操作系统实验

操作系统实验
操作系统实验

实验项目名称:进程的同步(实验一)

1、实验目的

(1) 掌握进程和线程基本概念和属性;

(2) 掌握用PV操作解决并发进程的同步问题;

(3) 掌握用于同步的信号量初值的设置;

(4) 掌握如何处理共享资源的直接制约关系。

2、实验内容

(1) 设计一个模拟若干售票网点的售票程序。界面可以参考图1。还应设计多个后台售票线程并发运行。

图1售票

(2) 模拟:桌上有一只盘子,每次只能放入一个水果。爸爸专向盘子中放苹果,妈妈专向盘子中放桔子,一个女儿专等吃盘子里的苹果,一个儿子专等吃盘子里的桔子。只要盘子空则爸爸或妈妈都可以向盘子放一个水果,仅当盘子中有自己需要的水果时,儿子或女儿可以从盘子中取出水果。放-取水果的几种情况如图2(a)~(f)所示,可以参照进行设计。

(a)盘子空时取水果 (b)父亲放入苹果

(c) 儿子取水果 (d) 女儿取水果

(e)儿子取走桔子 (f)盘子满时放水果

图2 放-取水果

(3) 自选其它能反映进程互斥问题的应用。

实验项目名称:处理机调度(实验二)

1、实验目的

(1) 掌握几种处理机调度算法的基本思想和特点;

(2) 理解并发与并行的区别;

(3) 比较几种算法的特点。

2、实验内容

编写程序模拟处理机调度,参照图3。

(1) 时间片轮转

(2) 动态优先权调度

(3) 高响应比优先调度

图3 模拟处理机调度

实验项目名称:银行家算法(实验三)

1、实验目的

银行家算法是避免死锁的一种重要方法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。

2、实验内容

(1) 设计进程对各类资源最大申请表示及初值确定。

(2) 设定系统提供资源初始状况。

(3) 设定每次某个进程对各类资源的申请表示。

(4) 编制程序,依据银行家算法,决定其申请是否得到满足。

具体设计可参照图4(a)~(c) 进行。

(a) 某时刻系统资源情况

(b)测试安全性

(c)安全序列

图4银行家算法

实验项目名称:存储器管理(实验四)

1、实验目的

存储器是计算机系统的重要组成部分。本实验要求用高级语言编写和调试一个简单的没有虚拟内存的系统中的内存管理—动态分区管理程序。加深理解内存的分配与回收,分配与回收的策略、地址映射、内存保护等概念,并掌握动态分区这种内存管理的具体实施方法。

2、实验内容

设计一个模拟内存管理中采用“动态分区”方式的存储器管理程序。动态申请一段内存,对该段内存进行“动态分区”方式的管理,选择至少一种分配策略,建立相应的数据结构(如内存分配表,内存空闲表等),可以动态申请和释放内存空间,给出当前“内存”的使用情况。

可以参照图5(a)~(c)进行设计。

(a)已创建若干进程

(b)撤消进程对话框

(c) 某时刻进程占用内存状态

图5动态分区管理

实验项目名称:设备管理(实验五)

1、实验目的

了解设备管理的功能和任务,理解SPOOLing的概念、系统组成和特点。本实验要求用高级语言编写和调试一个简单的模拟利用SPLOOLing技术进行输入/输出的程序。加深理解将一台物理I/O设备虚拟为多台逻辑设备,同时允许多个用户共享一台物理设备的具体实施方法。

2、实验内容

模拟一个利用SPOOLing技术的输入/输出管理,建立相应的数据结构及缓冲空间,给出当前系统中运行进程的设备使用情况和等待队列的情况。

实验项目名称:文件管理(实验六)

1、实验目的

了解文件管理的功能和任务,理解文件系统组成和特点,熟悉文件系统的访问和操作。实验要求用高级语言编写和调试一个简单的模拟文件管理程序。加深理解有关盘块的分配与回收、目录管理等的具体实施策略。

2、实验内容

模拟一个资源管理器进行文件操作,包括建立和删除目录、建立和删除文件等基本文件操作。建立相应的数据结构(如:位示图等),模拟盘块管理。可以参照图6界面进行设计。

图6

操作系统实验三

计算机操作系统实验报告 实验内容: P、V原语的模拟实现 实验类型:验证型 指导教师:毕国堂 专业班级: 姓名: 学号: 实验地点:东6E507 实验时间:2017/10/23

一、实验目的 1.理解信号量相关理论 2.掌握记录型信号量结构 3.掌握P、V原语实现机制 二、实验内容 1.输入给定的代码 2.进行功能测试并得出证正确结果 三、实验要求 1.分析signal和wait函数功能模块 ●Signal函数 在进行资源增加时,首先判断增加的资源是否存在,如果不存在则报错 并结束函数;如果存在则将需要增加的资源数量加一,然后再判断增加 后的资源数是否大于0,如果大于0则表示之前等待队列为空,没有需 要分配的进程;如果增加后的资源不大于0,表示之前等待队列中存在 进程,则将队首的进程取出并将资源分给该进程。 ●Wait 函数 在执行wait函数时,先判断请求的资源和进程是否存在,如果不存在则 报错提示;如果存在则将对应资源的资源数减一,然后判断减少后的资 源数是否小于0,如果小于0,表示该资源等待队列为空,可直接将资源 分配给请求的进程;如果不小于0则表示之前资源的等待队列不为空, 则将请求的进程插在等待队列最后。 2.画出signal和wait函数流程图

3.撰写实验报告 四、实验设备 1.PC机1台安装visual c++ 6.0 五、测试

1.首先将所有的资源分配完 2.这时再请求资源时就会出现等待现象 3.此时增加一个资源s0,则进程1对s0的等待结束直接获取资源s0 4.当再增加资源s0、s1时则进程1也结束对资源s1的等待,并且s0资源 为有空闲状态 六、实验思考 1.如何修改wait操作,使之能一次申请多个信号量? wait函数传入一个进程号和多个资源名,在wait函数中使用循环依

操作系统实验实验1

广州大学学生实验报告 1、实验目的 1.1、掌握进程的概念,明确进程的含义 1.2、认识并了解并发执行的实质 2.1、掌握进程另外的创建方法 2.2、熟悉进程的睡眠、同步、撤消等进程控制方法 3.1、进一步认识并发执行的实质 3.2、分析进程竞争资源的现象,学习解决进程互斥的方法 4.1、了解守护进程 5.1、了解什么是信号 5.2、INUX系统中进程之间软中断通信的基本原理 6.1、了解什么是管道 6.2、熟悉UNIX/LINUX支持的管道通信方式 7.1、了解什么是消息 7.2、熟悉消息传送的机理 8.1、了解和熟悉共享存储机制 二、实验内容 1.1、编写一段程序,使用系统调用fork( )创建两个子进程。当此程序运行时,在系统 中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示'a',子进程分别显示字符'b'和字符'c'。试观察记录屏幕上的显示结果,并分析原因。 1.2、修改上述程序,每一个进程循环显示一句话。子进程显示'daughter …'及 'son ……',父进程显示'parent ……',观察结果,分析原因。 2.1、用fork( )创建一个进程,再调用exec( )用新的程序替换该子进程的内容 2.2、利用wait( )来控制进程执行顺序 3.1、修改实验(一)中的程序2,用lockf( )来给每一个进程加锁,以实现进程之间的互斥 3.2、观察并分析出现的现象 4.1、写一个使用守护进程(daemon)的程序,来实现: 创建一个日志文件/var/log/Mydaemon.log ; 每分钟都向其中写入一个时间戳(使用time_t的格式) ; 5.1、用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按^c键);捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止: Child process1 is killed by parent! Child process2 is killed by parent! 父进程等待两个子进程终止后,输出如下的信息后终止: Parent process is killed! 5.2、用软中断通信实现进程同步的机理

操作系统原理-进程调度实验报告

一、实验目的 通过对进程调度算法的设计,深入理解进程调度的原理。 进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。 进程调度分配处理机,是控制协调进程对CPU的竞争,即按一定的调度算法从就绪队列中选中一个进程,把CPU的使用权交给被选中的进程。 进程通过定义一个进程控制块的数据结构(PCB)来表示;每个进程需要赋予进程ID、进程到达时间、进程需要运行的总时间的属性;在RR中,以1为时间片单位;运行时,输入若干个进程序列,按照时间片输出其执行序列。 二、实验环境 VC++6.0 三、实验内容 实现短进程优先调度算法(SPF)和时间片轮转调度算法(RR) [提示]: (1) 先来先服务(FCFS)调度算法 原理:每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。 将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理,是一种最普遍和最简单的方法。它优先考虑在系统中等待时间最长的作业,而不管要求运行时间的长短。 按照就绪进程进入就绪队列的先后次序进行调度,简单易实现,利于长进程,CPU繁忙型作业,不利于短进程,排队时间相对过长。 (2) 时间片轮转调度算法RR

原理:时间片轮转法主要用于进程调度。采用此算法的系统,其程序就绪队列往往按进程到达的时间来排序。进程调度按一定时间片(q)轮番运行各个进程. 进程按到达时间在就绪队列中排队,调度程序每次把CPU分配给就绪队列首进程使用一个时间片,运行完一个时间片释放CPU,排到就绪队列末尾参加下一轮调度,CPU分配给就绪队列的首进程。 固定时间片轮转法: 1 所有就绪进程按 FCFS 规则排队。 2 处理机总是分配给就绪队列的队首进程。 3 如果运行的进程用完时间片,则系统就把该进程送回就绪队列的队尾,重新排队。 4 因等待某事件而阻塞的进程送到阻塞队列。 5 系统把被唤醒的进程送到就绪队列的队尾。 可变时间片轮转法: 1 进程状态的转换方法同固定时间片轮转法。 2 响应时间固定,时间片的长短依据进程数量的多少由T = N × ( q + t )给出的关系调整。 3 根据进程优先级的高低进一步调整时间片,优先级越高的进程,分配的时间片越长。 多就绪队列轮转法: (3) 算法类型 (4)模拟程序可由两部分组成,先来先服务(FCFS)调度算法,时间片轮转。流程图如下:

操作系统实验报告一

重庆大学 学生实验报告 实验课程名称操作系统原理 开课实验室DS1501 学院软件学院年级2013专业班软件工程2 班学生姓名胡其友学号20131802 开课时间2015至2016学年第一学期 总成绩 教师签名洪明坚 软件学院制

《操作系统原理》实验报告 开课实验室:年月日学院软件学院年级、专业、班2013级软件工 程2班 姓名胡其友成绩 课程名称操作系统原理 实验项目 名称 指导教师洪明坚 教师 评语教师签名:洪明坚年月日 1.实验目的: ?进入实验环境 –双击expenv/setvars.bat ?检出(checkout)EPOS的源代码 –svn checkout https://www.360docs.net/doc/883576228.html,/svn/epos ?编译及运行 –cd epos/app –make run ?清除所有的临时文件 –make clean ?调试 –make debug ?在“Bochs Enhanced Debugger”中,输入“quit”退出调试 –调试指令,请看附录A 2.实验内容: ?编写系统调用“time_t time(time_t *loc)” –功能描述 ?返回从格林尼治时间1970年1月1日午夜起所经过的秒数。如果指针loc 非NULL,则返回值也被填到loc所指向的内存位置 –数据类型time_t其实就是long ?typedef long time_t; 3.实验步骤: ?Kernel space –K1、在machdep.c中,编写系统调用的实现函数“time_t sys_time()”,计算用户秒数。需要用到 ?变量g_startup_time,它记录了EPOS启动时,距离格林尼治时间1970年1午夜的秒数 ?变量g_timer_ticks

操作系统实验报告_实验五

实验五:管道通信 实验内容: 1.阅读以下程序: #include #include #include main() { int filedes[2]; char buffer[80]; if(pipe(filedes)<0) //建立管道,filedes[0]为管道里的读取端,filedes[1]则为管道的写入端 //成功则返回零,否则返回-1,错误原因存于errno中 err_quit(“pipe error”); if(fork()>0){ char s[ ] = “hello!\n”; close(filedes[0]); //关闭filedes[0]文件 write(filedes[1],s,sizeof(s)); //s所指的内存写入到filedes[1]文件内 close(filedes[1]); //关闭filedes[0]文件 }else{ close(filedes[1]); read(filedes[0],buffer,80); //把filedes[0]文件传送80个字节到buffer缓冲区内 printf(“%s”,buffer); close(filedes[0]); } } 编译并运行程序,分析程序执行过程和结果,注释程序主要语句。

2.阅读以下程序: #include #include #include main() { char buffer[80]; int fd; unlink(FIFO); //删除FIFO文件 mkfifo(FIFO,0666); //FIFO是管道名,0666是权限 if(fork()>0){ char s[ ] = “hello!\n”;

操作系统原理实验-系统内存使用统计5

上海电力学院 计算机操作系统原理 实验报告 题目:动态链接库的建立与调用 院系:计算机科学与技术学院 专业年级:信息安全2010级 学生姓名:李鑫学号:20103277 同组姓名:无 2012年11 月28 日上海电力学院

实验报告 课程名称计算机操作系统原理实验项目线程的同步 姓名李鑫学号20103277 班级2010251班专业信息安全 同组人姓名无指导教师姓名徐曼实验日期2012/11/28 实验目的和要求: (l)了解Windows内存管理机制,理解页式存储管理技术。 (2)熟悉Windows内存管理基本数据结构。 (3)掌握Windows内存管理基本API的使用。 实验原理与内容 使用Windows系统提供的函数和数据结构显示系统存储空间的使用情况,当内存和虚拟存储空间变化时,观察系统显示变化情况。 实验平台与要求 能正确使用系统函数GlobalMemoryStatus()和数据结构MEMORYSTATUS了解系统内存和虚拟空间使用情况,会使用VirtualAlloc()函数和VirtualFree()函数分配和释放虚拟存储空间。 操作系统:Windows 2000或Windows XP 实验平台:Visual Studio C++ 6.0 实验步骤与记录 1、启动安装好的Visual C++ 6.0。 2、选择File->New,新建Win32 Console Application程序, 由于内存分配、释放及系统存储 空间使用情况均是Microsoft Windows操作系统的系统调用,因此选择An application that support MFC。单击确定按钮,完成本次创建。 3、创建一个支持MFC的工程,单击完成。

操作系统实验之内存管理实验报告

学生学号 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称 计算机操作系统 开 课 学 院 计算机科学与技术学院 指导老师姓名 学 生 姓 名 学生专业班级 2016 — 2017 学年第一学期

实验三 内存管理 一、设计目的、功能与要求 1、实验目的 掌握内存管理的相关内容,对内存的分配和回收有深入的理解。 2、实现功能 模拟实现内存管理机制 3、具体要求 任选一种计算机高级语言编程实现 选择一种内存管理方案:动态分区式、请求页式、段式、段页式等 能够输入给定的内存大小,进程的个数,每个进程所需内存空间的大小等 能够选择分配、回收操作 内购显示进程在内存的储存地址、大小等 显示每次完成内存分配或回收后内存空间的使用情况 二、问题描述 所谓分区,是把内存分为一些大小相等或不等的分区,除操作系统占用一个分区外,其余分区用来存放进程的程序和数据。本次实验中才用动态分区法,也就是在作业的处理过程中划分内存的区域,根据需要确定大小。 动态分区的分配算法:首先从可用表/自由链中找到一个足以容纳该作业的可用空白区,如果这个空白区比需求大,则将它分为两个部分,一部分成为已分配区,剩下部分仍为空白区。最后修改可用表或自由链,并回送一个所分配区的序号或该分区的起始地址。 最先适应法:按分区的起始地址的递增次序,从头查找,找到符合要求的第一个分区。

最佳适应法:按照分区大小的递增次序,查找,找到符合要求的第一个分区。 最坏适应法:按分区大小的递减次序,从头查找,找到符合要求的第一个分区。 三、数据结构及功能设计 1、数据结构 定义空闲分区结构体,用来保存内存中空闲分区的情况。其中size属性表示空闲分区的大小,start_addr表示空闲分区首地址,next指针指向下一个空闲分区。 //空闲分区 typedef struct Free_Block { int size; int start_addr; struct Free_Block *next; } Free_Block; Free_Block *free_block; 定义已分配的内存空间的结构体,用来保存已经被进程占用了内存空间的情况。其中pid作为该被分配分区的编号,用于在释放该内存空间时便于查找。size表示分区的大小,start_addr表示分区的起始地址,process_name存放进程名称,next指针指向下一个分区。 //已分配分区的结构体 typedef struct Allocate_Block { int pid; int size; int start_addr; char process_name[PROCESS_NAME_LEN]; struct Allocate_Block *next; } Allocate_Block; 2、模块说明 2.1 初始化模块 对内存空间进行初始化,初始情况内存空间为空,但是要设置内存的最大容量,该内存空间的首地址,以便之后新建进程的过程中使用。当空闲分区初始化

操作系统实验报告

《操作系统原理》实验报告 实验项目名称:模拟使用银行家算法判断系统的状态 一、实验目的 银行家算法是操作系统中避免死锁的算法,本实验通过对银行家算法的模拟,加强对操作系统中死锁的认识,以及如何寻找到一个安全序列解除死锁。 二、实验环境 1、硬件:笔记本。 2、软件:Windows 7 , Eclipse。 三、实验内容 1.把输入资源初始化,形成资源分配表; 2.设计银行家算法,输入一个进程的资源请求,按银行家算法步骤进行检查; 3.设计安全性算法,检查某时刻系统是否安全; 4.设计显示函数,显示资源分配表,安全分配序列。 四、数据处理与实验结果 1.资源分配表由进程数组,Max,Allocation,Need,Available 5个数组组成; 实验采用数据为下表: 2.系统总体结构,即菜单选项,如下图

实验的流程图。如下图 3.实验过程及结果如下图所示

1.首先输入进程数和资源类型及各进程的最大需求量 2.输入各进程的占有量及目前系统的可用资源数量 3.初始化后,系统资源的需求和分配表 4.判断线程是否安全

5.对线程进行死锁判断 五、实验过程分析 在实验过程中,遇到了不少问题,比如算法无法回滚操作,程序一旦执行,必须直接运行到单个任务结束为止,即使产生了错误,也必须等到该项任务结束才可以去选择别的操作。但总之,实验还是完满的完成了。 六、实验总结 通过实验使我对以前所学过的基础知识加以巩固,也对操作系统中抽象理论知识加以理解,例如使用Java语言来实现银行家算法,在这个过程中更进一步了解了银行家算法,通过清晰字符界面能进行操作。不过不足之处就是界面略显简洁,对于一个没有操作过计算机的人来说,用起来可能还是有些难懂。所以,以后会对界面以及功能进行完善,做到人人都可以看懂的算法。

操作系统实验二

操作系统实验 实验二进程管理 学号 1215108019 姓名李克帆 学院信息学院 班级 12电子 2

实验目的 1、理解进程的概念,明确进程和程序的区别。 2、理解并发执行的实质。 3、掌握进程的创建、睡眠、撤销等进程控制方法。 实验内容与要求 基本要求:用C语言编写程序,模拟实现创建新的进程;查看运行进程;换出某个进程;杀死进程等功能。 实验报告内容 1、进程、进程控制块等的基本原理。 进程是现代操作系统中的一个最基本也是最重要的概念,掌握这个概念对于理解操作系统实质,分析、设计操作系统都有其非常重要的意义。为了强调进程的并发性和动态性,可以给进程作如下定义:进程是可并发执行的程序在一个数据集合上的运行过程,是系统进行资源分配和调度的一个独立单位。 进程又就绪、执行、阻塞三种基本状态,三者的变迁图如下: I/完时间片 进程调 I/请

由于多个程序并发执行,各程序需要轮流使用CPU,当某程序不在CPU上运行时,必须保留其被中断的程序的现场,包括:断点地址、程序状态字、通用寄存器的内容、堆栈内容、程序当前状态、程序的大小、运行时间等信息,以便程序再次获得CPU时,能够正确执行。为了保存这些内容,需要建立—个专用数据结构,我们称这个数据结构为进程控制块PCB (Process Control Block)。 进程控制块是进程存在的惟一标志,它跟踪程序执行的情况,表明了进程在当前时刻的状态以及与其它进程和资源的关系。当创建一个进程时,实际上就是为其建立一个进程控制块。 在通常的操作系统中,PCB应包含如下一些信息: ①进程标识信息。为了标识系统中的各个进程,每个进程必须有惟一的标识名或标识数。 ②位置信息。指出进程的程序和数据部分在内存或外存中的物理位置。 ③状态信息。指出进程当前所处的状态,作为进程调度、分配CPU的依据。 ④进程的优先级。一般根据进程的轻重缓急其它信息。 这里给出的只是一般操作系统中PCB所应具有的内容,不同操作系统的PCB结构是不同的,我们将在2.8节介绍Linux系统的PCB结构。就 执行阻塞 程度为进程指定一个优先级,优先级用优先数表示。 ⑤进程现场保护区。当进程状态变化时(例如一个进程放弃使用CPU),它需要将当时的CPU现场保护到内存中,以便再次占用CPU时恢复正常运行,有的系统把要保护的CPU 现场放在进程的工作区中,而PCB中仅给出CPU现场保护区起始地址。 ⑥资源清单。每个进程在运行时,除了需要内存外,还需要其它资源,如I/O设备、外存、数据区等。这一部分指出资源需求、分配和控制信息。 ⑦队列指针或链接字。它用于将处于同一状态的进程链接成一个队列,在该单元中存放下一进程PCB首址。 ⑧其它信息。 这里给出的只是一般操作系统中PCB所应具有的内容,不同操作系统的PCB结构是不同的,我们将在2.8节介绍Linux系统的PCB结构。 2、程序流程图。

计算机操作系统实验四

实验三进程与线程 问题: 进程是具有独立功能的程序关于某个数据集合上的一次运行活动,是系统进行资源分配和调度的独立单位,具有动态性、并发性、独立性、异步性和交互性。然而程序是静态的,并且进程与程序的组成不同,进程=程序+数据+PCB,进程的存在是暂时的,程序的存在是永久的;一个程序可以对应多个进程,一个进程可以包含多个程序。当操作系统引入线程的概念后,进程是操作系统独立分配资源的单位,线程成为系统调度的单位,与同一个进程中的其他线程共享程序空间。 本次实验主要的目的是: (1)理解进程的独立空间; (2)加深对进程概念的理解,明确进程和程序的区别; (3)进一步认识并发执行的实质; (4)了解红帽子(Linux)系统中进程通信的基本原理。 (5)理解线程的相关概念。 要求: 1、请查阅资料,掌握进程的概念,同时掌握进程创建和构造的相关知识和线程创建和 构造的相关知识,了解C语言程序编写的相关知识; (1)进程: 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。程序是指令、数据及其组织形式的描述,进程是程序的实体。进程的概念主要有两点:第一,进程是一个实体。每一个进程都有它自己的地址空间,一般情况下,包括文本区域(text region)、数据区域(data region)和堆栈(stack region)。文本区域存储处理器执行的代码;数据区域存储变量和进程执行期间使用的动态分配的内

存;堆栈区域存储着活动过程调用的指令和本地变量。第二,进程是一个“执行中的程序”。程序是一个没有生命的实体,只有处理器赋予程序生命时(操作系统执行之),它才能成为一个活动的实体,我们称其为进程。 (2)进程的创建和构造: 进程简单来说就是在操作系统中运行的程序,它是操作系统资源管理的最小单位。但是进程是一个动态的实体,它是程序的一次执行过程。进程和程序的区别在于:进程是动态的,程序是静态的,进程是运行中的程序,而程序是一些保存在硬盘上的可执行代码。新的进程通过克隆旧的程序(当前进程)而建立。fork() 和clone()(对于线程)系统调用可用来建立新的进程。 (3)线程的创建和构造: 线程也称做轻量级进程。就像进程一样,线程在程序中是独立的、并发的执行路径,每个线程有它自己的堆栈、自己的程序计数器和自己的局部变量。但是,与独立的进程相比,进程中的线程之间的独立程度要小。它们共享内存、文件句柄和其他每个进程应有的状态。 线程的出现也并不是为了取代进程,而是对进程的功能作了扩展。进程可以支持多个线程,它们看似同时执行,但相互之间并不同步。一个进程中的多个线程共享相同的内存地址空间,这就意味着它们可以访问相同的变量和对象,而且它们从同一堆中分配对象。尽管这让线程之间共享信息变得更容易,但你必须小心,确保它们不会妨碍同一进程里的其他线程。 线程与进程相似,是一段完成某个特定功能的代码,是程序中单个顺序的流控制,但与进程不同的是,同类的多个线程是共享同一块内存空间和一组系统资源的,而线程本身的数据通常只有微处理器的寄存器数据,以及一个供程序执行时使用的堆栈。所以系统在产生一个线程,或者在各个线程之间切换时,负担要比进程小得多,正因如此,线程也被称为轻型进程(light-weight process)。一个进程中可以包含多个线程。 2、理解进程的独立空间的实验内容及步骤

操作系统实验五

操作系统 实验报告 哈尔滨工程大学

一、实验概述 1. 实验名称 进程的同步 2. 实验目的 1.使用EOS的信号量,编程解决生产者—消费者问题,理解进程同步的意义。 2.调试跟踪EOS信号量的工作过程,理解进程同步的原理。 3.修改EOS的信号量算法,使之支持等待超时唤醒功能(有限等待),加深理解进程同步的原理。 3. 实验类型 验证 二、实验环境 OS Lab 三、实验过程 3.1 准备实验 按照下面的步骤准备本次实验: 1. 启动OS Lab。 2. 新建一个EOS Kernel项目。 3. 生成EOS Kernel项目,从而在该项目文件夹中生成SDK文件夹。 4. 新建一个EOS应用程序项目。 5. 使用在第3步生成的SDK文件夹覆盖EOS应用程序项目文件夹中的SDK文件夹。 3.2 使用EOS的信号量解决生产者-消费者问题 按照下面的步骤查看生产者-消费者同步执行的过程: 1. 使用pc.c文件中的源代码,替换之前创建的EOS应用程序项目中EOSApp.c文件内的源代码。 2. 按F7生成修改后的EOS应用程序项目。 3. 按F5启动调试。OS Lab会首先弹出一个调试异常对话框。 4. 在调试异常对话框中选择“否”,继续执行。 5. 立即激活虚拟机窗口查看生产者-消费者同步执行的过程。 6. 待应用程序执行完毕后,结束此次调试。 3.3 调试EOS信号量的工作过程 3.3.1 创建信号量 按照下面的步骤调试信号量创建的过程:

1. 按F5启动调试EOS应用项目。OS Lab会首先弹出一个调试异常对话框。 2. 在调试异常对话框中选择"是",调试会中断。 3. 在main函数中创建Empty信号量的代码行(第77行) EmptySemaphoreHandle=CreateSemaphore(BUFFER_SIZE, BUFFER_SIZE, NULL); 添加一个断点。 4. 按F5继续调试,到此断点处中断。 5. 按F11调试进入CreateSemaphore函数。可以看到此API函数只是调用了EOS内核中的PsCreateSemaphoreObject函数来创建信号量对象。 6. 按F11调试进入semaphore.c文件中的PsCreateSemaphoreObject函数。在此函数中,会在EOS内核管理的内存中创建一个信号量对象(分配一块内存),而初始化信号量对象中各个成员的操作是在PsInitializeSemaphore函数中完成的。 7. 在semaphore.c文件的顶部查找到PsInitializeSemaphore函数的定义(第19行),在此函数的第一行(第39行)代码处添加一个断点。 8. 按F5继续调试,到断点处中断。观察PsInitializeSemaphore函数中用来初始化信号量结构体成员的值,应该和传入CreateSemaphore函数的参数值是一致的。 9. 按F10单步调试PsInitializeSemaphore函数执行的过程,查看信号量结构体被初始化的过程。打开"调用堆栈"窗口,查看函数的调用层次。 3.3.2 等待、释放信号量 等待信号量(不阻塞) 生产者和消费者刚开始执行时,用来放产品的缓冲区都是空的,所以生产者在第一次调用WaitForSingleObject函数等待Empty信号量时,应该不需要阻塞就可以立即返回。按照下面的步骤调试: 1. 删除所有的断点(防止有些断点影响后面的调试)。 2. 在eosapp.c文件的Producer函数中,等待Empty信号量的代码行 (144)WaitForSingleObject(EmptySemaphoreHandle, INFINITE); 添加一个断点。 3. 按F5继续调试,到断点处中断。 4. WaitForSingleObject 函数最终会调用内核中的PsWaitForSemaphore函数完成等待操作。所以,在semaphore.c文件中PsWaitForSemaphore函数的第一行(第68行)添加一个断点。 5. 按F5继续调试,到断点处中断。 6. 按F10单步调试,直到完成PsWaitForSemaphore函数中的所有操作。可以看到此次执行并没有进行等待,只是将Empty信号量的计数减少了1(由10变为了9)就返回了。 如图所示,empty的初始值为10。 在完成PsWaitForSemaphore函数中的所有操作后empty的值变成了9。 释放信号量(不唤醒) 1. 删除所有的断点(防止有些断点影响后面的调试)。

操作系统原理实验四

实验4 进程控制 1、实验目的 (1)通过对WindowsXP进行编程,来熟悉和了解系统。 (2)通过分析程序,来了解进程的创建、终止。 2、实验工具 (1)一台WindowsXP操作系统的计算机。 (2)计算机装有Microsoft Visual Studio C++6.0专业版或企业版。 3、预备知识 (3)·CreateProcess()调用:创建一个进程。 (4)·ExitProcess()调用:终止一个进程。 4、实验编程 (1)编程一利用CreateProcess()函数创建一个子进程并且装入画图程序(mspaint.exe)。阅读该程序,完成实验任务。源程序如下: # include < stdio.h > # include < windows.h > int main(VOID) ﹛STARTUPINFO si; PROCESS INFORMA TION pi; ZeroMemory(&si,sizeof(si)); Si.cb=sizeof(si); ZeroMemory(&pi,sizeof(pi)); if(!CreateProcess(NULL, “c: \ WINDOWS\system32\ mspaint.exe”, NULL, NULL, FALSE, 0, NULL, NULL, &si,&pi)) ﹛fprintf(stderr,”Creat Process Failed”); return—1; ﹜ WaitForSingleObject(pi.hProcess,INFINITE); Printf(“child Complete”); CloseHandle(pi.hProcess); CloseHandle(pi hThread); ﹜

操作系统实验四

青岛理工大学课程实验报告

算法描述及实验步骤 功能:共享存储区的附接。从逻辑上将一个共享存储区附接到进程的虚拟地址空间上。用于建立调用进程与由标识符shmid指定的共享内存对象之间的连接。 系统调用格式:virtaddr=shmat(shmid,addr,flag) 该函数使用头文件如下: #include #include #include (8)shmdt( ) 功能:用于断开调用进程与共享内存对象之间的连接,成功时返回0,失败返回-1。 系统调用格式: int shmdt(shmaddr) char *shmaddr;/*采用shmat函数的返回值*/ (9)shmctl( ) 功能:共享存储区的控制,对其状态信息进行读取和修改。用于对已创建的共享内存对象进行查询、设置、删除等操作。 系统调用格式:shmctl(shmid,cmd,buf) 该函数使用头文件如下: #include #include #include 2、步骤: (1)定义进程变量(2)定义两个字符数组 (3)创建管道(4)如果进程创建不成功,则空循环(5)如果子进程创建成功,pid为进程号(6)锁定管道 (7)给Outpipe赋值(8)向管道写入数据 (9)等待读进程读出数据(10)解除管道的锁定 (11)结束进程等待子进程结束(12)从管道中读出数据 (13)显示读出的数据(14)父进程结束 创建jincheng.c 插入文字

调 试 过 程 及 实 验 结 果 运行: 运行后: 总 结 (对实验结果进行分析,问题回答,实验心得体会及改进意见) 虽然对pipe()、msgget()、msgsnd()、msgrcv()、msgctl()、shmget()、shmat()、 shmdt()、shmctl()的功能和实现过程有所了解,但是运用还是不熟练,过去没 见过,所以运行了一个简单的程序。 利用管道机制、消息缓冲队列、共享存储区机制进行进程间的通信,加深了对 其了解。 (1)管道通信机制,同步的实现过程:当写进程把一定数量的数据写入pipe, 便去睡眠等待,直到读进程取走数据后,再把它唤醒。当读进程读一空pipe 时,也应睡眠等待,直到写进程将数据写入管道后,才将之唤醒,从而实现进 程的同步。 管道通信的特点:A管道是半双工的,数据只能向一个方向流动;需要双方通 信时,需要建立起两个管道;B. 只能用于父子进程或者兄弟进程之间(具有亲 缘关系的进程);C.单独构成一种独立的文件系统:管道对于管道两端的进程而

操作系统实验报告

《计算机操作系统》实验报告 教师: 学号: 姓名: 2012年3月6日 计算机学院

实验题目:请求页式存储管理(三) ----------------------------------------------------------------------------- 实验环境:VC6.0++ 实验目的:学生应独立地用高级语言编写几个常用的存储分配算法,并设计一个存储管理的模拟程序,对各种算法进行分析比较,评测其性能优劣,从而加深对这些算法的了解。实验内容: (1)编制和调试示例给出的请求页式存储管理程序,并使其投入运行。 (2)增加1~2种已学过的淘汰算法,计算它们的页面访问命中率。试用各种算法的命中率加以比较分析。(增加了FIFO) 操作过程: (1)产生随机数 (2)输入PageSize(页面大小1 /2/4/8 K) (pageno[i]=int(a[i]/1024)+1) (3)菜单选择

(4)OPT/ LRU/FIFO演示(pagesize=1K)

(5) 过程说明(PAGESIZE = 4K ) OPT :最佳置换算法(淘汰的页面是以后永不使用,或许是在最长时间内不再被访问的页面) //在Table 表中如果未找到,记录每个元素需要找的长度 //全部table 中元素找完长度,然后进行比较,找出最大的,进行淘汰 int max=0; int out; for(k=0;kmax){ max = table_time[k]; out = k; } }//找出最长时间,进行替换 table[out]=pageno[i]; page_out++;

操作系统实验指导及实验五个

操作系统实验指导及实验五个 前言 1.实验总体目标 通过学生自己动手设计实验验证理论知识,使学生掌握操作系统特征和功能,掌握不同调度算法下进程的调度、进程控制、进程调度与死锁,并必须掌握作业管理、存储器管理、设备管理和文件管理的主要原理。加深对操作系统基本原理理解。 ⒉适用专业 计算机科学与技术 ⒊先修课程 C语言程序设计、计算机组成原理、数据结构 ⒋实验课时分配

⒌ 有70台中等配置的计算机组成的小型局域网的实验室环境。计算机的具体要求:(1)Pentium 133Hz以上的CPU;(2)建议至少256MB的内存;(3)建议硬盘至少2GB,并有1GB空闲空间。(4)安装Windows操作系统及C语言编译程序或Linux虚拟环境。 ⒍实验总体要求 培养计算机专业的学生的系统程序设计能力,是操作系统课程的一个非常重要的环节。通过操作系统上机实验,可以培养学生程序设计的方法和技巧,提高学生编制清晰、合理、可读性好的系统程序的能力,加深对操作系统课程的理解。使学生更好地掌握操作系统的基本概念、基本原理、及基本功能,具有分析实际操作系统、设计、构造和开发现代操作系统的基本能力。 实验要求做到: 1)详细描述实验设计思想、程序结构及各模块设计思路; 2)详细描述程序所用数据结构及算法; 3)明确给出测试用例和实验结果; 4)为增加程序可读性,在程序中进行适当注释说明; 5)认真进行实验总结,包括:设计中遇到的问题、解决方法与收获等;

6)实验报告撰写要求结构清晰、描述准确逻辑性强; 7)实验过程中,同学之间可以进行讨论互相提高,但绝对禁止抄袭。 ⒎本实验的重点、难点及教学方法建议 重点:理解进程调度中PCB的设计,以实现对进程的调度。 难点:进程调度程序的设计,设备管理程序的设计。 教学方法建议:力争在本指导书的帮助下,独立设计程序以加深理解。

操作系统实验一

本科实验报告 课程名称:操作系统 学号: 姓名: 专业: 班级: 指导教师: 课内实验目录及成绩 信息技术学院

实验(实验一) 1 实验名称:基本shell命令及用户管理 2 实验目的 2.1 掌握安装Linux操作系统的方法。 2.2 掌握Linux操作系统的基本配置。 2.3 了解GNOME桌面环境。 2.4 掌握基本shell命令的使用。 3 实验准备 3.1 下载VMware Workstation虚拟机软件(版本不限)。 3.2 准备Linux操作系统的安装源(内核版本和发行版本均不限)。 注:实验准备、实验内容4.1和4.2作为回家作业布置,同学们利用课余时间可在私人计算机上完成。 4 实验要求、步骤及结果 4.1 安装虚拟机软件。 【操作要求】安装VMware Workstation虚拟机软件,并填写以下4.1.1和4.1.2的内容。 4.1.1【VMware Workstation虚拟机版本号】 4.1.2【主要配置参数】 4.2 安装Linux操作系统。 【操作要求】安装Linux操作系统,版本不限。 Linux发行版本: Linux内核版本:

【主要操作步骤:包括分区情况】 1、创建一台虚拟机安装操作系统时客户机操作系统选择Linux 2、修改虚拟机的安装路径。 3、建一个新的虚拟磁盘,磁盘的空间20GB,并且将单个文件存储虚拟磁盘。 4、设置分区完毕,安装虚拟机 4.3 了解Linux操作系统的桌面环境之一GNOME。 【操作要求】查看桌面图标,查看主菜单,查看个人用户主目录等个人使用环境。【操作步骤1】桌面图标

【操作步骤2】主菜单 【操作步骤3】个人用户主目录 【操作步骤4】启动字符终端

操作系统实验报告

操作系统实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

许昌学院 《操作系统》实验报告书学号: 姓名:闫金科 班级:14物联网工程 成绩: 2016年02月

实验一Linux的安装与配置 一、实验目的 1.熟悉Linux系统的基本概念,比如Linux发行版、宏内核、微内核等。 2.掌握Linux系统的安装和配置过程,初步掌握Linux系统的启动和退出方 法。 3.熟悉Linux系统的文件系统结构,了解Linux常用文件夹的作用。 二、实验内容 1.从网络上下载VMware软件和两个不同Linux发行版镜像文件。 2.安装VMware虚拟机软件。 3.在VMware中利用第一个镜像文件完成第一个Linux的安装,期间完成网络 信息、用户信息、文件系统和硬盘分区等配置。 4.在VMware中利用第二个镜像文件完成第二个Linux的安装,并通过LILO或 者GRUB解决两个操作系统选择启动的问题。 5.启动Linux系统,打开文件浏览器查看Linux系统的文件结构,并列举出 Linux常用目录的作用。 三、实验过程及结果 1、启动VMware,点击新建Linux虚拟机,如图所示: 2、点击下一步,选择经典型,点击下一步在选择客户机页面选择 Linux,版本选择RedHatEnterpriseLinux5,如图所示: 3、点击下一步创建虚拟机名称以及所要安装的位置,如图所示: 4、点击下一步,磁盘容量填一个合适大小,此处选择默认值大小 10GB,如图所示: 5、点击完成,点击编辑虚拟机设置,选择硬件选项中的CD-ROM (IDE...)选项,在右侧连接中选择“使用ISO镜像(I)”选项,点 击“浏览”,找到Linux的镜像文件,如图所示:

操作系统实验

《操作系统》 实验指导书 班级:0 9专升本(2)班学号:20091105 姓名: 宿州学院计算机科学与技术系 2010-06

目录 实验一进程调度 (1) 实验二银行家算法 (3) 实验三虚拟存储管理 (5) 实验四磁盘调度算法 (6) 要求:(说明,看后删除!) 1、四个实验均需要写; 2、“实验目的”—“实验结论”的格式均已经 写好,可以进行增删及修改。学生需要根据 “实验内容”独立完成相应的“算法设计” 部分,并将代码粘贴在这部分;其中“测试 实例”部分,学生自己进行测试实例的选取, 程序运行的结果需要附上相应的窗口截图, 以验证结果。 3、实验报告书,写好之后自行打印装订,于17 周前(这周为13周)交给学习委员,学习委 员统一上交。 实验一进程调度

实验目的 进程调度是处理机管理的核心内容。本实验要求用C语言编写和调试一个简单的进程调度程序。通过本实验可以加深理解有关进程控制块、进程队列的概念,并体会和了解优先数和时间片轮转两种调度算法结合使用的具体实施办法。本实验的设计思想是,先从就绪队列里选择最高优先数的进程投入运行,运行一个时间片,若执行完毕,进入完成状态;否则重新在就绪队列中选择新进程。 实验设备 ⑴ PC兼容机 ⑵ Windows、DOS系统 ⑶TC语言 实验内容和要求 ⑴设计进程控制块PCB表结构,每个进程有一个进程控制块(PCB)表示。考虑到本实验仅演示优先数调度算法和时间片轮转调度算法,进程控制块作简单化处理,只包含如下信息:进程标识(ID)、优先数(PRIORITY)、需要运行时间(ALLTIME)、已用CPU时间 ⑵进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。 ⑶每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。就绪进程获得CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。 每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的PCB,以便进行检查。 输出内容参照格式: 输出运行进程和就绪队列 RUNNING PROG: ID0 READY_QUEUE:->id1->id2 输出各PCBi,格式为 ID:Idi(0≤i≤4) PRIORITY:xx CPUTIME:xx ALLTIME:xx STATE:xx ⑷重复以上过程,直到所要进程都完成为止。

操作系统原理实验五

实验五线程的同步 1、实验目的 (1)进一步掌握Windows系统环境下线程的创建与撤销。 (2)熟悉Windows系统提供的线程同步API。 (3)使用Windows系统提供的线程同步API解决实际问题。 2、实验准备知识:相关API函数介绍 ①等待对象 等待对象(wait functions)函数包括等待一个对象(WaitForSingleObject ())和等待多个对象(WaitForMultipleObject())两个API函数。 1)等待一个对象 WaitForSingleObject()用于等待一个对象。它等待的对象可以为以下对象 之一。 ·Change ontification:变化通知。 ·Console input: 控制台输入。 ·Event:事件。 ·Job:作业。 ·Mutex:互斥信号量。 ·Process:进程。 ·Semaphore:计数信号量。 ·Thread:线程。 ·Waitable timer:定时器。 原型: DWORD WaitForSingleObject( HANDLE hHandle, // 对象句柄 DWORD dwMilliseconds // 等待时间 ); 参数说明: (1)hHandle:等待对象的对象句柄。该对象句柄必须为SYNCHRONIZE访问。 (2)dwMilliseconds:等待时间,单位为ms。若该值为0,函数在测试对象的状态后立即返回,若为INFINITE,函数一直等待下去,直到接收到 一个信号将其唤醒,如表2-1所示。 返回值: 如果成功返回,其返回值说明是何种事件导致函数返回。

Static HANDLE hHandlel = NULL; DWORD dRes; dRes = WaitForSingleObject(hHandlel,10); //等待对象的句柄为hHandlel,等待时间为10ms 2)等待对个对象 WaitForMultiple()bject()在指定时间内等待多个对象,它等待的对象与 WaitForSingleObject()相同。 原型: DWORD WaitForMultipleObjects( DWORD nCount, //句柄数组中的句柄数 CONST HANDLE * lpHandles, //指向对象句柄数组的指针 BOOL fWaitAll, //等待类型 DWORD dwMilliseconds //等待时间 ); 参数说明: (1)nCount:由指针 * lpHandles指定的句柄数组中的句柄数,最大数是MAXIMUM WAIT OBJECTS。 (2)* lpHandles:指向对象句柄数组的指针。 (3)fWaitAll:等待类型。若为TRUE,当由lpHandles数组指定的所有对象被唤醒时函数返回;若为FALSE,当由lpHandles数组指定的某一个 对象被唤醒时函数返回,且由返回值说明是由于哪个对象引起的函数 返回。 (4)dwMilliseconds:等待时间,单位为ms。若该值为0,函数测试对象的状态后立即返回;若为INFINITE,函数一直等待下去,直到接收到 一个信号将其唤醒。 返回值:、 如果成功返回,其返回值说明是何种事件导致函数返回。 各参数的描述如表2-2所示。

相关文档
最新文档