AC AD AE AB =),需证△ABE ∽△ADC (或△ABD ∽△AEC ), 这就需要连结BE (或CE ),形成所需要的三角形,同时得 ∠ABE=∠ADC=900 (或∠ADB=∠ACE=900 )又∠E=∠C (或∠B=∠E 因而得证。 方法三:“两头凑”(即同时分析已知和结论)作出辅助线 例3:过△ABC 的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 和E ; 求证:AE ∶ED=2AF ∶FB 分析:已知D 是BC 中点,那么在 三角形中可过中点作平行线得中位线; 若要出现结论中的AE ∶ED ,则应有一条与EF D 点作DM ∥EF 交AB 于M ,可得 FM AF FM AF ED AE 22==证BF=2FM

初中数学圆的辅助线八种作法

中考数学圆的辅助线 在平面几何中,与圆有关的许多题目需要添加辅助线来解决。百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。下面以几道题目为例加以说明。 1.有弦,可作弦心距 在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。 例1 如图1, ⊙O 的弦AB 、CD 相交于点P , 且AC=BD 。求证:PO 平分∠APD 。 分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE ≌△OPF ,得出PO 平分∠APD 。 证法1:作OE ⊥AB 于E ,OF ⊥CD 于F AC=BD => = => = => AB=CD => OE=OF ∠OEP=∠OFP=90° => △OPE ≌△OPF 0OP=OP =>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证PO 平分∠APD ,即证 AB ( BD , ( CD ( D C B P O A E F P B 图 1 AC ( AC ( BD ( AB ( CD (

∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线 即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OPA ≌△OPD 。 证法2:连结OA ,OD 。 ∠CAP=∠BDP ∠APC=∠DPB =>△ACP ≌△DBP AC=BD =>AP=DP OA=OD =>△OPA ≌△OPD =>∠OPA=∠OPD =>PO 平分∠APD OP=OP 2.有直径,可作直径上的圆周角 对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。 例2 如图2,在△ABC 中,AB=AC , 以AB 为直径作⊙O 交BC 于点D ,过D 作⊙O 的切线DM 交AC 于M 。求证 DM ⊥AC 。 分析:由AB 是直径,很自然想到其所 B D C M A O . A 2 1 图 2 D C B P O A P B 图1-1

数学常见辅助线做法与小结

几何最难的地方就是辅助线的添加了,但是对于添加辅助线,还是有规律可循的,下面可小编给大家整理了一些常见的添加辅助线的方法,掌握了对你一定有帮助! 1 三角形中常见辅助线的添加 1. 与角平分线有关的 (1)可向两边作垂线。 (2)可作平行线,构造等腰三角形 (3)在角的两边截取相等的线段,构造全等三角形 2. 与线段长度相关的 (1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可 (2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可 (3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。 (4)遇到中点,考虑中位线或等腰等边中的三线合一。

3. 与等腰等边三角形相关的 (1)考虑三线合一 (2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 ° 2 四边形中常见辅助线的添加 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。下面介绍一些辅助线的添加方法。 1. 和平行四边形有关的辅助线作法 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。 (1)利用一组对边平行且相等构造平行四边形 (2)利用两组对边平行构造平行四边形 (3)利用对角线互相平分构造平行四边形 2. 与矩形有辅助线作法 (1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题

初中几何常见辅助线作法口诀及习题大全

人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。

作辅助线的方法一:中点、中位线,延线,平行线。如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。二:垂线、分角线,翻转全等连。如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。三:边边若相等,旋转做实验。如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。四:造角、平、相似,和、差、积、商见。如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。六:两圆相切、离,连心,公切线。如条件中出现两圆相切(外切,切),或相离(含、外离),那么,辅助线往往是连心线或外公切线。七:切线连直径,直角与半圆。如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。八:弧、弦、弦心距;平行、等距、弦。如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。有时,圆周角,弦切角,圆心角,圆角和圆外角也存在因果关系互相联想作辅助线。九:面积找底高,多边变三边。如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。如遇多边形,想法割补成三角形;反之,亦成立。另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。

九年级数学圆中常见辅助线作法

圆中常见辅助线的作法 典型例题: 例题1、如图,P 是⊙O 外一点,PA 、PB 分别和⊙O 切于A 、B ,C 是 弧AB 上 任意一点,过C 作⊙O 的切线分别交PA 、PB 于D 、E ,若△PDE 的周长为12,则PA 长为______________ 例题2、如图所示,已知AB 是⊙O 的直径,AC ⊥L 于C ,BD ⊥L 于D ,且AC+BD=AB 。 求证:直线L 与⊙O 相切。 例题3、如图,AB 是⊙O 的直径,弦AC 与AB 成30°角,CD 与⊙O 切于C , 交AB?的延长线于D ,求证:AC=CD . 例题4、如图,⊙O 的直径为10,弦AB =8,P 是弦AB 上一个动点, 那么OP 的长的取值范围是_________.

B A C B 1. 遇到弦时(解决有关弦的问题时) 1)、常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 作用:①利用垂径定理; ②利用圆心角及其所对的弧、弦和弦心距之间的关系; ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。 2)、常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。 作用:①可得等腰三角形; ②据圆周角的性质可得相等的圆周角。 2. 遇到有直径时 常常添加(画)直径所对的圆周角。 作用:利用圆周角的性质,得到直角或直角三角形 3. 遇到90°的圆周角时 常常连结两条弦没有公共点的另一端点。 作用:利用圆周角的性质,可得到直径。 4. 遇到有切线时 (1)常常添加过切点的半径(连结圆心和切点 作用:利用切线的性质定理可得OA ⊥AB ,得到直角或直角三角形。 (2)常常添加连结圆上一点和切点 作用:可构成弦切角,从而利用弦切角定理。 5. 遇到证明某一直线是圆的切线时 (1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线 段,再证垂足到圆心的距离等于半径。 (2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。

圆辅助线的常用做法

浅谈圆的辅助线作法 在平面几何中,与圆有关的许多题目需要添加辅助线来解决。百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。下面以几道题目为例加以说明。 1.有弦,可作弦心距 在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。 例1 如图1, ⊙O 的弦AB 、CD 相交于点P , 且AC=BD 。求证:PO 平分∠APD 。 分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE≌△OPF,得出PO 平分∠APD 。 证法1:作OE ⊥AB 于E ,OF ⊥CD 于F AC=BD => = => = => AB=CD => OE=OF ∠OEP=∠OFP=90 ° => △OPE≌△OPF 0OP=OP =>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证 PO 平分∠APD ,即证 ∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线 即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OP A ≌△OP D 。 证法2:连结OA ,OD 。 ∠CAP=∠BDP ∠APC=∠DPB =>△ACP ≌△DBP AB ( BD , ( CD ( D 图 1 AC ( AC ( BD ( AB ( CD ( D 图1-1

初中几何常见辅助线作法口诀

初中几何常见辅助线作法口诀 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。

作辅助线的常用方法

在利用三角形三边关系证明线段不等关系时,如直接证不出 来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如: 例1、 已知如图1-1:D 、E 为△ABC 内两点, 求证:AB+AC>BD+DE+CE. 证明:(法一) 将DE 两边延长分别交AB 、AC 于M 、N , 在△AMN 中,AM+AN > MD+DE+NE;(1) 在△BDM 中,MB+MD>BD ; (2) 在△CEN 中,CN+NE>CE ; (3) 由(1)+(2)+(3)得: AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+EC (法二:图1-2) 延长BD 交 AC 于F ,廷长CE 交BF 于G , 在△ABF 和△GFC 和△GDE 中有: AB+AF> BD+DG+GF (三角形两边之和大于第三边)…(1) GF+FC>GE+CE (同上)………………………………..(2) DG+GE>DE (同上)…………………………………….(3) 由(1)+(2)+(3)得: AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC 。 一、 在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两 点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理: 例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC>∠BAC 。 因为∠BDC 与∠BAC 不在同个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于 在内角的位置; 证法一:延长BD 交AC 于点E ,这时∠BDC 是△EDC 的外角, A B C D E N M 1 1-图A B C D E F G 2 1-图A B C D E F G 1 2-图

几何中常见的辅助线添加方法

几何专题——辅助线 平面几何是初中教学的重要组成部分,它的基础知识在生产实践和科学研究中有着广泛的应用,又是继续学习数学和其他学科的基础,但许多初中生对几何证实题感到困难,尤其是对需要添加辅助线的证实题,往往束手无策。 一、辅助线的定义: 为了证实的需要,在原来图形上添画的线叫做辅助线。 二、几种常用的辅助线:连结、作平行线、作垂线、延长等 注意:1)添加辅助线是手段,而不是目的,它是沟通已知和未知的桥梁,不能见到题目,就无目的地添加辅助线。一则没用、二则辅助线越多,图形越乱,反而妨碍思考问题。 2)添加辅助线时,一条辅助线只能提供一个条件 三、正确添加辅助线歌 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。

直接证实有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证实是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆假如碰到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证实题目少困难。 辅助线,是虚线,画图注重勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时把握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。几何证题难不难,关键常在辅助线; 知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线; 线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘; 全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办; 四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线; 两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便; 非凡角、非凡边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙; 圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,碰到直径周角连; 切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦; 切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便。

(完整版)相似三角形中几种常见的辅助线作法(有辅助线)

相似三角形中几种常见的辅助线作法 在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种: 一、添加平行线构造“A ”“X ”型 例1:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点,求:BE :EF 的值. 解法一:过点D 作CA 的平行线交BF 于点P ,则 ∴PE=EF BP=2PF=4EF 所以BE=5EF ∴BE :EF=5:1. 解法二:过点D 作BF 的平行线交AC 于点Q , ∴BE :EF=5:1. 解法三:过点E 作BC 的平行线交AC 于点S , 解法四:过点E 作AC 的平行线交BC 于点T , ∵BD=2DC ∴ ∴BE :EF=5:1. 变式:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点, 连结BE 并延 长交AC 于F, 求AF :CF 的值. 解法一:过点D 作CA 的平行线交BF 于点P , 解法二:过点D 作BF 的平行线交AC 于点Q , 解法三:过点E 作BC 的平行线交AC 于点S , 解法四:过点E 作AC 的平行线交BC 于点T , , 1==AE DE FE PE ,2==DC BD PF BP ,则2==EA DA EF DQ ,3==DC BC DQ BF , EF EF EF EF DQ EF BF BE 563=-=-=-=,则DC CT DT 2 1 ==;TC BT EF BE =, DC BT 2 5=

例2:如图,在△ABC的AB边和AC边上各取一点D和E,且使AD=AE, DE延长线与BC延长线相交于F ,求证: (证明:过点C作CG//FD交AB于G) 例3:如图,△ABC中,AB

九年级数学下册2圆小专题五圆中常见辅助线的作法习题新版湘教版

小专题(五)圆中常见辅助线的作法 圆中常见辅助线的添加口诀及技巧 半径与弦长计算,弦心距来中间站. 圆上若有一切线,切点圆心半径连. 要想证明是切线,半径垂线仔细辨. 是直径,成半圆,想成直角径连弦. 弧有中点圆心连,垂径定理要记全. 圆周角边两条弦,直径和弦端点连. 还要作个内切圆,内角平分线梦圆. 三角形与扇形联姻,巧妙阴影部分算. 一、连半径——构造等腰三角形 1.如图,在⊙O中,AB为⊙O的弦,C,D是直线AB上的两点,且AC=BD.求证:△OCD是等腰三角形. 二、半径与弦长计算,弦心距来中间站 方法归纳:在圆中,求弦长、半径或圆心到弦的距离时,常过圆心作弦的垂线段,再连接半径构成直角三角形,利用勾股定理进行计算.在弦长、弦心距、半径三个量中,已知任意两个可求另一个. 2.如图,水平放置的圆柱形排水管道的截面直径是1 m,其中水面的宽AB为0.8 m,求排水管内水的深度. 三、见到直径——构造直径所对的圆周角

方法归纳:构造直径所对的圆周角,这是圆中常用的辅助线作法,可充分利用“半圆(或直径)所对的圆周角是直角”这一性质. 3.如图,AB为⊙O的直径,弦C D与AB相交于点E.∠ACD=60°,∠ADC=50°,求∠CEB的度数. 四、有圆的切线时,常常连接圆心和切点得切线垂直于半径 方法归纳:已知圆的切线时,常把切点与圆心连接起来,得半径与切线垂直,构造直角三角形,再利用直角三角形的有关性质解题. 4.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于点F.切点为G,连接AG交CD于点K.求证:KE=GE.

圆中常用辅助线的作法

圆中常用辅助线的作法 1.圆中作辅助线的常用方法: (1)作弦心距,以便利用弦心距与弧、弦之间的关系与垂径定理。 (2)若题目中有“弦的中点”和“弧的中点”条件时,一般连接中点和圆心,利用垂径定理的推论得出结果。 (3)若题目中有“直径”这一条件,可适当选取圆周上的点,连结此点与直径端点得到90度的角或直角三角形。 (4)连结同弧或等弧的圆周角、圆心角,以得到等角。 (5)若题中有与半径(或直径)垂直的线段,如图1,圆O中,BD⊥OA于D,经常是:①如图1(上)延长BD交圆于C,利用垂径定理。 ②如图1(下)延长AO交圆于E,连结BE,BA,得Rt△ABE。 图1(上)图1(下) (6)若题目中有“切线”条件时,一般是:对切线引过切点的半径, (7)若题目中有“两圆相切”(内切或外切),往往过切点作两圆的切线或作出它们的连心线(连心线过切点)以沟通两圆中有关的角的相等关系。 (8)若题目中有“两圆相交”的条件,经常作两圆的公共弦,使之得到同弧上的圆周角或构成圆内接四边形解决,有时还引两连心线以得到结果。 (9)有些问题可以先证明四点共圆,借助于辅助圆中角之间的等量关系去证明。(10)对于圆的内接正多边形的问题,往往添作边心距,抓住一个直角三角形去解决。 例题1:如图2,在圆O中,B为的中点,BD为AB的延长线,∠OAB=500,求∠CBD的度数。 解:如图,连结OB、OC的圆O的半径,已知∠OAB=500 ∵B是弧AC的中点 ∴弧AB=弧BC ∴AB==BC 又∵OA=OB=OC ∴△AOB≌△BOC(S.S.S)图2 ∴∠OBC=∠ABO=500 ∵∠ABO+∠OBC+∠CBD=1800

初中数学常见辅助线做法

初中数学常用辅助线 一.添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形, 添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律 可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等 第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三 角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线 组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关 系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三 角形斜边上中线基本图形。

(5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 *(7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形 当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明 (9)半圆上的圆周角

圆中常见辅助线的添加口诀及技巧知识交流

圆中常见辅助线的添加口诀及技巧 半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径连。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 要想作个外接圆,各边作出中垂线。 还要作个内切圆,内角平分线梦园。 如果遇到相交圆,不要忘作公共弦。 若是添上连心线,切点肯定在上面。 二:圆中常见辅助线的添加: 1、遇到弦时(解决有关弦的问题时) (1)、常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 作用:①利用垂径定理; ②利用圆心角及其所对的弧、弦和弦心距之间的关系;③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。 (2)、常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。 作用:①可得等腰三角形; ②据圆周角的性质可得相等的圆周角。

2、遇到有直径时 常常添加(画)直径所对的圆周角。 作用:利用圆周角的性质,得到直角或直角三角形 3、遇到90°的圆周角时 常常连结两条弦没有公共点的另一端点。 作用:利用圆周角的性质,可得到直径。 4、遇到有切线时 (1)常常添加过切点的半径(见切点连半径得垂直) 作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。 5、遇到证明某一直线是圆的切线时 (1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。 (2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。 6、遇到三角形的内切圆时

连结内心到各三角形顶点,或过内心作三角形各边的垂线段。 作用:利用内心的性质,可得: (1)内心到三角形三个顶点的连线是三角形的角平分 线;(2)内心到三角形三条边的距离相等 7、遇到三角形的外接圆时,连结外心和各顶点 作用:外心到三角形各顶点的距离相等。 例题1、如图,已知△ABC内接于⊙O,∠A=45°,BC=2,求⊙O的面积。 例题2、如图,弦AB的长等于⊙O的半径,点C在弧AMB上, 则∠C的度数是 ________. 例题3、如图,AB是⊙O的直径,AB=4,弦BC=2,∠ B= 例题4、如图,AB、AC是⊙O的的两条弦,∠BAC=90°, AB=6,AC=8,⊙O的半径 是

九年级数学圆中常见辅助线作法

九年级数学圆中常见辅助线作法

圆中常见辅助线的作法 典型例题: 例题1、如图,P 是⊙O 外一点,PA 、PB 分别和⊙O 切于A 、B ,C 是 弧AB 上 任意一点,过C 作⊙O 的切线分别交PA 、PB 于D 、E ,若△PDE 的周长为12,则PA 长为______________ 例题2、如图所示,已知AB 是⊙O 的直径,AC ⊥L 于C ,BD ⊥L 于D ,且AC+BD=AB 。 求证:直线L 与⊙O 相切。 例题3、如图,AB 是⊙O 的直径,弦AC 与AB 成30°角,CD 与⊙O 切于C , 交AB?的延长线于D ,求证:AC=CD . A B C D E O

例题4、如图,⊙O的直径为10,弦AB=8,P是弦AB上一个动点,那么OP的长的取值范围是_________. 1.遇到弦时(解决有关弦的问题时) 1)、常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 作用:①利用垂径定理; ②利用圆心角及其所对的弧、弦和弦心距之间的关系; ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。O C B A

O C B A O C B A 2)、常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。 作用:①可得等腰三角形; ②据圆周角的性质可得相等的圆周角。 2.遇到有直径时 常常添加(画)直径所对的圆周角。 作用:利用圆周角的性质,得到直角或直角三角形 3.遇到90°的圆周角时 常常连结两条弦没有公共点的另一端点。 作用:利用圆周角的性质,可得到直径。 4.遇到有切线时 (1)常常添加过切点的半径(连结圆心和切点 作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。(2)常常添加连结圆上一点和切点 作用:可构成弦切角,从而利用弦切角定理。 5.遇到证明某一直线是圆的切线时 (1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。 (2)若直线过圆上的某一点,则连结这点和圆心(即作半径),

数学中几何辅助线的常规作法集锦

专题7:几何辅助线(图)作法探讨 一些几何题的证明或求解,由原图形分析探究,有时显得十分复杂,若通过适当的变换,即添加适当的辅助线(图),将原图形转换成一个完整的、特殊的、简单的新图形,则能使 原问题的本质得到充分的显示,通过对新图形的分析,原问题顺利获解。网络上有许多初中几何常见辅助线作法歌诀,下面这一套是很好的: 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内切圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。

2020年中考数学复习: 圆中常见辅助线的作法 专题练习题

圆中常见辅助线的作法 1.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为( ) A.15° B.18° C.20° D.28° 2.如图所示,AB是⊙O的弦,OH⊥AB于点H,点P是优弧上一点,若AB=23,OH=1,则∠APB的度数是( ) A.60° B.50° C.40° D.30° 3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,OP=3,则⊙O的半径为( ) A.10 B.8 C.5 D.3 4.如图所示,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长是( ) A.2 5 B. 5 C.213 D.13 5.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,OP=3,则⊙O的半径为( )

A.10 B.8 C.5 D.3 6. 如图所示,已知:AB是⊙O的直径,点C、D在⊙O上,∠ABC=50°,则∠D 为( ) A.50° B.45° C.40° D.30° 7.如图,半圆O的直径AB=10,弦AC=6,AD平分∠BAC,则AD的长为( ) A.8 B.5 5 C.5 D.45 8. 如图所示,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( ) A.3 B.4 C.3 2 D.42 9.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M、N分别是AB、BC的中点,则MN长的最大值是 . 10.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O 的切线,切点为F.若∠ACF=65°,则∠E= . 11. 已知:AB是⊙O的直径,点C,D在⊙O上,∠ABC=50°,则∠D= .

初中几何常见辅助线作法50种

初中常见辅助线作法 任何几何题目都需分析题目条件和结论找到解题思路,本讲从常见的条件和结论出发说明50种辅助线作法,分三角形部分、四边形部分、解直角三角形部分、圆。每种辅助线作法均配备了例题和练习。 三角形部分 1.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某 边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题. 例:如图,已知D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE . 证法(一):将DE 向两边延长,分别交AB 、AC 于M 、N 在△AMN 中, AM + AN >MD +DE +NE ① 在△BDM 中,MB +MD >BD ② 在△CEN 中,CN +NE >CE ③ ①+②+③得 AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +CE 证法(二)延长BD 交AC 于F ,延长CE 交BF 于G , 在△ABF 和△GFC 和△GDE 中有, ①AB +AF >BD +DG +GF ②GF +FC >GE +CE ③DG +GE >DE ∴①+②+③有 AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE ∴AB +AC >BD +DE +CE 注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证 有关的量)移到同一个或几个三角形中去然后再证题. 练习:已知:如图P 为△ABC 内任一点, 求证: 1 2 (AB +BC +AC )<P A +PB +PC <AB +BC +AC 2.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来, 可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题. 例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC 证法(一):延长BD 交AC 于E , F G N M E D C B A

圆中常见的辅助线

圆中常见的辅助线 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

圆中常见辅助线的做法 一.遇到弦时(解决有关弦的问题时) 1.常常添加弦心距,或作垂直于弦的半径(或直径)或再连结过弦的端点的半径。作用:①利用垂径定理; ②利用圆心角及其所对的弧、弦和弦心距之间的关系; ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。 例:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D二点.求证:AC = BD 证明:过O作OE⊥AB于E ∵O为圆心,OE⊥AB ∴AE = BE CE = DE ∴AC = BD 练习:如图,AB为⊙O的弦,P是AB上的一点,AB = 10cm,PA = 4cm.求⊙O的半径. 2.有等弧或证弧等时常连等弧所对的弦或作等弧所对的圆心角. 例:如图,已知AB是⊙O的直径,M、N分别是AO、BO的中点,CM⊥AB,DN⊥AB,求证:AC BD = 证明:(一)连结OC、OD ∵M、N分别是AO、BO的中点 ∴OM = 1 2 AO、ON = 1 2 BO ∵OA = OB ∴OM = ON ∵CM⊥OA、DN⊥OB、OC = OD ∴Rt△COM≌Rt△DON ∴∠COA = ∠DOB ∴AC BD = (二)连结AC、OC、OD、BD ∵M、N分别是AO、BO的中点 ∴AC = OC BD = OD ∵OC = OD ∴AC = BD ∴AC BD = 3.有弦中点时常连弦心距 例:如图,已知M、N分别是⊙O 的弦AB、CD的中点,AB = CD,求证:∠AMN = ∠CNM 证明:连结OM、ON ∵O为圆心,M、N分别是弦AB、CD的中点 ∴OM⊥AB ON⊥CD ∵AB = CD ∴OM = ON ∴∠OMN = ∠ONM

相关文档
最新文档