单壁板桩围堰设计计算书_secret

单壁板桩围堰设计计算书_secret
单壁板桩围堰设计计算书_secret

单壁板桩围堰设计计算书

依据《深水基础工程》(殷万寿编著)和《建筑基坑支护技术规程》(JGJ120-99)。

1.地质勘探数据如下:

——————————————————————————————————————————————

序号 h(m) (kN/m3) C(kPa) (°) m(kN/m4) 计算方法 土类型 1 5.00 19.00 16.00 27.00 35000 水土合算 填土 2 5.00 19.00 16.00 27.00 35000 水土合算 填土 3 5.00 19.00 16.00 27.00 35000 水土合算 填土

——————————————————————————————————————————— 表中:h 为土层厚度(m),为土重度(kN/m3),C 为内聚力(kPa),为内摩擦角(°)。

基坑内侧水标高-9.30m 。

2.基本计算参数:

土层上部标高0.00m ,基坑坑底标高-9.30m ,

支撑分别设置在标高-2.00m 、-5.00m 处,

计算标高分别为-2.50m 、-5.50m 、-9.30m 处。

侧壁重要性系数1.00。

桩墙顶标高0.00m ,

桩墙嵌入深度5.70m ,

桩墙计算宽度1.00m 。

3.地面载荷:

————————————————————————————————————————— 序号 布置方式 作用区域 标高m 荷载值kPa 距基坑边线m 作用宽度m 1 均布荷载 基坑外侧 0.00 20.00 -- -- 2 均布荷载 基坑外侧 0.00 20.00 -- -- —————————————————————————————————————————

4.水层计算参数:

水层上标高为5.00m ,下标高为0.00m 。

水层重度为9.80kN/m 3;水层厚度为5.00m 。

钢板桩围堰设计计算中不考虑波浪力的影响!

一、第一阶段,挖土深2.50m ,挡土桩(墙)呈悬臂状,计算过程如下:

0.00

-2.50

-5.00

13.81 31.65

20.57 129.22

第1阶段主动、被动水土压力合力图

1.作用在板桩(墙)的水层压力分布:

水层上部标高5.00m,下部标高0.00m。

E w上 = 0;

E w下 = 9.80×5.00 = 49.00 kN/m2

所以,水层对土层的作用力等同于土层上作用49.00 kN/m2的均布荷载。

以下将主要对土压力部分进行验算。

水层对板桩(墙)的作用合力以及对水、土层界面处的作用力矩为:

合力 E w = (0.00+9.80×5.00)×5.00/2 =122.50 kN/m;

合力作用点位置 5.00/3 = 1.67 m;

合力矩 M w = (0.00+9.80×5.00)×5.00/2 ×5.00/3 = 204.17 kN.m/m

2.作用在桩(墙)的主动土压力分布:

第1层土上部标高0.00m,下部标高-2.50m

E a1上 = (19.00×0.00+89.00)×tg2(45-27.00/2)-2×16.00×tg(45-27.00/2) = 13.81kN/m2

E a1下 = (19.00×2.50+89.00)×tg2(45-27.00/2)-2×16.00×tg(45-27.00/2) = 31.65kN/m2

第2层土上部标高-2.50m,下部标高-5.00m

E a2上 = (19.00×2.50+19.00×0.00+89.00)×tg2(45-27.00/2)-2×16.00×

tg(45-27.00/2)

= 31.65kN/m2

E a2下 = (19.00×2.50+19.00×2.50+89.00)×tg2(45-27.00/2)-2×16.00×

tg(45-27.00/2)

= 49.49kN/m2

3.作用在桩(墙)的被动土压力分布:

第2层土上部标高-2.50m,下部标高-5.00m

E p2上 = (19.00×0.00)×tg2(45+27.00/2)+2×16.00×tg(45+27.00/2)

= 52.22kN/m2

E p2下 = (19.00×2.50)×tg2(45+27.00/2)+2×16.00×tg(45+27.00/2)

= 178.70kN/m2

4.土压力为零点距离坑底距离d的计算:

桩的被动、主动土压力差值系数为:

B = ((178.70-52.22)-(49.49-31.65))/2.50=43.46kN/m3

d = 0.00 = 0.00m

5.D点以上土压力对D点的力矩与合力计算:

D点以上土压力对桩(墙)土压力的合力:

E a = (13.81+31.65)×2.50/2.0

= 56.83kN/m

D点以上土压力对D点的力矩(梯形转为矩形与三角形计算):

M a = 13.81×2.50×(0.00+2.50/2.0)+(31.65-13.81)×2.50/2.0×(0.00+2.50/3.0) = 61.74kN.m/m

6.悬臂桩嵌入D点以下距离t的计算:

合力E a到D点的距离:

y = 61.74/56.83 = 1.09m

D点处桩(墙)的主动土压力(不计地面荷载):

E aD = (19.00×2.50)×tg2(45-27.00/2)-2×16.00×tg(45-27.00/2)

= -1.77kN/m(取0.0kN/m)

D点处桩(墙)的被动土压力(不计地面荷载):

E pD = (19.00×2.50)×tg2(45+27.00/2)+2×16.00×tg(45+27.00/2)

= 178.71kN/m

距离t联立方程的系数分别为:

C3 = (178.71-0.00)/43.46 = 4.11

C2 = -8×56.83/43.46 = -10.46

C1 = -6×56.83×(2×1.09×43.46+178.71-0.00)/43.462 = -49.37

C0 = -(6×56.83×1.09×(178.71-0.00)+4×56.832)/43.462 = -42.01 一元四次方程为:

t4+4.11t3-10.46t2-49.37t-42.01 = 0.0

解一元四次方程,得 t = 3.78m

桩(墙)需要的总长度为:

L = 2.50+0.00+1.20×3.78 = 7.04m

7.最大弯矩的计算:

而经过积分运算得到

最大正弯矩M umax= 0.00kN.m/m,发生在标高0.00m处;

最大负弯矩M dmax= -102.59kN.m/m,发生在标高-3.69m处。

考虑到桩(墙)的计算宽度为1.00m

最大正弯矩M umax=1.00×0.00=0.00kN.m,发生在标高0.00m处;

最大负弯矩M dmax=1.00×-102.59=-102.59kN.m,发生在标高-3.69m处;

二、第二阶段,挖土深5.50m,支撑分别设置在标高-2.00m处,计算过程如下:

钢板桩围堰设计计算书

钢板桩围堰设计计算书 1 工程概况 本方案陆地承台基坑开挖深度在3.0-5.0米之间,基坑开挖支护结构受力计算选择基坑最深、地质条件最差的最不利工况条件下进行受力计算。 本线路沿线地层以冲积、洪积、海积及海陆交互相沉积的粘性土、粉土、各类砂、软土为主,局部夹淤泥。 土层分层计算土压力,粘性土和粉土采用总应力法,即水土合算,强度指标采用快剪试验指标;对中、粗砂、碎石土,则应采用水土分算。 承台开挖高程范围内主要为人工填土、黏土、粉土,局部夹有淤泥质黏土,各土层已知条件:(1)人工填土:内摩擦角7?=?,粘聚力8kPa c =;(2)粘土:内摩擦角14?=?,粘聚力25kPa c =;(3)粉土:内摩擦角22?=?,粘聚力12kPa c =;(4)砂土:内摩擦角32?=?,粘聚力0kPa c =。土的天然重度γ取3 19kN/m 。非承压地下水位在地面下0.2~5.5处(承压水位不明)。 2 钢板桩围堰支撑结构受力计算 2.1钢板桩围堰 钢板桩围堰基坑开挖最大深度为5.0米,此类基坑承台最大高度为4.0米,设一道内支撑位于基坑底面以上3米,计算钢板桩围堰受力情况。 结合现场现有材料,拟采用WRU12a 钢板桩,其技术指标为:

单根钢板桩宽B=600mm,高H=360mm,厚t=9mm,每米截面积A=147.3cm2,单根钢板桩每米的重量69.5kg,每延米墙身每米的重量115.8kg,每延米墙身钢板桩惯性矩Ix=22213cm4,每延米的截面模量(抵抗矩)Wx=1234cm3,取钢板桩的允许拉应力σ=140Mpa,允许剪应力τ=80 Mpa。钢板桩长12m。由于钢板桩刚度较小,需加强内支撑。拟设置一道水平钢支撑,在距承台底面3.0m处设置,不设竖向支撑。水平钢支撑采用I40b型工字钢,沿钢板桩内壁设置长方形围檩,并在四角设置加强斜撑。 考虑施工堆载,假设基坑顶部(地面)作用有无限均布荷载q1=10kN/m2;在桩顶平台距离钢板桩桩顶2.0m处的坑外作用有宽度为0.6m的局部荷载(汽车荷载及其它荷载总和)q2=80kN/m2。 2.2计算作用于板桩上的土压力强度 依据《建筑基坑支护技术规程》(JGJ 120—99)第3.4~3.5节,计算土压力(水 平荷载及水平抗力)分布。土压力由四部 分组成:(1) 桩顶平台以下土自重引起; (2) 局部荷载(汽车荷载)q2=80kN/m2 引起;(3) 均布荷载q1=10kN/m2引起。 对人工填土、黏土及粉土地层,采 用水土和算法进行计算,在桩顶下2.0m 处设置一道内支撑,计算可得土压力分 布如右图所示。

300KW发电机用电方案计算书_secret

300KW发电机用电方案计算书 一、编制依据 《低压配电设计规范》GB50054-95 《建筑工程施工现场供电安全规范》GB50194-93 《通用用电设备配电设计规范》GB50055-93 《供配电系统设计规范》GB50052-95 《施工现场临时用电安全技术规范》JGJ46-2005 《建筑施工安全检查标准》JGJ59-99 二、施工条件 施工现场用电量统计表: 三、设计内容和步骤 1、现场勘探及初步设计: (1)现场采用380V低压供电,设一配电总箱,内有计量设备,采用TN-S系统供电。 (2)根据施工现场用电设备布置情况,总箱进线采用电缆线架空线路敷设,用电器导线采用空气明敷。布置位置及线路走向参见临时配电系统图及现场平面图,采用三级配电,三级防护。 (3)按照《JGJ46-2005》规定制定施工组织设计,接地电阻R≤4Ω。 2、确定用电负荷:

(1)、竖井提升机 K x = 0.30 Cosφ = 0.6 tgφ = 1.33 P js = K x×P e =0.30×55.2 = 16.56kW Q js = P js× tgφ=16.56×1.33 = 22.02 kvar (2)、空压机 K x = 0.7 Cosφ = 0.70 tgφ = 1.02 P js = 0.75×75 = 52.5 kW Q js = P js× tgφ=52.5×1.02 = 53.55 kvar (3)、空压机 K x = 0.7 Cosφ = 0.80 tgφ =0.75 P js = 110×0.7 = 77kW Q js = P js× tgφ=77×0.75 = 57.75 kvar (4)、蒸发器 K x = 1.00 Cosφ =1.00 tgφ = 0.00 P js = 1.00×24= 24kW Q js = P js× tgφ=24×0.00= 0.00 kvar (5)、电焊机 K x = 0.45 Cosφ = 0.7 tgφ = 1.02 P js = 0.45×5×13.06 = 30.06 kW Q js = P js× tgφ=30.06×1.02 = 31.21 kvar (6)、照明灯 K x = 0.8 Cosφ = 0.8 tgφ = 0.00 P js = 3×0.8 = 2.4kW Q js = P js× tgφ=2.4×0.00 =0.00 kvar (8)总的计算负荷计算,总箱同期系数取 Kx = 0.9 总的有功功率 P js = K x×ΣP js = 0.9×(16.56+52.5+77+24+30.06+2.4) = 182.27 kW 总的无功功率 Q js = K x×ΣQ js =0.9×(22.02+53.55+57.75+0.00+31.21+0.00) = 148.08 kvar

[学士]道勘标准设计计算书_secret

目录 1 设计总说明书 (2) 1.1设计概述 (2) 1.1.1 任务依据 (2) 1.1.2 设计标准 (2) 1.1.3 路线起讫点 (2) 1.1.4 沿线自然地理概况 (2) 1.1.5 沿线筑路材料等建设条件 (2) 1.2路线 (2) 1.3横断面设计 (3) 1.3.1 路基横断面布置: (3) 1.3.2 加宽、超高方式 (3) 1.3.3 路基施工注意事项: (3) 1.3.4 排水 (4) 2 平面设计 (4) 2.1公路等级的确定 (4) 2.2设计行车速度的确定 (4) 2.3选线设计 (4) 2.4平面线形的设计 (7) 3 纵断面设计 (10) 3.1纵坡设计 (10) 3.2竖曲线设计 (10) 4 横断面设计 (14) 4.1.路幅的宽度及路拱的确定 (14) 4.2超高,加宽的确定及值的计算 (14) 4.3土石方量的计算 (16) 4.4土石方的调配及路基设计表 (16) 5设计总结 (16) 主要参考文献: (17)

道路勘测设计说明书 1 设计总说明书 1.1 设计概述 1.1.1 任务依据 根据南阳理工学院土木工程专业道路工程方向《道路勘测设计任务书》。 1.1.2 设计标准 1、根据设计任务书要求,本路段按2级公路技术标准勘察、设计。设计车速为60Km/小时,路基单幅双车道,宽8.5米。 2、设计执行的部颁标准、规范有: 《公路工程技术标准》JTGB01-2003 《公路路线设计规范》JTJ011-94 《公路路基设计规范》JTJ013-95 1.1.3 路线起讫点 本路段起点A:K0+000为所给地形图坐标(4146,3956),终点B:K1+347.1为所给地形图坐标(4560,2784),全长1.3471公里。 1.1.4 沿线自然地理概况 该工程位于河南省境内,公路自然区划为XX。整个地形、地貌特征平微区,地形起伏不大,最高海拔高为326米,河谷海拔高为294米,总体高差在2米左右。 1.1.5 沿线筑路材料等建设条件 沿线地方材料有:碎石、砾石、砂、石灰、粉煤灰等。其他材料如沥青、水泥、矿粉需到外地采购。 1.2 路线 本路段按二级公路标准测设,设计车速60KM/h,测设中在满足《公路路线设计规范》及在不增加工程造价的前提下,充分考虑了平、纵、横三方面的优化组合设计,力

大桥钢板桩围堰设计及计算书

***大桥8#、9#墩承台钢板桩围堰设计计算书 1、工程概况 ***资水大桥是***至***公路工程中横跨资水的一座大桥,桥梁上部结构设计采用(6×30m)先简支后连续T梁+(58+95+95+58m)现浇变截面混凝土连续梁+(5×30m)先简支后连续T梁结构;主桥下部结构采用钢筋混凝土矩形门式桥墩,钻孔灌注桩基础,主墩墩身顺桥向宽为2.6m,横桥向为2个2.4m宽的墩柱,主墩承台厚度为3.5m,平面尺寸为11×9m,基桩采用直径Φ2.0m钻孔灌注桩。桥面宽度:2.5 m(人行道)+0.5m(路缘带)+10.75m(车行道)+0.5m(双黄线)+10.75m(车行道)+0.5m(路缘带)+2.5m(人行道)=28m,分两幅修建,桥梁中心桩号K5+873,桥梁全长为644m。 ***资水大桥设计洪水频率1/100,设计水位+179.4m,十年一遇洪水水位+172m,施工常水位+164m,近5年12月至4月最高水位+168m。8#、9#主墩基础位于资水河道内,主墩承台施工采用钢板桩围堰法,围堰考虑能满足在+168m 水位下施工。 2、计算依据 《钢结构设计规范》(GB50017-2014) 《简明深基坑工程设计施工手册》 《简明施工计算手册》 《***资水大桥施工图设计》 《***资水大桥工程地质纵断面》 《***资水大桥钻孔柱状图》 3、***资水大桥8#、9#墩钢板桩围堰检算 3.1围堰结构概况 8#、9#墩单个承台尺寸均为11m(横桥向)×9m(顺桥向)×3.5m(高度),下为4根Φ2.0m钻孔桩,桩基施工采用Φ2.4m钢护筒。承台施工采用钢板桩围堰法,钢板桩采用国产拉森Ⅳ型钢板桩,材质为SY295。 8#墩承台底标高为+161.498,顶标高为+164.998。钢板桩单根长度为9m,围堰平面尺寸为30×12m(考虑围堰四周各有1.5m操作及安装模板空间,双幅桥

双壁钢围堰计算书

双壁钢围堰施工及计算1、概述 围堰所处的地理环境水文地质资料 2、钢围堰结构尺寸拟定

3、钢围堰重量计算 3.1 钢板 围堰钢板: 178.512(1210.38)40.006506.0G s kN γδ==??+??= 隔舱钢板: 278.512 1.280.00654.3G s kN γδ==????= 3.2角钢 竖肋角钢: 310.0918012194.4G l k kN =?=??= 横肋角钢: 420.0944.761248.3G l k kN =?=??= 弦杆角钢: 530.09 1.231290119.6G l k kN =?=???=

3.3 灌水和混凝土 围堰壁间混凝土重量: 62544.76(5 1.2 1.6 1.2/2)5639.8G V kN γ==???-?= 加水(4m )重量: 710444.76 1.22148.5w G V kN γ==???= 钢围堰总重: 12345678710.9G G G G G G G G kN =++++++= 4、封底混凝土厚度计算 假设封底混凝土厚度为h , 围堰外壁所围面积: 2253.132 3.14 6.2910.416 4.85360 S m ?= ??+?=外 围堰内壁所围面积: 2253.132 3.14598118.34360 S m ?= ??+?=内 围堰内抽水后围堰浮力: =110164.8510.517309.3F gsh kN ρ=???=浮 有G G F +≥浮封 17309.38710.9 2.9125118.34 F G h m S γ--= ==?浮内 封底混凝土厚度取3m 。 5、水流方向围堰受力分析

管网设计计算书_secret

目录 第一章给水管网用水量计算一.最高日生活用水量 二.水压 三.清水池容积 第二章给水管网流量计算 一.长度比流量 二.沿线流量 三.节点流量 第三章管网平差及校核 一.最高时用水管网平差及校核 二.事故时管网平差及校核 三.消防时管网平差及校核 第四章水泵的选择 一.水泵选择原则 二.水泵流量和扬程 第一章给水管网用水量计算 一.最高日生活用水量 1)居民生活用水量(用水普及率为90﹪) Q1=N*q1*f=(3+1.2)*104*0.9*0.12=4536 m3/d

式中:q1——最高日用水量标准(0.12 m3/人·d) N——居住区人口数(cap) f—用水普及率 (2)大用户生产用水量 Q2=2000+1200*3+400*2+300*3+200=7300m3/d (3)大用户职工生活用水量(取生活用水定额25L/cap.班,淋浴定额为40L/cap.班) Q3=25*(300+1500+1000+1200+50)/1000+40*(1500/2+1000/2+1200/2)/10 00=175.25m3/d (4)浇洒道路和绿化用水Q4(喷洒道路:q1=1.2L/次·m2,n=3次;绿化:q2=1.8L/d·m 2) Q4 =1.2*3*200000+1.8*300000=1260000L3/d=1260m3/d (5)公共事业用水Q5 公共事业供水取居民生活用水的30%。Q5=0.3 *Q1=1360.8 m3/d (6)未预见用水量及管网漏水量按最高日的20﹪计。 (7)最高日用水量 Qd=1.20(Q1+Q2+Q3+Q4+Q5)=1.2*(4536+7300+175.25+1260+1360.8)=17558.46m3/d 二.水压 由于该开发区内的建筑物的层数都为6层,所以自由水压=4*(n+1)=28m 四.清水池容积 V清=V消防+V自用+V调节+V安全 由于缺乏该城市综合生活每小时用水量占最高日用水量百分比的情况的资料,所按照经验发取值,V调节=10%Qd=1755.846 m3。 该开发区规划人口为4.2万人,查《给水排水设计手册》,确定同一时间内的火灾次数为两次,一次灭火用水量为25L/s,火灾延续时间内所需总水量V消防=2*25*3.6*2.0=360 m3。 水厂自用水量调节容积按最高日用水设计用水量的5%计算,则V自用=5%Qd=877.923m3。 清水池的安全储备V安全=1/6(V调+V消+V自)=498.96 m3。 V清=V消防+V自用+V调节+V安全=3492.73 考虑到部分安全调节容积,取清水池的有效容积为4000 m3。 第二章给水管网流量计算

基坑支护(钢板桩)设计及计算书

目录 1 计算依据 (1) 2 工程概况 (1) 3 地质情况 (1) 4 设计施工方案概述 (1) 5 围堰结构计算 (2) 5.1 设计计算参数 (2) 5.1.1材料设计指标 (2) 5.1.2单元内支撑支撑刚度计算 (3) 5.1.3单元内支撑材料抗力计算 (3) 5.1.4 设计安全等级 (4) 5.2 拉森钢板桩封闭支护结构设计分析 (4) 5.2.1 开挖过程结构分析 (4) 5.2.2 拉森钢板桩单元计算分析结果 (4) 5.2.3 内支撑应力和变形计算 (18) 5.2.4支护结构强度验算 (19) 5.2.4 支撑型钢强度、稳定性验算 (23)

基坑拉森钢板桩围堰设计及计算书 1 计算依据 1.2 《特大桥承台基坑拉森钢板桩围堰设计图》; 1.3 《建筑施工计算手册》; 1.4 《钢结构设计规范》(GB500017-2003); 1.5 《理正深基坑软件7.0版》; 1.6 《基坑工程设计规程》(DBJ08-61-97) 1.7 《建筑基坑支护技术规程》(JGJ120-2012) 1.8 《建筑基坑工程技术规范》(YB9258-97) 2 工程概况 桥址处为荒地、民房,地势平坦,交通便利。根据现场调查,特大桥1#承台施工为最不利基坑,承台尺寸为4.85×5.7×2m,开挖后深度4.209m。 3 地质情况 根据工程地质勘测报告,承台处的地质情况如表1。 表3-1 承台地质情况 取样 编号厚度(m)名称 重度 (kN/m3) 粘聚力 (Kpa) 摩擦角(。) 侧摩阻力 (Kpa) 1 1.25 杂填土17.7 11.00 7.20 30.0 2 4.25 淤泥质土17. 3 13.00 6.00 22.0 3 6.20 粉砂18.0 45.00 --- 40.0 4 4.60 粘性土19.8 49.00 --- 65.0 5 21.60 粉砂19. 6 47.00 --- 70.0 4 设计施工方案概述 使用9m拉森Ⅳ钢板桩对基坑进行封闭支护,钢围檩设于承台顶标高以上1.509m,钢板桩顶往下1m处,围檩采用H400×400×13×21mm型钢,围檩长边下方设置不少于3个牛腿,上方采用直径8mm钢丝绳兜吊在拉伸钢板桩上,斜角撑采用H400×400×13×21mm型钢,斜撑两端与围檩型钢焊接牢固。基坑尺寸控制原则为自承台外轮廓外扩1.2m,为保证承台模板与钢筋的顺利施工,围檩斜角撑的位置应避免阻碍模板与钢筋的吊装施工。

围堰计算(最终)-2

围堰安全专项施工方案施工计算书 计算: 校对: 复核: 2012年1月5日

拉森板桩围堰计算 介绍 对于水中拉森板桩围堰的计算,我们采用了迈达斯专业计算软件。 第一节、结构形式描述 根据设计形式,主桥中墩5#、6#在水中,计划采用拉森板桩围堰进行封闭施工。钢板桩围堰为方形,内轮廓平面尺寸52.0×11.0m ,高22m ,顶标高+3.5m ,入土12.9m ,设3道内支撑,封底厚度1.0m 。 钢板桩采用拉森Ⅵ型,围檩主梁第1道采用2I45b 、第2道及第3道采用2I63a 型钢梁,内支撑采用Φ630*8mm 钢管。 第二节、主要数据及相关参数 围堰用钢板桩为日本产SKSP-SX27型,即拉森Ⅵ型高强度钢板桩,单根宽度60cm ;截面参数如下表: 钢板桩结构 型号 (宽度×高度) 有效宽 W1 mm 有效高 H1 mm 腹板厚 t mm 单根材 每米板面 截面 面积 cm 2 理论 重量 kg/m 惯性距 Ix cm 4 截面 模量 Wx cm 3 截面 面积 cm 2 理论 重量 kg/m 2 惯性距 Ix cm 4 截面 模量 Wx cm 3 600×210 600 210 18.0 135.3 106 8630 539 225.5 177.0 56700 2700 钢板桩的机械性能如下表: 标准号 牌号 机械性能,不小于 屈服强度(N/mm 2) 抗拉强度(N/mm 2) 延伸率(%) JIS A 5528 SY295 295 490 17 根据钢板桩的进厂检验报告,试验屈服强度在380~405 N/mm2间。

钢板桩插打设备为美国ICE公司的28C-350E液压振动锤,锤宽30cm,设备自带动力,由振动锤和动力站两大部分组成,最大可提供116t的击震力和71t 的拔桩拉力。 28C-350E液压振动锤 第三节、主要计算 1、钢板桩围堰布置 主墩基础施工拟采用钢板桩围堰法。钢板桩采用拉森Ⅵ型钢板桩,材质SY295,单根长度为22m,围堰平面尺寸为52.0×11.0m,共设置三道内支撑。围堰顶高程为+3.5m,围堰底高程为-18.5m,承台底高程为-10m,封底混凝土厚1m。 2、钢板桩围堰施工步骤 (1)钻孔桩施工结束后打设围堰导向架及围堰施工平台,在靠近承台侧定位桩上焊接牛腿,安装第一道内支撑作为钢板桩插打导向围檩; (2)依次插打钢板桩至合拢; (3)围堰内抽水至-3.4m,在-2.4m处安装第二道内支撑; (4)围堰内抽水至河床底并挖土至-7.3m,在-6.3m处安装第三道内支撑; (5)第三道内支撑安装后采用挖掘机配合吊斗及人工,将围堰内基坑底面干挖清理至-11.0m; (6)搭设封底施工平台,采用泵车浇筑封底砼; (7)凿除桩头,施工承台; (8)承台模板拆除后,向钢板桩与承台间间回填细砂并在顶部浇注40cm厚

设计计算书(可打印)_secret

第二部分设计计算书

目录 1 坝顶高程确定 (1) 1.1 计算超高Y (1) 1.1.1 计算波浪爬高R (1) 1.1.2 计算坝前壅水位的高度e (2) 1.1.3 安全加高A (2) 1.1.4 对于正常运行情况的计算 (2) 1.1.5 对于非常运用情况的计算 (3) 1.1.6 超高计算结果表 (4) 1.1.7 坝顶高程计算结果表 (4) 2 土坝的渗透计算 (5) 2.1 参数取值 (6) 2.2 计算公式 (6) 2.3 浸润线绘制 (7) 2.3.1 I断面(170m高程): (7) 2.3.2 II断面(200m高程) (8) 2.3.3 III断面(230m高程) (9) 2.4 全坝长的总渗流量 (10) 3 稳定计算 (11) 3.1 计算方法与原理 (11) 3.1.1 确定定圆心位置 (11) 3.2.2 计算步骤 (12) 3.2 计算过程 (14) 3.3稳定成果分析 (17) 4 泄水隧洞 (18) 4.1 工程布置及洞径确定 (18) 4.1.1 工程布置 (18) 4.1.2 洞径确定 (18)

4.2 高程确定 (19) 4.3 隧洞设计 (19) 4.3.1 平压管 (19) 4.3.2 通气孔 (20) 4.3.3 渐变段 (21) 4.3.4 洞身段 (21) 4.3.5 出口段 (22) 4.3.6 消能设置 (22) 4.3.7 消能计算、 (22) 4.3.8 水力计算 (25) 4.4 隧洞的衬砌设计 (26) 4.4.1 衬砌类型的选择 (26) 4.4.2 计算断面的选择 (27) 4.4.3 拟定厚度 (27) 4.4.4 计算各种荷载产生的内力 (27) 4.4.5 荷载组合 (30) 4.4.6 配筋计算抗裂验算 (31) 4.4.7 灌浆孔布置 (31)

钢板桩围堰计算书

津石高速公路(海滨大道-荣乌高速)工程第八标段围堰结构 检算报告 中铁四局集团有限公司设计研究院 2019年4月

津石高速公路(海滨大道-荣乌高速)工程第八标段围堰结构 检算报告 计算: 复核: 审核: 中铁四局集团有限公司设计研究院 建筑行业甲级铁道行业甲(Ⅱ)级市政行业甲级 二〇一九年四月

目录 一、项目概况 (1) 二、水文地质条件 (1) 三、计算依据 (3) 四、材料参数 (4) 五、围堰工况介绍 (4) 六、围堰计算 (5) 1、外侧围堰计算 (5) 2、内侧围堰计算 (12) 七、结论及建议 (18) 1、结论 (18) 2、注意事项 (19)

一、项目概况 津石高速公路是连接南部港区通往石家庄方向的重要通道,路线主线起自滨海新区南港工业区桩号K0+000,接已建的海滨大道及南港工业区港北路,经大港电厂南、东台子,止于西青区小张庄附近,接已建的津石高速和长深高速共线段桩号K36+500,全长约31.3公里。全线在南港工业区、大港油田、东台子、小张庄4处设置互通式立交。 本标段起点桩号为K29+730,路线沿独流减河北堤后侧台布设,跨越长深高速并设置小张庄互通立交,终点桩号为K31+150,路线长1420m。 本互通立交主线设计速度采用100Km/h,A、B、E、F匝道设计速度采用60Km/h,C、D匝道设计速度采用40 Km/h;主线为双向四车道,标准路基宽度27.5m;B、E匝道为单向单车道,标准路基宽度9m;A、C、D、F匝道为单向双车道,标准路基宽度10.5m。 其中A、F匝道位于独流减河河道中,河道水位标高为2.8m,本工程中钢板桩围堰是为了阻隔河水,以进行项目施工。 本工程钢板桩围堰位于独流减河中河水深度1m~5.2m,围堰采用12m双排钢板桩从河岸打设到河中央滩涂位置,上游、下游各打设一道,上、下游距离272m,每道长度360m,每道采用间距为4m的双排钢板桩形式,两排钢板桩中间抽2.5m水,保持内、外侧钢板桩水位差,确保钢板桩稳定。双排钢板桩围堰示意图见图1-1。 河面 内侧外侧 图1-1 双排钢板桩围堰示意图 二、水文地质条件

幕墙设计计算书_secret

合肥某公寓 设 计 计 算 书 计算: 校核: 审核: 二〇一〇年十二月十二日

目录 第一部分、计算书........................................................................................... 错误!未定义书签。

第一部分、墙角区石材幕墙 一、计算依据及说明 1、工程概况说明 工程名称:合肥某公寓 工程所在城市:合肥 工程所属建筑物地区类别:C类 工程所在地区抗震设防烈度:6度 工程基本风压:0.35kN/m2 工程强度校核处标高:13m 2、设计依据 《建筑结构荷载规范》 GB 50009-2001 (2006年版)《建筑设计防火规范》 GB50016-2006 《建筑用不锈钢绞线》 JG/T 200-2007 《建筑幕墙》 GB/T 21086-2007 《建筑门窗玻璃幕墙热工计算规程》 JGJ/T151-2008 《不锈钢棒》 GB/T 1220-2007 《混凝土用膨胀型、扩孔型建筑锚栓》 JG 160-2004 《铝合金结构设计规范》 GB50429-2007 《建筑陶瓷薄板应用技术规程》 JGJ/T172-2009 《建筑玻璃采光顶》 JG/T 231-2008 《建筑抗震设计规范》 GB 50011-2001(2008年版)《建筑结构可靠度设计统一标准》 GB 50068-2001 《钢结构设计规范》 GB 50017-2003 《玻璃幕墙工程技术规范》 JGJ 102-2003 《塑料门窗工程技术规程》 JGJ103-2008 《中空玻璃稳态U值(传热系数)的计算和测定》 GB/T22476-2008 《玻璃幕墙工程质量检验标准》 JGJ/T 139-2001 《金属与石材幕墙工程技术规范》 JGJ 133-2001 《建筑制图标准》 GB/T 50104-2001 《建筑玻璃应用技术规程》 JGJ 113-2009 《全玻璃幕墙工程技术规程》 DBJ/CT 014-2001 《点支式玻璃幕墙工程技术规程》 CECS 127:2001 《点支式玻幕墙支承装置》 JC 1369-2001 《吊挂式玻幕墙支承装置》 JC 1368-2001 《建筑结构用冷弯矩形钢管》 JG/T178-2005 《建筑用不锈钢绞线》 JG/T200-2007 《铝合金建筑型材基材》 GB/T 5237.1-2008 《铝合金建筑型材阳极氧化、着色型材》 GB/T 5237.2-2008 《铝合金建筑型材电泳涂漆型材》 GB/T 5237.3-2008

钢板围堰计算书

目录 1设计资料 (1) 2钢板桩入土深度计算 (1) 2.1力计算 (1) 2.2入土深度计算 (2) 3钢板桩稳定性检算 (3) 3.1管涌检算 (3) 3.2基坑底部隆起验算 (4)

跨宁启特大桥跨高水河连续梁主墩承台 钢板桩围堰施工计算书 1设计资料 (1)钢板桩顶高程H1:8.5m ,汛期施工水位:8.0m 。 (2)河床标高H 0:1.63m ;基坑底标高H3:-7.958m ;开挖深度H :15.46m 。 (3)封底混凝土采用C30混凝土,封底厚度为1m 。 (3)坑、外土的天然容重加权平均值1r 、2r 均为:18.8KN/m 3;摩擦角加 权平均值 20=?;粘聚力C : 33KPa 0 5.02h ===。 (4)钢板桩采用国产拉森钢板桩,选用鞍IV 型(新)(见《施工计算手册》中国建筑工业P290页)钢板桩参数 A=98.70cm 2,W=2043cm 3,[]δ=200Mpa ,桩长21m 。 水压:210 6.3763.7/w w p h kN m γ=?=?= 河床位置处:21263.7217.5/w p p kN m =-=-?= 基坑底部:22117.518.8(1.637.638)191.74/a p p hK kN m γ=+=+?+= (5)围囹采用2I56工字钢,支撑采用Ф630螺旋钢管。 2计算资料 水压:210 6.3763.7/w w p h kN m γ=?=?= 0 5.02h === 河床位置处:21263.7217.5/w p p kN m =-=-?= 基坑底部:22117.518.8(1.637.638)191.74/a p p hK kN m γ=+=+?+=

建筑采暖设计计算书secret

1 工程概况 本工程为大同市一栋三层的办公楼,其中有办公、会议、培训等功能用途的房间。层高为3.7米,建筑占地面积约550平米,建筑面积约1300平米。本工程以0.4MPa饱和蒸汽的市政管网为热源、为本办公楼设计供暖系统。 2 设计依据 2.1任务书 <<供热课程设计提纲>> 2.2规范及标准 [1]<<采暖通风与空气调节设计规范>>GBJ 19-87 [2]<<通风与空气调节制图标准>>GJ114-88 2.3 设计参数 室外气象参数[1]:采暖室外计算(干球)温度为-17℃。最低日平均温度为-24℃。冬季大气压89920Pa。冬季室外最多风向平均风速 3.5m/s。 室内设计温度见表[1]。 表 [1]室内设计参数 3 围护结构要求 为了保证室内人员的热舒适性要求,根据室内空气温度与围护结构内表面的温差要求来确定围护结构的最小传热阻。 3.1大同地区在不同室内设计温度下的最小传热阻 为验证围护结构的热阻满足最小传热阻的要求,本设计先计算出不同围护结构类型下,对应不同室内计温度的最小传热阻,再根据围护的结构来计算需求多少厚度的保温层才能满足需要。 ? = e w t 计算冬季围护结构室外计算温度时,围护结构类型类不同选择的公式也不同。式中为采暖室 外计算温度, min ?p t为累年最低日平均温度。再根据室内设计温度由式[1]计算最小传热阻。

式[1] 式中:――冬季围护结构室外计算温度,℃; ――采暖室内设计温度,℃; ――根据舒适性确定的室内温度与围护结构内表面的温差,这里取6℃。 计算结果列于表[2]。 3.2某种外围护结构在不同保温层厚度下的隋性和热阻 图[1]外墙结构 已知外墙结构如图[1]所示,根据式[2]、[3]计算当取不同砖墙厚度时的热隋性指标和实际传热阻,结果列于表[4]。 总结构的热惰性指标按下式计算: ∑∑ ∑= = = i i i i i i s s R D D λ δ 式[2] 式中:――各层材料的传热阻,m2·℃/W; ――各层材料的畜热系数,W/m2·℃; ――各层材料的厚度,mm; ――各层材料的导热系数,W/m·℃。 总结构的传热热阻按下式计算: w i i n R α λ δ α 1 1 + + =∑m2·℃/W 式[3] 式中:――内表面换热系数,这里取8.7 W/m2·℃; ――外表面换热系数,这里取23 W/m2·℃。 3.3围护结构确定 根据以上两节的分析,本工程选择砖墙厚度为490mm,结构如图[1]所示的外墙结构才可以满足室内人员的热舒适性要求。内墙选择240mm砖墙双面抹灰的结构。为了减少冬季的冷风渗透和考虑到装修的标准,选择推拉铝窗作为外窗。外窗的空气渗透性能等级为I级。 4 采暖热负荷计算 对于本办公楼的热负荷计算只考虑围护结构传热的耗热量和冷风渗透引起的耗热量,人员、灯光等得热作为有利因素暂不考虑在热负荷计算当中。 y e w n t t t R ? + =? ? ) ( min α

钢板桩围堰设计

根据钢板桩围堰的实际受力状况建立力学模型。通过理论计算确定钢板桩围堰的实际受力,并通过实际施工情况验证该方法的可行性。比规范中采用的经验算法具有更高的精确性和安全性,能够更好的满足工程施工需要。 关键词:钢板桩围堰;设计;施工 目前,对于钢板桩围堰的设计主要是沿用《公路桥涵施工手册》和教科书中的经验算法。由于经验算法带有很大的近似性,并不一定能够真实反映钢板桩围堰的实际受力状况,有时会出现较大的偏差,给围堰的使用带来很多不安全因素。笔者在洪泽苏北灌溉总渠大桥施工中,为避免出现较大的变形,在对钢板桩围堰设计时采用了理论算法。经实践检验,理论算法能够较为精确的反映围堰的实际受力状况,对于合理设置内支撑和减小封底厚度起到 了重要的保证作用。 下面就钢板桩围堰的设计与施工做详细论述: 1 已知条件 1.1 承台尺寸:10.3m(横桥向)×6.4m(纵桥向) ×2.5m(高度),底部设计有10.7×6.8m×1.0m的封底砼。 1.2 承台及河床高程 承台顶面设计高程为h=5.0m,河床底高程为5.5m,河床淤集深度约为30cm。 1.3 水位情况 正常水位:h常=10.8m(此时水深5.3m),最高水位hmax =11.5m(水深6.0m),围堰设计时按最高水位考虑。 1.4 水流速度 因该桥位于水电站下游,水流较为湍急。设计时速V=1.0 m/s,不考虑流速沿水深方向的变化,则动水压力为: P=10KHV2×B×D/2g=53.2KN 式中:P-每延米板桩壁上的动水压力的总值(KN); H-水深(米); V-水流速度(1.0m/s); g-重力加速度(9.8m/s2); B-钢板桩围堰的计算宽度,B=10m; D-水的密度(10KN/m3); K-系数,(槽形钢板桩围堰K=1.8~2.0,此处取1.8)。(参照《公路施工手册》,假定此力平均作用于钢板桩围堰的迎水面一侧。) 1.5 河床水文地质条件 河床土质良好,多为粘土、亚粘土,局部有亚砂土,承载力较强。围堰基底至河床部分土质为粘土(层厚约2m)、亚砂土(硬塑状态,很湿,层间无承压水,层厚约为1m)。 2 拟定方案 结合河床地质情况及施工要求,拟采用日本产钢板桩进行围堰施工,长度为15m,宽度为40cm,厚度为18cm。 围堰顶面标高拟定为12.5m,高出最高水位1.0m。围堰设计图3,所有内围囹均采用56b工字钢制作,节点采用焊接(施工中严格执行钢结构施工规范)。为确保整个围囹的刚度和稳定性,对每层中间一道工字钢上面加焊型钢并将上下四道工字刚用25#槽钢焊接连接。在施工期间安排专人值班以防吊物 碰撞。

单壁钢围堰计算书

单壁钢围堰计算书 一、计算依据 1、xxxxxx施工设计图; 2、《钢结构设计规范》(GB50017-2003); 3、水利水电工程钢闸门设计规范(SL74-95) 4、《钢结构计算手册》 二、工程概况 本设计主要为xxxx大桥水中墩系梁施工用钢围堰,该项目共计12个水中墩,其中9#、12#—19#墩因系梁底标高较低,采用单壁钢围堰施工。现场调查,施工最高水位为414米,根据各墩位系梁标高,确定 三、主要技术参数 1、现场调查,施工最高水位为414米; 2、Q235钢[σ]=140Mp,[σw]=145Mp,[τ]=85Mp 3、钢弹性模量Es=2.1×105MPa; 四、围堰构造 围堰采用单壁钢围堰,面板为8mm厚钢板,竖向背楞采用8号槽钢,间距400mm,竖向设置三道围檩,围檩使用I32b,对应围檩设置三道内支撑,每道支撑为4根φ140x5.5mm钢管。封底混凝土厚 1.5米,采用C20混凝土,采用水下多点灌注的方式。 五、计算过程 (一)面板计算

面板按支撑在围檩上的连续加筋板计算,横向取3.2米宽一条(一块板),竖向取全长7.9米,荷载为静水压力荷载。简图如下: 正面图 侧面图

荷载为静水压力,按水深7.6米考虑(水面标高414米,围堰底标高406.9米),则q=7.6x10=76KN/m2。 3、计算结果 按上述图示与荷载,计算结果如下: (1)面板变形: (2)面板应力:

通过以上两图,可以看到面板最大变形为 2.35mm,最大应力77Mpa,满足要求。 结论:面板采用8mm厚钢板刚度与强度满足要求。 (二)竖向背楞计算 1、计算简图 竖向背楞简化为支撑在围檩上的连续梁,计算简图如下: 2、计算荷载 荷载主要为静水压力,Q=76KN/m2,竖肋间距400mm,荷载q=76/100x400=30.4N/mm 3、计算结果 根据上述图示及荷载,计算竖向背楞的结果如下: (1)下部0-3.7米内单元(采用2[8截面] Mmax=6.9105KNxm Qmax=85.379KN [8的几何特性为:

市政雨水设计流量计算书_secret

1167(1lg ) ()n A C P q t b += +设计流量计算 一、雨水设计流量计算 1. 雨水设计流量流量Q 雨水设计流量流量Q 的计算公式为 Q qF ψ= 式中:Q —雨水设计流量(l/s); ψ—径流系数,绿地径流系数0.15-0.25.; F —汇水面积(ha); q —设计暴雨强度(l/s 〃ha),1ha=10000m 2。 2. 设计暴雨强度q 设计暴雨强度q 应按下列公式计算: 式中,t ——降雨历时 (min); P ——设计重现期(a) ,排水沟渠的设计重现期,应根据汇水地区性质 (广场、干道、厂区、居住区)、地形特点和气象特点等因素确定,重要干道、 重要地区或短期积水即能引起较严重后果的地区,重现期一般选用2~5a 。; 1A 、C 、n 、b ——参数,在具有十年以上自动雨量记录的地区,根 据统计方法进行计算确定,在自动雨量记录不足十年的地区,参照地方实测暴雨气象资料确定参数。 3. 降雨历时t 排水沟渠的设计降雨历时t ,应按下列公式计算: 12t t mt =? 式中t —— 降雨历时(min ); t 1 —— 地面集水时间(min ),视距离长短、地形坡度和地面铺盖情况 而定,室外地面一般采用5~10min ; m —— 折减系数,见下表取值: t 2—— 管渠内雨水流行时间(min)。 折减系数m

4. 排水沟内雨水流行速度 排水管渠的流速,应按下列公式计算: 2 1321V R I n = 式中,V ——流速(m/s);R ——水力半径(m);I —水力坡降;n ——粗糙系数。排水沟粗糙系数为浆砌毛石时取0.017,混凝土排水沟为0.014。 对于矩形排水沟,水力半径 2bh R b h =+ b 为排水沟底宽(m ),h 为排水沟内设计过水高度(m )。 对于梯形断面排水沟,水力半径为 b 为排水沟底宽(m ),h 为排水沟内设计过水高度(m ),m 为排水沟坡率的倒数。 二、排水沟设计 t =t1+ m t2=10+1.2×10=22(min) 设计降雨重现期P 为5年,根据深圳市中部地区暴雨强度公式推算 2 R =

某城市污水雨水管网的设计计算(毕业设计)secret

第1章 城市污水雨水管网的设计计算 1.1、城市污水管网的设计计算 1.1.1 确定城市污水的比流量: 由资料可知,丁市人口为41.3万(1987年末的统计数字),属 于中小城市,居民生活用水定额(平均日)取150l/cap.d 。而污水定额一般取生活污水定额的80-90%,因此,污水定额为150l/cap.d*80%=120 l/cap.d 。则可计算出居住区的比流量为 q 0=864*120/86400=1.20(l/s ) 1.1.2 各集中流量的确定: ○ 1市柴油机厂 450*103*3.0=15.624(l/s ) ○ 2新酒厂取用9.69(l/s ) ○ 3市九中取用15.68 (l/s ) ○4火车站设计流量取用6.0(l/s ) 总变化系数K Z = 11 .07 .2Q (Q 为平均日平均时污水流量,l/s )。当Q<5l/s 时,K Z =2.3;当Q 〉1000l/s 时,K Z =1.3;其余见下表: 对于城市居住区面积及街坊的划分可见蓝图所示,而对城市污水管段的计算由计算机计算,其结果可见后附城市污水管网设计计算表。 1.2、城市雨水管网的设计计算: 计算雨水管渠设计流量所用的设计暴雨强度公式及流量公式可写

成: q=167A 1(1+clgP)/(t1+mt2+b)n 式中:q——设计暴雨强度(l/(s·ha)) P——设计重现期(a) t 1——地面集水时间(min) m——折减系数 t2——管渠内雨水流行时间(min) A1﹑b ﹑c﹑n——地方系数。 首先,确定暴雨强度公式:由资料可计算径流系数ψψ=5%*0.9+15%*0.9+5%*0.4+17%*0.3+13%*0.15 =0.68 暴雨强度公式:参考长沙的暴雨强度公式: q=3920(1+0.68lgp)/(t+17)0.86 重现期 p=1年,地面集水时间取t1=10 min,t=t 1+mt 2 , 折减系数取m=2.0, 所以可以确定该地区的暴雨强度公式为: q0=ψ*q=0.68*3920*(1+0.7lg1.0)/(27+2∑t2)0.86 =2665.6/(27+2∑t2)0.86 对于城市雨水汇水面积及其划分可见蓝图所示,而对城市雨水管段的计算由计算机计算,其结果可见后附的城市雨水管网设计计算表。特别说明:将雨湖设为一个雨水处理调节水池,雨湖的面积约为11000m3,根据雨湖两侧的地面标高差约为0.2m 则:设雨湖的有效调节水深为0.1m,所以调节水池的容积为1100m2。

水中墩承台钢板桩围堰计算书

南昌市绕城高速公路南外环A2标水中墩承台钢板桩围堰 (K16+609~K21+380) 计算书 中国建筑股份有限公司 南昌市绕城高速公路南外环A2标项目经理部 2014年10月

水中墩承台钢板桩围堰计算书 一、围堰布置及计算说明 1、水中墩承台施工采用筑岛开挖钢板桩围堰支护方案,水位标高为+18.0m,岛面标高为+18.5m 。 2、土层主要为淤泥和细砂,均为微透水层,采用水土合算。 3、地面荷载施工机具距离钢板桩边1.5-3.5m 时,按20KN/m 计算。 4、本钢板桩桩采用拉森Ⅳ型, 取1m 钢板桩宽度进行检算,截面模量为2200cm 3 ,容许弯曲应力采用210MPa 。 5、内支撑支锚刚度及材料抗力计算 内支撑采用工50b 型钢进行计算 2129,19.4,210000x A cm i cm E MPa === 支撑松弛系数取0.8 470/19.424.20.957λ?===, 材料抗力60.9570.012917010241974024197T N KN =????== 支锚刚度220.80.0129210000/4.71844/T K MN m =????= 6、钢板桩围堰布置图如下:

二、支护方案及基本信息 2.1、连续墙支护

2.2、基本信息 内力计算方法增量法 规范与规程《建筑基坑支护技术规程》 JGJ 120-99 基坑等级二级 基坑侧壁重要性系数 1.00 基坑深度H(m) 5.200 嵌固深度(m) 6.300 墙顶标高(m) 0.000 连续墙类型钢板桩 236.00 ├每延米板桩截面 面积A(cm2) ├每延米板桩壁惯 39600.00 性矩I(cm4) 400.00 └每延米板桩抗弯 模量W(cm3) 有无冠梁无 放坡级数0 超载个数 1 支护结构上的水平集 中力 2.3、超载信息 超载类型超载值作用深度作用宽度距坑边距形式长度 序号(kPa,kN/m) (m) (m) (m) (m) 1 20.000 --- --- --- --- --- 2.4、附加水平力信息 水平力作用类型水平力值作用深度是否参与是否参与 序号(kN) (m) 倾覆稳定整体稳定 2.5、土层信息 土层数 3 坑内加固土否 内侧降水最终深度(m) 5.200 外侧水位深度(m) 0.500 内侧水位是否随开挖过程变化是内侧水位距开挖面距离(m) 0.000 弹性计算方法按土层指定ㄨ弹性法计算方法m法2.6、土层参数 层号土类名称层厚重度浮重度粘聚力内摩擦角 (m) (kN/m3) (kN/m3) (kPa) (度) 1 淤泥质土 5.50 16.9 6.9 9.00 6.20 2 细砂 5.00 19.0 9.0 --- --- 3 砾砂10.00 19.0 9.0 --- ---

相关文档
最新文档