中老年人娱乐场所有哪些

中老年人娱乐场所有哪些
中老年人娱乐场所有哪些

中老年人娱乐场所有哪些

文章目录*一、中老年人娱乐场所有哪些*二、中老年人的心理和精神需求

中老年人娱乐场所有哪些中老年人随着年龄的增长和生理条件的变化,产生了不同于其他人口群体特殊的物质需求和精神需求。人到老年,各方面都发生了很多的变化。主要是他们中的大多数人退出了社会经济活动的领域,欢度晚年成为退休后的主要生活内容,大多数老年人的活动场所主要是在家庭和社区里,他们的闲暇时间增多了,由于健康的原因,他们更加注意自己的健康、保健、长寿问题。

1、音乐厅

一曲节奏明快、悦耳动听的乐曲,会拂去你心中的不快,使你乐而忘忧,此时,体内的神经体液系统处于最佳状态,从而达到调和内外、协调气血通行的效果。一曲威武雄壮、高昂激越的乐曲,可使人热血沸腾、激情满怀,产生积极向上的力量。老年人应该选择那些健康、高雅、曲调优美、节奏轻快舒缓的音乐,达到消乏、怡情、养性的目的。

2、书画活动室

人把练书法、绘画比作“不练气功的气功锻炼”。首先,书法讲究意念,练习时必须平心静气、全神贯注、排除杂念,这与气功的呼吸锻炼和意守有异曲同工之妙,其次,书法、绘画都讲究姿势,要求头端正、肩平齐、胸张背直、提肘悬腕,将全身的力量集

中在上肢,这与气功修练的姿势极为接近。

3、河畔钓鱼

适合垂钓的地方多在郊外,经常到郊外去走走,本身就是一

种锻炼;其次,水边河畔,空气异常清新,负离子含量高,让人感到悠然自得,心旷神怡,有利于人体的新陈代谢,能起到镇静、降压、减轻疲劳的作用。垂钓可达到内无思虑之患,外无体疲之忧的最佳养生境界。

4、庭院养花

养花不仅可以供人欣赏、美化环境、令人赏心悦目,而且花的香气还能起到灭菌、净化空气的作用。同时,鲜花释放的芳香,通过人的嗅觉神经传入大脑后,令人气顺意畅、血脉调和、怡然自得,产生快乐感觉。

5、广场跳舞

实验研究表明,即使交谊舞中的慢步舞,其能量消耗也为人

处于安静状态下的3-4 倍。其次,跳舞时,舞蹈者要与音乐协调,必须全神贯注,集中于音乐、舞步中,加之轻松愉快的音乐伴奏和迷人灯光的衬托,既是一种美的享受,更能让人陶醉其中。

6、短途旅游

老人可以利用闲暇时间出去旅游,多活动活动筋骨,对身体

健康有一定的好处,但是一定要注意防晒,体质差的老年朋友最

好选择傍晚太阳落山的时候出去走走,呼吸一下新鲜空气。旅游可以使人饱览大自然的奇异风光和历史、文化、习俗等人文景观,

让人获得精神上的享受;同时,置身在自然风景中,呼吸一下清新

的空气,让身心一次短暂的流浪,更能让人获得放松。

中老年人的心理和精神需求重视和理解中老年人的心理智

特点,解决老年人的正常心理需求,对稳定老年人的情绪变化、健康长寿有很重要的意义。中老年人常见的心理精神需求有:

1、健康需求

这是老年人普遍存在的一种心理状态。人到老年,常有恐老、怕病、惧死的心理。

2、工作需求

退休的老年人大多尚有工作能力,骤然间离开工作岗位肯定

会产生许多想法,希望再次从事工作,体现自身价值。

3、依存需求

人到老年,精力、体力、脑力都有所下降,有的生活不能完全自理,希望得到关心照顾。子女的孝顺,将会使他们感到老有所依。

4、和睦需求

老年人都希望自己有个和睦的家庭环境,不管家庭经济条件

如何,只要全家和睦,邻居关系融洽,互敬互爱,互相帮助,老年人

就会感到温暖和幸福。

5、尊敬需求

老年人离开工作岗位可能会情绪绪低落,如果得不到尊重,

就会产生悲观情绪,甚至不愿出门,长期下去,则会引起抑郁和低沉,为疾病埋下祸根。

6、人际交往的需求

由于老年人大多赋闲在家,离开了熟悉的工作群体,或因行动不便,交往圈子明显缩小,倍感无聊和失落。他们渴求走出去,与老朋友交流,又希望在各种活动中结交新朋友,形成新的人际交往的圈子。

蒙特卡洛方法

蒙特卡洛方法 1、蒙特卡洛方法的由来 蒙特卡罗分析法(Monte Carlo method),又称为统计模拟法,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。 第二次世界大战时期,美国曼哈顿原子弹计划的主要科学家之一,匈牙利美藉数学家约翰·冯·诺伊曼(现代电子计算机创始人之一)在研究物质裂变时中子扩散的实验中采用了随机抽样统计的手法,因为当时随机数的想法来自掷色子及轮盘等赌博用具,因此他采用摩洛哥著名赌城蒙特卡罗来命名这种计算方法,为这种算法增加了一层神秘色彩。 蒙特卡罗方法提出的初衷是用于物理数值模拟问题, 后来随着计算机的快速发展, 这一方法很快在函数值极小化、计算几何、组合计数等方面得到应用, 于是它作为一种独立的方法被提出来, 并发展成为一门新兴的计算科学, 属于计算数学的一个分支。如今MC方法已是求解科学、工程和科学技术领域大量应用问题的常用数值方法。 2、蒙特卡洛方法的核心—随机数 蒙特卡洛方法的基本理论就是通过对大量的随机数样本进行统计分析,从而得到我们所需要的变量。因此蒙特卡洛方法的核心就是随机数,只有样本中的随机数具有随机性,所得到的变量值才具有可信性和科学性。

在连续型随机变量的分布中, 最基本的分布是[0, 1]区间上的均匀分布, 也称单位均匀分布。由该分布抽取的简单子样ξ1,ξ2ξ3……称为随机数序列, 其中每一个体称为随机数, 有时称为标准随机数或真随机数, 独立性和均匀性是其必备的两个特点。真随机数是数学上的抽象, 真随机数序列是不可预计的, 因而也不可能重复产生两个相同的真随机数序列。真随机数只能用某些随机物理过程来产生, 如放射性衰变、电子设备的热噪音、宇宙射线的触发时间等。 实际使用的随机数通常都是采用某些数学公式产生的,称为伪随机数。真随机数只是一种数学的理想化概念,实际中我们所接触到的和使用的都是伪随机数。要把伪随机数当成真随机数来使用, 必须要通过随机数的一系列的统计检验。 无论伪随机数用什么方法产生,它的局限性都在于这些随机数总是一个有限长的循环集合, 而且序列偏差的上确界达到最大值。所以若能产生低偏差的确定性序列是很有用的,产生的序列应该具有这样的性质, 即任意长的子序列都能均匀地填充函数空间。 人们已经产生了若干种满足这个要求的序列,如Halton序列、Faure序列、Sobol序列和Niederreiter序列等。称这些序列为拟随机数序列。伪随机序列是为了模拟随机性, 而拟随机序列更致力于均匀性。 3、蒙特卡洛方法的原理 当问题可以抽象为某个确定的数学问题时,应当首先建立一个恰当的概率模型,即确定某个随机事件A或随机变量X,使得待求的解等

蒙特卡罗方法(MC)

蒙特卡罗方法(MC) 蒙特卡罗(Monte Carlo)方法: 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。 传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并 用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗解题三个主要步骤: 构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 建立各种估计量: 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 例如:检验产品的正品率问题,我们可以用1表示正品,0表示次品,于是对每个产品检验可以定义如下的随机变数Ti,作为正品率的估计量: 于是,在N次实验后,正品个数为:

浅析蒙特卡洛方法原理及应用

浅析蒙特卡洛方法原理及应用 于希明 (英才学院1236103班测控技术与仪器专业6120110304) 摘要:本文概述了蒙特卡洛方法产生的历史及基本原理,介绍了蒙特卡洛方法的最初应用——蒲丰投针问题求圆周率,并介绍了蒙特卡洛方法在数学及生活中的一些简单应用,最后总结了蒙特卡洛方法的特点。 关键词:蒙特卡洛方法蒲丰投针生活应用 蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。它是以概率统计理论为基础, 依据大数定律( 样本均值代替总体均值) , 利用电子计算机数字模拟技术, 解决一些很难直接用数学运算求解或用其他方法不能解决的复杂问题的一种近似计算法。蒙特卡洛方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 一、蒙特卡洛方法的产生及原理 蒙特卡洛方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡洛方法就已经存在。1777年,法国数学家蒲丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡洛方法的起源。 其基本原理如下:由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡洛法正是基于此思路进行分析的。 设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。首先根据各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标。 二、蒲丰投针问题 作为蒙特卡洛方法的最初应用, 是解决蒲丰投针问题。1777 年, 法国数学家蒲丰提出利用投针实验求解圆周率的问题。设平面上等距离( 如为2a) 画有一些平行线, 将一根长度为2l( l< a) 的针任意投掷到平面上, 针与任一平行线相交的频率为p 。针的位置可以用针的中心坐标x 和针与平行线的夹角θ来决定。任意方向投针, 便意味着x与θ可以任意取一值, 只是0≤x ≤a, 0≤θ≤π。那么, 投针与任意平行线相交的条件为x ≤ l sinθ。相交频率p 便可用下式求

蒙特卡罗法

蒙特卡罗方法 蒙特卡罗方法(Monte Carlo method) 目录 [隐藏] ? 1 蒙特卡罗方法概述 ? 2 蒙特卡罗方法的提出 ? 3 蒙特卡罗方法的基本思想 ? 4 蒙特卡罗方法的基本原理 ? 5 蒙特卡罗方法在数学中的应用 ? 6 蒙特卡罗方法的应用领域 ?7 蒙特卡罗方法的工作过程 ?8 蒙特卡罗方法分子模拟计算的步骤 ?9 蒙特卡罗模型的发展运用 ?10 项目管理中蒙特卡罗模拟方法的一般步骤 ?11 非权重蒙特卡罗积分 ?12 蒙特卡罗方法案例分析 o12.1 案例一:蒙特卡罗模型在投资项目决策中的开发应用[1] ?13 参考文献 [编辑] 蒙特卡罗方法概述 蒙特卡罗方法又称统计模拟法、随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名。 [编辑] 蒙特卡罗方法的提出 蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte

Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡罗方法就已经存在。1777年,法国Buffon提出用投针实验的方法求圆周率∏。这被认为是蒙特卡罗方法的起源。 [编辑] 蒙特卡罗方法的基本思想 Monte Carlo方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”。19世纪人们用投针试验的方法来决定圆周率π。本世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能。 考虑平面上的一个边长为1的正方形及其内部的一个形状不规则的“图形”,如何求出这个“图形”的面积呢?Monte Carlo方法是这样一种“随机化”的方法:向该正方形“随机地”投掷N个点,有M个点落于“图形”内,则该“图形”的面积近似为M/N。可用民意测验来作一个不严格的比喻。民意测验的人不是征询每一个登记选民的意见,而是通过对选民进行小规模的抽样调查来确定可能的优胜者。其基本思想是一样的。 科技计算中的问题比这要复杂得多。比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千。对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾难”(Curse of Dimensionality),传统的数值方法难以对付(即使使用速度最快的计算机)。Monte Carlo方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数。以前那些本来是无法计算的问题现在也能够计算量。为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧。 另一类形式与Monte Carlo方法相似,但理论基础不同的方法—“拟蒙特卡罗方 法”(Quasi-Monte Carlo方法)—近年来也获得迅速发展。我国数学家华罗庚、王元提出的“华—王”方法即是其中的一例。这种方法的基本思想是“用确定性的超均匀分布序列(数学上称为Low Discrepancy Sequences)代替Monte Carlo方法中的随机数序列。对某些问题该方法的实际速度一般可比Monte Carlo方法提出高数百倍,并可计算精确度。 [编辑] 蒙特卡罗方法的基本原理 由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡罗法正是基于此思路进行分析的。

蒙特卡洛方法1

很多时候,我们不清楚统计量的分布,或不确定对它所作的假设是否合理。蒙特卡罗模拟可以处理这些情况,它的应用包括: 1)当待检测统计量(the test statistics)从未知时,进行推断 2)当参数假设(parametric assumptions),评估推断方法的性能 3)在各种情况下进行假设检验 4)比较不同检测子(estimator)的质量 1.基本蒙特卡罗过程 用于推断统计的蒙特卡罗模拟的根本思想是:统计量的特征可通过从相同总体中重复抽样,并观察统计量在这些样本上的表现来获得。 第一步是决定一个伪总体(pseudo-population),假设它可以表达真实总体。这里“伪”是为了强调样本是利用计算机和伪随机数生成的。同时,这里讨论的蒙特卡罗模拟类型都是参数化的技术,应为都是从已知的或假设的分布中抽样。具体步骤: 1)确定伪总体,或可表达真实分布的模型 2)从伪总体中抽样 3)计算统计量的值 4)重复2、3,进行M次实验 5)利用4中获得的M个统计量值来研究统计量的分布 需要注意的是:从伪总体中抽样时,要保证所有相关特征反映同样的统计状况。例如,相同的样本大小和抽样策略。这意味着,通过此方法获得的统计量分布仅对此抽样过程和伪总体假设有效。 最后一步就是利用对统计量分布的估计来研究感兴趣的统计特征。如估计偏度、峰度、标准差等。 2.蒙特卡罗假设检验 在统计假设检验中,利用检验统计量null hypothesis应该被拒绝或接受的信度。当观测到检验统计量的值后,需要通过判断这个值是否与null hypothesis一致。估计检验统计量在null hypothesis下的分布是蒙特卡罗假设检验的目标之一。 回顾假设检验的critical value approach:首先给定置信水平(significance level)a;然后利用此a找到在null hypothesis为真下检验统计量分布上的置信区间(critical region)。而在蒙特卡罗方法中,我们利用假设统计量的估计分布来确定置信值的,步骤如下:

蒙特卡罗方法学习总结

图1-1 蒙特卡罗方法学习总结 核工程与核技术2014级3班张振华20144530317 一、蒙特卡罗方法概述 1.1蒙特卡罗方法的基本思想 1.1.1基本思想 蒙特卡罗方的基本思想就是,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。 1.1.2计算机模拟打靶游戏 为了能更为深刻地理解蒙特卡罗方法的基本思想,我们学习了蒲丰氏问题和打靶游戏两大经典例子。下面主要对打靶游戏进行剖析、计算机模拟(MATLAB 程序)。 设某射击运动员的弹着点分布如表1-1 所示, 首先用一维数轴刻画出已知该运动员的弹 着点的分布如图1-1所示。研究打靶游戏,我 们不用考察子弹的运动轨迹,只需研究每次“扣动扳机”后的子弹弹着点。每一环数对应唯一确定的概率,且注意到概率分布函数有单调不减和归一化的性质。首先我们产生一个在(0,1)上均匀分布的随机数(模拟扣动扳机),然后将该随机数代表的点投到P 轴上(模拟子弹射向靶上的一个确定点),得到对应的环数(即子弹的弹着点),模拟打靶完成。反复进行N 次试验,统计出试验结果的样本均值。样本均值应当等于数学期望值,但允许存在一定的偏差,即理论计算值应该约等于模拟试验结果。 clear all;clc; N=100000;s=0; for n=1:N %step 4.重复N 次打靶游戏试验

x=rand(); %step 1.产生在(0,1)上均匀分布的随机数if(x<=0.1) %step 2.若随机数落在(0.0,0.1)上,则代表弹着点在7环g=7; s=s+g; %step 3.统计总环数elseif(x<=0.2) %step 2.若随机数落在(0.1,0.2)上,则代表弹着点在8环g=8;s=s+g; elseif(x<=0.5) %step 2.若随机数落在(0.2,0.5)上,则代表弹着点在9环g=9;s=s+g; else %step 2.若随机数落在(0.5,1.0)上,则代表弹着点在10环 g=10;s=s+g; end end gn_th=7*0.1+8*0.1+9*0.3+10*0.5; %step 5.计算、输出理论值fprintf('理论值:%f\n',gn_th); gn=s/N; %step 6.计算、输出试验结果 fprintf('试验结果:%f\n',gn);1.2蒙特卡罗方法的收敛性与误差 1.2.1收敛性 由大数定律可知,应用蒙特卡罗方法求近似解,当随机变量Z 的简单子样数N 趋向于无穷大(N 充分大)时,其均值依概率收敛于它的数学期望。 1.2.2误差 由中心极限定理可知,近似值与真值的误差为N Z E Z N αλ<-)(?。式中的αλ的值可以根据给出的置信水平,查阅标准正态分布表来确定。 1.2.3收敛性与误差的关系 在一般情况下,求具有有限r 阶原点矩()∞

蒙特卡罗方法简介

第三章蒙特卡罗方法简介 3.1 Monte Carlo方法简介 Monte Carlo方法是诺斯阿拉莫斯实验室在总结其二战期间工作(曼哈顿计划)的基础上提出来的。Monte Carlo的发明,主要归功于Enrico Fermi、Von Neumann和Stanislaw Ulam等。自二战以来,Monte Carlo方法由于其在解决粒子输运问题上特有的优势而得到了迅速发展,并在核物理、辐射物理、数学、电子学等方面得到了广泛的应用。Monte Carlo的基本思想就是基于随机数选择的统计抽样,这和赌博中掷色子很类似,故取名Monte Carlo。 Monte Carlo方法非常适于解决复杂的三维问题,对于不能用确定性方法解决的问题尤其有用,可以用来模拟核子与物质的相互作用。在粒子输运中,Monte Carlo技术就是跟踪来自源的每个粒子,从粒子产生开始,直到其消亡(吸收或逃逸等)。在跟踪过程中,利用有关传输数据经随机抽样来决定粒子每一步的结果[6]。 3.2 Monte Carlo发展历程 MCNP程序全名为Monte Carlo Neutron and Photon Transport Code (蒙特卡罗中子-光子输运程序)。Monte Carlo模拟程序是在1940年美国实施“发展核武器计划”时,由洛斯阿拉莫斯实验室(LANL)提出的,为其所投入的研究、发展、程序编写及参数制作超过了500人年。1950年Monte Carlo方法的机器语言出现, 1963年通用性的Monte Carlo方法语言推出,在此基础上,20世纪70年代中期由中子程序和光子程序合并,形成了最初的MCNP程序。自那时起,每2—3年MCNP更新一次, 版本不断发展,功能不断增加,适应面也越来越广。已知的MCNP程序研制版本的更新时间表如下:MCNP-3:1983年写成,为标准的FORTRAN-77版本,截面采用ENDF /B2III。 MCNP-3A:1986年写成,加进了多种标准源,截面采用ENDF /B2I V[20]。

蒙特卡罗方法及应用实验讲义2016资料

蒙特卡罗方法及应用 实验讲义 东华理工大学核工系 2016.8

实验一 蒙特卡罗方法基本思想 一、实验目的 1、了解蒙特卡罗方法方法的基本思想; 2、掌握蒙特卡罗方法计算面积、体积的方法; 3、掌握由已知分布的随机抽样方法。 二、实验原理 Monte Carlo 方法,又称统计模拟方法或计算机随机模拟方法,是一种基于“随机数”进行数值模拟的方法,一种采用统计抽样理论近似求解物理或数学问题的方法。 如待求量可以表述成某些特征量的期望值、某些事件出现的概率或两者的函数形式,那么可采用蒙特卡罗方法求解。在求解某些特征量的期望值或某些事件出现的概率时,必须构建合符实际的数学模型。例如采用蒙特卡罗方法计算某函数所围面积时,构建的数学模型是构造一已知面积的可均匀抽样区域,在该区域投点,由伯努利定理大数定理可知,进入待求区域投点的频率依概率1收敛于该事件出现的概率(面积之比)。 由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。具体方法很多,详见教材第三章。 三、实验内容 1、安装所需计算工具(MATLAB 、fortran 、C++等); 2、学习使用rand(m,n)、unifrnd(a,b,m,n)函数 3、求解下列问题: 3.0、蒲丰氏投针求圆周率。 3.1、给定曲线y =2 – x 2 和曲线y 3 = x 2,曲线的交点为:P 1( – 1,1 )、P 2( 1,1 )。曲线围成平面有限区域,用蒙特卡罗方法计算区域面积; 3.2 、计算1z z ?≥??≤??所围体积 其中{(,,)|11,11,02}x y z x y z Ω=-≤≤-≤≤≤≤。 4、对以下已知分布进行随机抽样:

蒙特卡洛方法 (MC) 方法

MCC 方法 蒙特卡罗方法的诞生 蒙特卡罗方法的产生可追溯到Buffon 投针实验。法国数学家Buffon 用此实验来估算π值,它的原理是这样子的:在桌面上划一组间距为d 的平行线,然后向桌面上随意抛掷长度为L 的细针,从针与平行线相交的概率就可以得到π值。 其中 [0,)A d ∈ [0,) x π∈ 由积分性质可得投针置于平行线上的概率为sin 1 2l d l p dAdx d π θ π π == ? ? 假如在N 次投针实验中,有M 次与平行线相交,则有2l M P d N π= = 图3.2 Buffon 的投针实验 图3.3 投针位置分析

1930年,费米利用蒙特卡罗方法研究了中子的扩散,并设计了一个蒙特卡罗机械装置,用于计算核反应堆的临界状态。 冯.诺依曼是蒙特卡罗方法的正式奠基者,他与Stanislaw Ulam 合作建立了概率密度函数、反累积分布函数的数学基础,以及伪随机数产生器,从而使得蒙特卡罗方法得以推广,成为科学领域一种常用的模拟方法。 蒙特卡罗方法的基本思想 对某一个待解决的物理问题(当这个物理问题可以抽象为数学问题时)建立一个概率模型,即确定某个随机事件X ,使得待求问题的解等于随机事件X 出现的概率或随机变量的数学期望值。然后进行模拟实验,重复多次地模拟随机事件X 。最后对随机实验结果进行统计平均,求出X 出现的频数作为问题的近似解。这就是蒙特卡罗方法的基本思想。 具体来说: 假设所要求的量x 是随机变量的数学期望 ,那么近似确定x 的方法是 对进行N 次重复抽样,产生相互独立的值的序列、、……、,并计算其算术平均值: 1 1 N N n n N ξξ ==∑ 根据大数定理有 P (l i m ) N N x ξ→∞ == 因此,当N 充分大时,下式 ()N E x ξξ≈= 成立的概率为1,亦即可以用 作为所求量x 的估计值。 用蒙特卡罗方法求解时,最简单的情况是模拟一个发生概率为P 的随机事件A 。考虑一个随机变量,若在一次试验中事件A 出现,则取值为1;若事件A 不出现, 则 取值为0。令q=1-p ,那么随机变 量 的数学期 望 ,此即一次试验中事件A出现的概率 。的方差

蒙特卡罗方法的解题过程可以归结为三个主要步骤

蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 蒙特卡洛法模拟蒲丰(Buffon)投针实验-使用Matlab 2010年03月31日星期三8:47 蒲丰投针实验是一个著名的概率实验,其原理请参见此页: https://www.360docs.net/doc/88587830.html,/reese/buffon/buffon.html 现在我们利用Matlab来做模拟,顺便说一下,这种随机模拟方法便是传说中的“蒙特-

蒙特卡罗(Monte Carlo)方法

https://www.360docs.net/doc/88587830.html,/share/detail/5568877 蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。 Monte Carlo方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”。19世纪人们用投针试验的方法来决定圆周率π。本世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能。 考虑平面上的一个边长为1的正方形及其内部的一个形状不规则的“图形”,如何求出这个“图形”的面积呢?Monte Carlo方法是这样一种“随机化”的方法:向该正方形“随机地”投掷N个点落于“图形”内,则该“图形”的面积近似为M/N。 可用民意测验来作一个不严格的比喻。民意测验的人不是征询每一个登记选民的意见,而是通过对选民进行小规模的抽样调查来确定可能的优胜者。其基本思想是一样的。 科技计算中的问题比这要复杂得多。比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千。对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾难”(Course Dimensionality),传统的数值方法难以对付(即使使用速度最快的计算机)。Monte Carlo方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数。以前那些本来是无法计算的问题现在也能够计算量。为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧。 另一类形式与Monte Carlo方法相似,但理论基础不同的方法—“拟蒙特卡罗方 法”(Quasi-Monte Carlo方法)—近年来也获得迅速发展。我国数学家华罗庚、王元提出的“华—王”方法即是其中的一例。这种方法的基本思想是“用确定性的超均匀分布序列(数学上称为Low Discrepancy Sequences)代替Monte Carlo方法中的随机数序列。对某些问题该方法的实际速度一般可比Monte Carlo方法提出高数百倍,并可计算精确度。 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。 传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。

蒙特卡罗方法

[情人节专属]纯 js 脚本 1k 大小的 3D 玫瑰 情人节专属]
2012-02-09 18:02 | 1839 次阅读 | 来源:https://www.360docs.net/doc/88587830.html, 【已有 10 条评论】发表评论 关键词:javascript | 作者:赵红编译 | 收藏这篇资讯
导语: 导语:前年圣诞节上,西班牙程序员 Roman Cortes 带来了用纯 javascript 脚本编写的神奇 3D 圣诞树,令人印象深刻。2 月 14 日情人节就要来临了,还是 Roman Cortes,这次他又 带来了用 javascript 脚本编写的红色玫瑰花。用代码做出的玫瑰花,这才是牛逼程序员送给 女友的最好情人节礼物呢!(提示:在不同浏览器下观看效果、速度会有很大的不同) 提示:在不同浏览器下观看效果、速度会有很大的不同 提示 图片是由代码生成,用户可以刷新该页面,重复观看这朵玫瑰的呈现过程。 3D 玫瑰花的实现代码如下: 玫瑰花的实现代码如下:
with(m=Math)C=cos,S=sin,P=pow,R=random;c.width=c.height=f=500;h=-250;function p(a,b,c){if(c>60)return[S(a*7)*(13+5/(.2+P(b*4,4)))-S(b)*50,b*f+50,625+C(a*7)*( 13+5/(.2+P(b*4,4)))+b*400,a*1-b/2,a];A=a*2-1;B=b*2-1;if(A*A+B*B<1){if(c>37){n=( j=c&1)?6:4;o=.5/(a+.01)+C(b*125)*3-a*300;w=b*h;return[o*C(n)+w*S(n)+j*610-390,o *S(n)-w*C(n)+550-j*350,1180+C(B+A)*99-j*300,.4-a*.1+P(1-B*B,-h*6)*.15-a*b*.4+C( a+b)/5+P(C((o*(a+1)+(B>0?w:-w))/25),30)*.1*(1-B*B),o/1e3+.7-o*w*3e-6]}if(c>32){ c=c*1.16-.15;o=a*45-20;w=b*b*h;z=o*S(c)+w*C(c)+620;return[o*C(c)-w*S(c),28+C(B* .5)*99-b*b*b*60-z/2-h,z,(b*b*.3+P((1-(A*A)),7)*.15+.3)*b,b*.7]}o=A*(2-b)*(80-c* 2);w=99-C(A)*120-C(b)*(-h-c*4.9)+C(P(1-b,7))*50+c*2;z=o*S(c)+w*C(c)+700;return[ o*C(c)-w*S(c),B*99-C(P(b, 7))*50-c/3-z/1.35+450,z,(1-b/1.2)*.9+a*.1, P((1-b),20)/4+.05]}}setInterval('for(i=0;i<1e4;i++)if(s=p(R(),R(),i%46/.74)){z= s[2];x=~~(s[0]*f/z-h);y=~~(s[1]*f/z-h);if(!m[q=y*f+x]|m[q]>z)m[q]=z,a.fillStyle ="rgb("+~(s[3]*h)+","+~(s[4]*h)+","+~(s[3]*s[3]*-80)+")",a.fillRect(x,y,1,1)}', 0)
当然,感兴趣的人可以了解下面的实现过程与相关理论: 当然,感兴趣的人可以了解下面的实现过程与相关理论: 这朵三维代码玫瑰的呈现效果采用了蒙特卡罗方法, 创造者对蒙特卡罗方法非常推崇, 他表 示在功能优化和采样方面,蒙特卡罗方法是“令人难以置信的强大工具”。关于蒙特卡罗方法 可以参考:Monte Carlo method 。 具体操作: 外观采样呈现效果绘制

实施蒙特卡罗法有三个主要步骤

实施蒙特卡罗法有三个主要步骤: (1)构造或描述概率过程。对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程;对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解,即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样。构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量,随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生,这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过经过多种统计检验表明,它与真正的随机数或随机数序列具有相似的性质,因此可把它作为真正的随机数来使用。从已知分布随机抽样有多种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。

(3)建立各种估计量。一般来说,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计量。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 与其他的数值计算方法相比,蒙特卡罗方法有这样几个优点: (1)收敛速度与问题维数无关,换句话说,要达到同一精度,用蒙特卡罗方法选取的点数与维数无关,计算时间仅与维数成正比例。但一般数值计算方法,比如在计算多、重积分时,达到同样的误差,点数与维数的幂次成正比例,即计算量要随维数的幂次方而增加。这一特性决定了蒙特卡罗法对多维问题的适用性。 (2)受问题的条件限制的影响小。 (3)程序结构简单,在计算机上实现蒙特卡罗计算时程序结构清晰简单,便于编制和调试。 (4)对于仿真像粒子输运等物理问题具有其他数值计算方法不能替代的作用。 蒙特卡罗的弱点是收敛速度慢,误差大。这一情况在解粒子输运问题中仍然存在。除此以外,对于大系统蒙特卡罗通常不适用,但其他数值方法往往很适应,能算出较好的结果。因此,已有人将数值方法与蒙特卡罗方法联合起来使用,克服这种局限性,取得了一定的效果

蒙特卡罗方法及其应用

计算机处理之蒙特卡罗方 法及其应用 【标题】蒙特卡罗方法及其应用 【摘要】 蒙特卡罗方法是一种随即抽样方法,建立一个与求解有关的概率模型或随即现象来求得所要研究的问题的解。这种利用计算机进行模拟的抽样方法以其精度高,受限少等优点广泛应用于数理计算,工程技术,医药卫生等领域。本文介绍蒙特卡罗方法的简要内容,起源,基本思路及应用优点,并简要介绍了一些蒙塔卡罗方法在相关医学方面的应用,并提出了一些今后发展与应用上的展望。 【关键词】 蒙特卡罗方法基本内容应用 【正文】 一蒙特卡罗方法简介 1 概述 蒙特卡罗(Monte Carlo) 方法, 又称随机抽样法,统计试验法或随机模拟法。是一种用计算机模拟随机现象,通过仿真试验,得到实验数据,再进行分析推断,得到某些现象的规律或某些问题的求解的方法。蒙特卡罗方法的基本思想是,为了求解数学、物理、工程技术或生产管理等方面的问题,首先建立一个与求解有关的概率模型或随机

过程,使它的参数等于所求问题的解,然后通过对模型或过程的观察或抽样试验来计算所求参数的统计特征,最后给出所求解的近似值。 概率统计是蒙特卡罗方法的理论基础,其手段是随机抽样或随机变量抽样。对于那些难以进行的或条件不满足的试验而言,是一种极好的替代方法。蒙特卡罗方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,很少受几何条件限制,收敛速度与问题的维数无关。 例如在许多工程、通讯、金融等技术问题中,所研究的控制过程往往不可避免地伴有随机因素,若要从理论上很好地揭示实际规律,必须把这些因素考虑进去。理想化的方法是在相同条件下进行大量重复试验,采集试验数据,再对数据进行统计分析,得出其规律。但是这样需要耗费大量的人力、物力、财力,尤其当一个试验周期很长,或是一个破坏性的试验时,通过试验采集数据几乎无法进行,此时蒙特卡罗方法就是最简单、经济、实用的方法。因此它广泛应用在粒子输运问题,统计物理,典型数学问题,真空技术,激光技术以及医学,生物,探矿等方面。 蒙特卡罗方法研究的问题大致可分为两种类型,一种是问题本身是随机的;另一种本身属于确定性问题,但可以建立它的解与特定随机变量或随机过程的数字特征或分布函数之间的联系,因而也可用随机模拟方法解决,如计算多重积分,求解积分方程、微分方程、非线性方程组,求矩阵的逆等。

蒙特卡洛方法

第七章蒙特卡洛方法 1蒙特卡洛方法 蒙特卡洛方法(M-C)又称之为随机取样法,统计模拟法,是利用随机数的统计规律来进行计算和模拟的方法.它可用于数值计算,也可用于数值仿真。 例计算园周率。 单位圆的面积是π,它在第一象限的面积为π/4,因此有 π=4 1 dx1 1 dx2θ(1?x21?x22) 其中θ是单位阶跃函数。 计算时,生成二维的等几率分布的随机数(x,y),统计所有满足x2+y2<1的点数,计算它们与总点数之比,就是所求。用M-C计算这个二维积分的指令是 p=4/1000000*length(find(sum(rand(2,1000000).^2)<1))这里取N=106。 例氢原子电子云的模拟。 氢原子的基态(n=1,l=0,m=0)的电子分布几率密度函数是D= 4r2 a31e?2r/a1,a1=5.29×10?2nm,D的最大值D max=1.1,r0=0.25nm是D的 收敛点。 模拟是用点的密度来表示电子的几率分布密度。模拟时先产生一个随机的电子轨道半径r=r0rand(1),显然有0≤r≤r0,由r计算出D(r)。再产生一个随机的概率判据D0=D max rand(1),显然有0≤D0≤D max,然后进行判断,如果D(r)

r0=25;a=0.529; r=r0*rand(1,N); Dr=4/a^3*r.^2.*exp(-2/a*r); D0=1.1*rand(1,N); DD=Dr-D0; r=r(find(DD>0)); n=length(r); Q=2*pi*rand(1,n); [X,Y]=pol2cart(Q,r); plot(X,Y,’r.’,’marker’,’.’,’markersize’,1) r=0:0.01:20; Dr=4/a^3*r.^2.*exp(-2/a*r); figure plot(r,Dr) 2等几率随机数的生成 生成等一维几率随机数的指令是rand,可以用指令hist来检验它所生成的数。>>A=rand(1,10000);hist(A) 3计算定积分 要计算定积分 b a f(x)dx,可以作一个矩形,宽为b?a,高为f(x)的极 值f max,假如在矩形内填满了等几率点,则总点数与落在f(x)所包围的点数之比就是矩形面积与定积分之比。按照这个思路可以计算高维积分。 例半径为0.5m球体上有一个半径为0.3m的柱体空洞,计算球体剩余部分的体积。 N=100000; A=rand(3,N);

蒙特卡罗方法的基本思想与解题步骤

1 蒙特卡罗方法的基本思想与解题步骤 蒙特卡罗方法也称随机模拟法、随机抽样技术或统计试验法,其基本思想是:为了求解数学、物理、工程技术或生产管理等方面的问题,首先建立一个与求解有关的概率模型或随机过程,使它的参数等于所求问题的解,然后通过对模型或过程的观察或抽样试验来计算所求参数的统计特征,最后给出所求解的近似值。概率统计是蒙特卡罗方法的理论基础,其基本手段是随机抽样或随机变量抽样,对于那些难以进行的或条件不满足的试验而言,是一种极好的替代方法。 蒙特卡罗方法可以解决随机性问题和确定性问题,求解确定性问题的基本步骤如下:(1)建立一个与求解有关的概率模型,使求解为所构建模型的概率分布或数学期望;(2)对模型进行随机抽样观察,即产生随机变量;(3)用算术平均数作为所求解的近似平均值,给出所求解的统计估计值的方差或标准差,即解的精度。 2 伪随机数的产生 利用蒙特卡罗方法以模拟一个实际问题,需要用到各种随机变量,因此随机数的产生非常重要。在计算机上的产生随机数的方法有三类:(1)把已有的随机数表输入机器;(2)用物理方法产生真正的随机数;(3)用数学方法产生伪随机数。利用数学方法产生随机数具有占有内存小,产生速度快,便于重复,不受计算机条件限制等优点,因而被大量使用。因利用数学方法产生的随机数是根据确定的递推公式计算的,存在周期现象,不满足真正随机数的要求,这种随机数称为伪随机数。在实际应用中,只要伪随机数能通过一系列统计检验,我们还是可以把它当做“真正”的随机数来应用。 产生随机数的数学方法,最常应用的有: 同余法。其中,剩同余法和混合同余法能够产生周期长且统计性质优的数值序列,因而应用也最广。 平方取中法。当位数较少时,产生的伪随机数领导于零的较多,位数越来越多时,偏于零的就会越来越少。 易位指令加法。方法简便,速度较快,其所产生的随机数随机性一般较好,但周期不定,且通常很短;随着初选值的不同,所产生的随机数序列长度也有很大差异。 3 随机数的检验 随机数的统计检验,就是根据(0,1)上均匀总体简单子样式的性质来研究所产生的随机数序列的相应性质,进行比较鉴别,视其差异显著与否,决定取舍。如果所产生的伪随机数经过各类检验,其差异均不显著,我们即接受其为均匀总体随机数的子样。

相关文档
最新文档