运算放大器信号运算与变换电路.

第2章模拟电路制作实训

2.1 运算放大器基本运算电路

2.1.1 实训目的与器材

实训目的:制作一个基于MCP6021运算放大器的基本运算电路实验模板[16]。

实训器材:常用电子装配工具,万用表,示波器。基本运算电路实验模板元器件清单如表2.1.1所列。

表2.1.1 基本运算电路实验模板元器件清单

2.1.2 MCP6021运算放大器的基本特性

MCP6021(MCP6022、MCP6023和MCP6024)是高性能的轨对轨输入/输出运算放大器,带宽为10 MHz,噪声为8.7(10 kHz),低失调电压为±500~

±250μV,总谐波失真为0.00053%,电源电压范围为2.5V ~5.5V ,采用PDIP 、SOIC 和TSSOP 封装,引脚端封装形式如图2.1.1所示。

图2.1.1 MCP6021引脚端封装形式

2.1.3 基本运算电路实验模板电路结构

基本运算电路实验模板电路如图2.1.2所示。基本运算电路实验模板可以构成的一些运算放大器电路如图2.1.3所示。

图2.1.2 基本运算电路实验模板电路

(a )反相放大器电路

(b )同相放大器电路

(c )电压跟随器电路

(d )反相比较器电路

(e )同相比较器电路

(f )反相微分电路

(g )同相微分电路

图2.1.3 基本运算电路实验电路结构

2.1.4 基本运算电路实验模板的制作步骤

1.印制电路板制作

按印制电路板设计要求,设计基本运算电路实验模板电路的印制电路板图,一个参考的基本运算电路实验模板电路PCB 图如图2.1.4所示。印制电路板制作过程请参考“全国大学生电子设计竞赛技能训练”一书。

2.元件焊接

按图2.1.4(a )所示,将元器件逐个焊接在印制电路板上,元件引脚要尽量的短。元件焊接方法与要求请参考“全国大学生电子设计竞赛技能训练”一书有关章节。注意:元器件布局图中所有元器件均未采用下标形式。

(a )元器件布局图

(b )顶层PCB 图

(c )底层PCB 图

图2.1.4 基本运算电路实验模板电路PCB 图

2.1.5 实训思考与练习题:制作求和运算电路实验模板

试采用MCP6021制作一个求和运算电路实验模板,一个参考的设计电路和PCB 图[16]如图2.1.5所示。实验的求和电路结构如图2.1.6所示。求和运算电路实验模板元器件清单与表

2.1.1相同。补充的实验求和电路元件清单如表2.1.2所列。

表2.1.2 实验求和电路元件清单

(b )元器件布局图

(a )电原理图

(c )顶层PCB 图(d )底层PCB 图

图2.1.5 求和运算电路实验模板电路和PCB 图

(a )反相求和放大器电路

(b )同相求和放大器电路

图2.1.6 实验的求和电路结构

2.1.6 实训思考与练习题:制作差分放大器电路实验模板

试采用MCP6021制作一个差分放大器电路实验模板,一个参考的设计电路和PCB 图[16]如图2.1.7所示。差分放大器电路实验模板元器件清单如表2.1.3所列。实验的差分放大器电路结构如图2.1.8所示,图中C S1 为0.1μF, RS1 , RS2 为 20.0 kΩ,R S3 为0.0 kΩ,R 1~R4、R L 为1.98

(a )电原理图

(b )元器件布局图

(d )顶层PCB 图

(e )底层PCB 图

图2.1.7 差分放大器电路实验模板电路和PCB 图

表2.1.1 符号 CP1 CR1, CR2, CU1,CU2,CS1 DP1 JP1, JP2 RR1, RR2,RS1, RS2 RS3 U1 U2 U1插座 R1~R4, RISO, RL CL 差分放大器实验模板元器件清单参数

1μF,10%,25V, X5R,0805,陶瓷电容器 0.1μF,10%,25V, X7R,0805,陶瓷电容器稳压

二极管,6.2V, 350mW ,SOT-23 插头20.0k? ,1/8W ,1% 0805,SMD,电阻

10.0k? ,1/8W ,1% 0805,SMD,电阻 MCP6021,SOT-23-5, 运算放大器 MCP6021 SOIC-8, 运算放大器 8-DIP,镀锡根据实验电路要求配置根据实验电路要求配置数量 1 4 1 2 4 1 1 1 1 6 1 (a)差分放大器电路结构(b)源配置电路结构图2.1.8 实验的差分放大器电路结构

第5章运算放大电路答案

习题答案 5.1 在题图5.1所示的电路中,已知晶体管V 1、V 2的特性相同,V U on BE 7.0,20)(==β。求 1CQ I 、1CEQ U 、2CQ I 和2CEQ U 。 解:由图5.1可知: BQ CQ BQ )on (BE CC I I R R I U U 213 1 1+=--即 11CQ11.01.4 2.7k 20I -7V .0-V 10CQ CQ I I k +=Ω Ω ? 由上式可解得1CQ I mA 2≈ 2CQ I mA I CQ 21== 而 1CEQ U =0.98V 4.1V 0.2)(2-V 1031=?+=+-R )I I (U BQ CQ CC 2CEQ U =5V 2.5V 2-V 1042=?=-R I U CQ CC 5.2 电路如题图5.2所示,试求各支路电流值。设各晶体管701.U ,)on (BE =>>βV 。 U CC (10V) V 1 R 3 题图5.1

解:图5.2是具有基极补偿的多电流源电路。先求参考电流R I , ()815 17 0266..I R =+?---=(mA ) 则 8.15==R I I (mA ) 9.0105 3== R I I (mA ) 5.425 4==R I I (mA ) 5.3 差放电路如题图5.3所示。设各管特性一致,V U on BE 7.0)(=。试问当R 为何值时,可满足图中所要求的电流关系? 解: 53010 7 0643..I I C C =-==(mA ) 则 I 56V 题图 5.2 R U o 题图5.3

2702 1 476521.I I I I I I C C C C C C == ==== mA 即 2707 065.R .I C =-= (mA ) 所以 61927 07 06...R =-= (k Ω) 5.4 对称差动放大电路如题图5.1所示。已知晶体管1T 和2T 的50=β,并设 U BE (on )=0.7V,r bb ’=0,r ce =。 (1)求V 1和V 2的静态集电极电流I CQ 、U CQ 和晶体管的输入电阻r b’e 。 (2)求双端输出时的差模电压增益A ud ,差模输入电阻R id 和差模输出电阻R od 。 (3)若R L 接V 2集电极的一端改接地时,求差模电压增益A ud (单),共模电压增益A uc 和共模抑制比K CMR ,任一输入端输入的共模输入电阻R ic ,任一输出端呈现的共模输出电阻R oc 。 (4) 确定电路最大输入共模电压围。 解:(1)因为电路对称,所以 mA ...R R .U I I I B E EE EE Q C Q C 52050 21527 062270221=+?-=+?-== = + V 1 V 2 + U CC u i1 u i2R C 5.1k ΩR L U o 5.1kΩ R C 5.1k Ω R E 5.1k Ω -6V R B 2k Ω 题图5.1 R B 2k Ω + - R L /2 + 2U od /2 + U id /2 R C R B V 1 (b) + U ic R C R B V 1 (c) 2R EE + U

运算放大器基本电路大全

运算放大器基本电路大全 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电

模拟电子技术答案第7章信号的运算和处理

第7章信号的运算和处理 自测题 一、现有电路: A.反相比例运算电路 B.同相比例运算电路 C.积分运算电路 D.微分运算电路 E.加法运算电路 F.乘方运算电路 选择一个合适的答案填入空内。 (1)欲将正弦波电压移相+90o,应选用( C )。 (2)欲将正弦波电压转换成二倍频电压,应选用( F )。 (3)欲将正弦波电压叠加上一个直流量,应选用( E )。 (4)欲实现A u=?100 的放大电路,应选用( A )。 (5)欲将方波电压转换成三角波电压,应选用( C )。 (6)欲将方波电压转换成尖顶波波电压,应选用( D )。 二、填空: (1)为了避免50H z电网电压的干扰进入放大器,应选用( 带阻 )滤波电路。 (2)已知输入信号的频率为10kH z~12kH z,为了防止干扰信号的混入,应选用( 带通 )滤波电路 (3)为了获得输入电压中的低频信号,应选用( 低通 )滤波电路。 (4)为了使滤波电路的输出电阻足够小,保证负载电阻变化时滤波特性不变,应选用( 有源 )滤波电路。 三、已知图T7.3所示各电路中的集成运放均为理想运放,模拟乘法器的乘积系数k大于零。试分别求解各电路的运算关系。 (a)

(b) 图T7.3 解:图(a)所示电路为求和运算电路,图(b)所示电路为开方运算电路。它们的运算表达式分别为: (a) 124 13121234 ( )(1)//f I I O f I R u u R u R u R R R R R R =-+++??+ 11 O O u u dt RC =- ? (b) '2 3322144 O I O O R R R u u u ku R R R =- ?=-?=-? 24 13 O I R R u u kR R = ?

第6章 信号运算电路 习题解答

第6章习题解答 自测题6 一、填空题 1.采用BJT 工艺的集成运放的输入级是( )电路,而输出级一般是( )电路。 2.在以下集成运放的诸参数中,在希望越大越好的参数旁注明“↑”,反之则注明“↓”。 vd A ( ),C M R K ( ),id R ( ),ic R ( ),o R ( ),BW ( ), B W G ( ),SR ( ),IO V ( ),dT dV IO /( ),IO I ( ),dT dI IO /( )。 3.集成运放经过相位补偿后往往具有单极点模型,此时-3dB 带宽BW 与单位增益带宽BWG 之间满足关系式( )。 4.集成运放的负反馈应用电路的“理想运放分析法则”由虚短路法则,即( )和虚开路法则,即( )组成。 5.理想运放分析法实质是( )条件在运放应用电路中的使用。 6.图T6-1a 是由高品质运放OP37组成的( )放大器,闭环增益等于( )倍。在此放大器中,反相输入端②称为( )。电路中10k Ω电位器的作用是( )。R P 的取值应为( )。 7.将图T6-1a 中电阻( )换成电容,则构成反相积分器。此时u o =( ),应取R P =( )。 8.将图T6-1a 中电阻( )换成电容,则构成反相微分器。此时. v o =( ),R P 应取( )。 9.图T6-1b 是( )放大器,闭环增益等于( )倍。应取R P =( )。 10.比较图T6-1a 和图T6-1b 两种放大器,前者的优点是没有( )电压,缺点是( )较小。 + - 图T6-1a 图T6-1b 11.将图T6-1b 中的电阻( )开路,电阻( )短路,电路即构成电压跟随器。 12.负反馈运放的输出电压与负载电阻几乎无关的原因是( )。

信号的运算及处理电路

信号的运算及处理电路 基本要求 · 正确理解:有源滤波电路 · 熟练掌握:比例、求和、积分运算电路;虚短和虚断概念 · 一般了解:其它运算电路 难点重点 1.“虚断”和“虚短”概念 如果为了简化包含有运算放大器的电子电路,总是假设运算放大器是理想的,这样就有“虚短”和“虚断”概念。 “虚短”是指在理想情况下,两个输入端的电位相等,就好像两个输入端短接在一起,但事实上并没有短接,称为“虚短”。虚短的必要条件是运放引入深度负反馈。 “虚断”是指在理想情况下,流入集成运算放大器输入端电流为零。这是由于理想运算放大器的输入电阻无限大,就好像运放两个输入端之间开路。但事实上并没有开路,称为“虚断”。 2.集成运算放大器线性应用电路 集成运算放大器实际上是高增益直耦多级放大电路,它实现线性应用的必要条件是引入深度负反馈。此时,运放本身工作在线性区,两输入端的电压与输出电压成线性关系,各种基本运算电路就是由集成运放加上不同的输入回路和反馈回路构成。 在分析由运放构成的各种基本运算电路时,一定要抓住不同的输入方式(同相或反相)和负反馈这两个基本点。 3.有源滤波电路 有源滤波电路仍属于运放的线性应用电路。滤波功能由RC 网络完成,运放构成比例运算电路用以提供增益和提高带负载能力。与无源滤波电路相比有以下优点: (1)负载不是直接和RC 网络相连,而是通过高输入阻抗和低输出阻抗的运放来连接,从而使滤波性能不受负载的影响; (2)电路不仅具有滤波功能,而且能起放大作用。 8.1基本运算电路 一、比例运算电路 1.反相比例运算电路(反相输入方式) 保密

(1)闭环电压放大倍数 Avf=Vo/Vi=-R2/R1 (2)当R2=R1时,闭环电压放大倍数为-1,此时的运算放大电路称为反相器。 (3)由于“虚短”,且同相输入端接地,所以此种组态电路具有虚地特性,即反相输入端近似地电位。 (4)输入电阻小。 2.同相比例运算电路(同相输入方式) (1)闭环电压放大倍数 Avf=Vo/Vi=(R2+R1)/R1=1+R2/R1 (2)当R1开路时,Vo=Vi ,此时的运算放大电路称为电压跟随器。 (3)由于“虚短”,且反相输入端信号为 (Vo*R1)/(R2+R1)不为0,所以同相输入端信号等于 (Vo*R1)/(R2+R1)也不为0。即同相电路组态引入共模信号。 (4)输入电阻较大。 二、加、减运算电路 加、减运算电路均有反相输入和同相输入两种输入方式。对于此种电路的计算一般采用叠加定理。 1.加法电路 Vo=-(V1/R1+V2/R2).Rf 若将V2经一级反相器接至加法器输入端,则可实现减法运算: Vo=-(V1/R1-V2/R2).Rf 2.减法运算电路(差动输入方式) (1)根据叠加定理,可以认为输出电压Vo 是在两个输入信号V1和V2分别作用下的代数和,即 Vo=-(R2/R1)V1+[R2'/(R1'+R2')].[(R1+R2)/R1].V2 (2)当R1=R2=R1'=R2' 时,Vo=V2-V1,实现减法运算。 (3)由于“虚短”,同相输入端输入信号和反相输入端输入信号等于[R2'/(R1'+R2')]. V保密

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

运算放大器16个基本运算电路(00)

一、电路原理分析与计算 1.反相比例运算电路 输入信号从反相输入端引入的运算,便是反相运算。反馈电阻R F跨接在输出端和反相输入端之间。根据运算放大器工作在线性区时的虚开路原则可知:i =0,因此i i= i f。电路如图1所示, 根据运算放大器工作在线性区时的虚短路原则可知:u-= u+= 0 由此可得:R f U0U i R1 因此闭环电压放大倍数为: u o R f A uo U i R1 2.同相比例运算电路 输入信号从同相输入端引入的运算,便是同相运算。电路如图2所示, R1 10k Q 图1

根据运算放大器工作在线性区时的分析依据:虚短路和虚开路原则3.反相输入加法运算电路 在反相输入端增加若干输入电路,称为反向输入加法运算电路。电路如图 3 所示, 计算公式如下, 平衡电阻R2 R f//R i//R3,当R f R i R3时,输出电压u o (u i U2)因此得: 开环电压放大倍数 R f R i A uf 1 U o U1 U2 Rf(R R2)

4.减法运算电路 减法运算电路如图4所示,输入信号U i1、U i2分别加至反相输入端和同相输入端,这种形式的电路也称为差分运算电路。 U OM ( dUi ) ( - )max dt 输出电压为: U o (1 旦) U i2 R I R2 R3 U i1 R 当R i R2 R3 R f时,输出电压U o U i2 U i1 5.微分运算电路 微分运算电路如图5所示, R2 ------ -------------- 15k Q C2 22nF --------- I I --------- V3 芒匚Q^v丄 U1A : 1 ------------------ ^8 TL082CD V212 V Ext Trig 匕 电路的输出电压为u o为: U o 式中,R2C1为微分电路的时间常数则 R2C1的值必须满足: R2C1空 dt 若选用集成运放的最大输出电压为U OM , R2C1 R2 R f XFG1 R1 C1 1=1--------- 1k Q22nF

运算放大器基本电路——11个经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB 以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。

信号运算电路-习题解答

第6章自测题、习题解答 自测题 一、填空题 1.采用BJT 工艺的集成运放的输入级是()电路,而输出级一般是()电路。 2.在以下集成运放的诸参数中,在希望越大越好的参数旁注明“”,反之则注明“”。 (),(),(),(),(),(),(),SR (),(), (),(),()。 3.集成运放经过相位补偿后往往具有单极点模型,此时-3dB 带宽BW 与单位增益带宽BWG 之间满足关系式()。 4.集成运放的负反馈应用电路的“理想运放分析法则”由虚短路法则,即()和虚开路法则,即()组成。 5.理想运放分析法实质是()条件在运放应用电路中的使用。 6.图T6-1a 是由高品质运放OP37组成的()放大器,闭环增益等于()倍。在此放大器中,反相输入端②称为()。电路中10k 电位器的作用是()。R P 的取值应为()。 7.将图T6-1a 中电阻()换成电容,则构成反相积分器。此时u o =(),应取R P =()。 8.将图T6-1a 中电阻()换成电容,则构成反相微分器。此时o =(),R P 应取()。 9.图T6-1b 是()放大器,闭环增益等于()倍。应取R P =()。 10.比较图T6-1a 和图T6-1b 两种放大器,前者的优点是没有()电压,缺点是()较小。 图T6-1a 图T6-1b 11.将图T6-1b 中的电阻()开路,电阻()短路,电路即构成电压跟随器。 12.负反馈运放的输出电压与负载电阻几乎无关的原因是()。 13.从正弦稳态分析的观点来观察微分器和积分器,二者都是()移相器。但微分器输出电压的振幅与输入信号频率成(),而积分器却成()。 ↑↓vd A CMR K id R ic R o R BW BW G IO V dT dV IO /IO I dT dI IO /Ω. v + -

运算放大器基本电路

一:比例运算电路定义:将输入信号按比例放大的电路,称为比例运算电路。分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分)比例放大电路是集成运算放大电路的三种主要放大形式(1)反向比例电路输入信号加入反相输入端,电路如图(1)所示:输出特性:因为:,所以:从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。反向比例电路的特点: 一:比例运算电路 定义:将输入信号按比例放大的电路,称为比例运算电路。 分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分) 比例放大电路是集成运算放大电路的三种主要放大形式 (1)反向比例电路输入信号加入反相输入端,电路如图(1)所示: 输出特性:因为:, 所以: 从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。 反向比例电路的特点: (1)反向比例电路由于存在"虚地",因此它的共模输入电压为零.即:它对集成运放的共模抑制比要求低 (2)输入电阻低:r i=R1.因此对输入信号的负载能力有一定的要求. (2)同相比例电路 输入信号加入同相输入端,电路如图(2)所示: 输出特性:因为:(虚短但不是虚地);;

所以: 改变R f/R1即可改变Uo的值,输入、输出电压的极性相同 同相比例电路的特点: (1)输入电阻高;(2)由于(电路的共模输入信号高),因此集成运放的共模抑制比要求高 (3)差动比例电路 输入信号分别加之反相输入端和同相输入端,电路图如图(3)所示: 它的输出电压为: 由此我们可以看出它实际完成的是:对输入两信号的差运算。二:和、差电路 (1)反相求和电路 它的电路图如图(1)所示:(输入端的个数可根据需要进行调整)其中电阻R'为: 它的输出电压与输入电压的关系为: 它可以模拟方程:。它的特点与反相比例电路相同。它可十

运算放大器16个基本运算电路概论

一、 电路原理分析与计算 1. 反相比例运算电路 输入信号从反相输入端引入的运算,便是反相运算。反馈电阻R F 跨接在输出端和反相输入端之间。根据运算放大器工作在线性区时的虚开路原则可知:i -=0,因此i 1=i f 。电路如图1所示, 图1 根据运算放大器工作在线性区时的虚短路原则可知:u -=u +=0。 由此可得: 01 f i R u u R =- 因此闭环电压放大倍数为: 1 o f uo i u R A u R = =- 2. 同相比例运算电路 输入信号从同相输入端引入的运算,便是同相运算。电路如图2所示,

图2 根据运算放大器工作在线性区时的分析依据:虚短路和虚开路原则 因此得: 1 (1)f o i R u u R =+ 开环电压放大倍数 1 1o f uf i u R A u R = =+ 3. 反相输入加法运算电路 在反相输入端增加若干输入电路,称为反向输入加法运算电路。电路如图3 所示, 图3 计算公式如下, 12 12 ( )o f u u u R R R =-+ 平衡电阻213////f R R R R =,当13f R R R ==时,输出电压012()u u u =-+ 4. 减法运算电路 减法运算电路如图4所示,输入信号1i u 、2i u 分别加至反相输入端和同相

输入端,这种形式的电路也称为差分运算电路。 图4 输出电压为: 2211231 (1)f f o i i R R R u u u R R R R =+ -+ 当123f R R R R ===时,输出电压21o i i u u u =- 5. 微分运算电路 微分运算电路如图5所示, 图5 电路的输出电压为o u 为: 21 i o du u R C dt =- 式中,21R C 为微分电路的时间常数。若选用集成运放的最大输出电压为OM U ,则21R C 的值必须满足: 21max ()OM i U R C du dt <= 6. 积分运算电路 积分运算电路如图6所示,

模拟信号运算电路

第六章模拟信号运算电路典型例题 本章习题中的集成运放均为理想运放。 分别选择“反相”或“同相”填入下列各空内。 (1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个输入端的电位等于输入电压。 (2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。 (3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻中的电流。 (4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。 解:(1)反相,同相(2)同相,反相(3)同相,反相 (4)同相,反相 填空: (1)运算电路可实现A u>1的放大器。 (2)运算电路可实现A u<0的放大器。 (3)运算电路可将三角波电压转换成方波电压。 (4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。 (5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。 (6)运算电路可实现函数Y=aX2。 解:(1)同相比例(2)反相比例(3)微分(4)同相求和(5)反相求和(6)乘方

电路如图所示,集成运放输出电压的最大幅值为±14V ,填表。 图 u I /V u O 1/V u O 2/V 解:u O 1=(-R f /R ) u I =-10 u I ,u O 2=(1+R f /R ) u I =11 u I 。当集成运放工作到非线性区时,输出电压不是+14V ,就是-14V 。 u I /V u O 1/V -1 -5 -10 -14 u O 2/V 11 14 设计一个比例运算电路, 要求输入电阻R i =20k Ω, 比例系数为-100。 解:可采用反相比例运算电路,电路形式如图(a)所示。R =20k Ω,R f =2M Ω。 电路如图所示,试求: (1)输入电阻; (2)比例系数。 解:由图可知R i =50k Ω,u M =-2u I 。 342R R R i i i += 即 3 O M 4M 2M R u u R u R u -+=- 输出电压 I M O 10452u u u -== 图

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作 一.实验目的 1.掌握运算放大器和滤波电路的基本工作原理; 2.掌握运用运算放大器实现滤波电路的原理方法; 3.会用Multisim10对电路进行仿真分析; 二.实验内容 1.讲解运算放大器和滤波电路的基本工作原理; 2.讲解用运算放大器实现滤波电路的原理方法; 3.用Multisim10对二阶有源低通滤波电路进行仿真分析; 三.实验仪器 1.支持Win2000/2003/Me/XP/vista的PC机; 2.Multisim10软件; 四.实验原理 (一)运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线图2运算放大器输入输出端图示

图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 2.理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 3. 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: i 1 f O U R R U -=

模电习题7章 信号的运算和处理题解

第七章信号的运算和处理 自测题 一、判断下列说法是否正确,用“√”或“×”表示判断结果。 (1)运算电路中一般均引入负反馈。() (2)在运算电路中,集成运放的反相输入端均为虚地。() (3)凡是运算电路都可利用“虚短”和“虚断”的概念求解运算关系。 ()(4)各种滤波电路的通带放大倍数的数值均大于1。() 解:(1)√(2)×(3)√(4)× 二、现有电路: A. 反相比例运算电路 B. 同相比例运算电路 C. 积分运算电路 D. 微分运算电路 E. 加法运算电路 F. 乘方运算电路 选择一个合适的答案填入空内。 (1)欲将正弦波电压移相+90O,应选用。 (2)欲将正弦波电压转换成二倍频电压,应选用。 (3)欲将正弦波电压叠加上一个直流量,应选用。 (4)欲实现A u=-100的放大电路,应选用。 (5)欲将方波电压转换成三角波电压,应选用。 (6)欲将方波电压转换成尖顶波波电压,应选用。 解:(1)C (2)F (3)E (4)A (5)C (6)D 三、填空: (1)为了避免50Hz电网电压的干扰进入放大器,应选用滤波电路。 (2)已知输入信号的频率为10kHz~12kHz,为了防止干扰信号的混入,应选用滤波电路。 (3)为了获得输入电压中的低频信号,应选用滤波电路。 (4)为了使滤波电路的输出电阻足够小,保证负载电阻变化时滤波特性不变,应选用滤波电路。 解:(1)带阻(2)带通(3)低通(4)有源

四、已知图T7.4所示各电路中的集成运放均为理想运放,模拟乘法器的乘积系数k 大于零。试分别求解各电路的运算关系。 图T7.4 解:图(a )所示电路为求和运算电路,图(b )所示电路为开方运算电 路。它们的运算表达式分别为 I 3 14 2O 2 O 4 3'O 43I 12O2 O1O I34 34 21f 2I21I1f O1 )b (d 1 )1()( )a (u R kR R R u ku R R u R R u R R u t u RC u u R R R R R R R u R u R u ?= ?-=-=-=- =?+?+++-=?∥

运算放大器详细的应用电路(很详细)

§8.1 比 例运算电 路 8.1.1 反相比例电路 1. 基本电路 电压并联负反馈输入端虚短、虚断 特点: 反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低 输出电阻小,带负载能力强 要求放大倍数较大时,反馈电阻阻值高,稳定性差。 如果要求放大倍数100,R1=100K,Rf=10M 2. T型反馈网络(T型反馈网络的优点是什么?) 虚短、虚断

8.1.2 同相比例电路 1. 基本电路:电压串联负反馈 输入端虚短、虚断 特点: 输入电阻高,输出电阻小,带负载能力强 V-=V+=V i,所以共模输入等于输入信号,对运放的共模抑制比要求高 2. 电压跟随器 输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2 加减运算电路 8.2.1 求和电路 1.反相求和电路 2.

虚短、虚断 特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系 3.同相求和电路 4. 虚短、虚断 8.2.2 单运放和差电路

8.2.3 双运放和差电路 例1:设计一加减运算电路 设计一加减运算电路,使 V o=2Vi1+5Vi2-10Vi3 解:用双运放实现

如果选Rf1=Rf2=100K,且R4= 100K 则:R1=50K R2=20K R5=10K 平衡电阻 R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K 例2:如图电路,求A vf,Ri 解: §8.3 积分电路和微分电路 8.3.1 积分电路 电容两端电压与电流的关系:

积分实验电路 积分电路的用途 将方波变为三角波(Vi:方波,频率500Hz,幅度1V)

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 1 2 -=i R o V R R V R R V 1 212)1(-+ =

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(1 2 +=R o V R R V R R V 1 2i 12)1(-+ =

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

负反馈放大电路与基本运算电路

负反馈放大电路与基本运算电路 4.1负反馈放大电路的组成及基本类型 教学要求: 1.理解负反馈的概念; 2.掌握放大电路中反馈类型的判断; 3.理解反馈对放大电路输出电压和电流的影响。 概述 把电路输出量的一部分或全部反送回输入端称为反馈。反馈有正反馈和负反馈,在电路中引入负反馈可使电路性能得到明显改善。利用反馈性质,在集成运放的外接线端连接不同的线性反馈元件,可构成比例、加法、减法、积分、微分等运算电路。 一、反馈放大电路的组成及基本关系式 (一)反馈放大电路的组成及有关关系式 1.电路组成 含有反馈网络的放大电路称反馈放大电路,其组成如下图所示。图中,A称为基本放大电路,F表示反馈网络,反馈网络一般由线性元件组成。由图可见,反馈放大电路由基本放大电路和反馈网络构成一个闭环系统,因此又把它称为闭环放大电路,而把基本放大电路称为开环放大电路。x i、x f、x id和x o分别表示输入信号、反馈信号、净输入信号和输出信号,它们可以是电压,也可以是电流。图中箭头表示信号的传输方向,由输入端到输出端称为正向传输,由输出端到输入端则称为反向传输。因为在实际放大电路中,输出信号x o经由基本放大电路的内部反馈产生的反向传输作用很微弱,可略去,所以可认为基本放大电路只能将净输入信号x id正向传输到输出端。同样,在实际反馈放大电路中,输入信号x i通过反馈网络产生的正向传输作用也很微弱,也可略去,这样也可认为反馈网络中只能将输出信号x o反向传输到输入端。 2.基本关系式

(二)反馈的类型 1.正反馈和负反馈 正反馈——反馈使净输入电量增加,从而使输出量增大,即反馈信号增强了输入信号。 负反馈——反馈使净输入电量减小,从而使输出量减小,即反馈信号削弱了输入信号。 判别方法:瞬时极性法 步骤:(1)假设输入信号某一时刻对地电压的瞬时极性;(2)沿着信号正向传输的路经,依次推出电路中相关点的瞬时极性;(3)根据输出信号极性判断反馈信号的极性;(4)判断出正负反馈的性质。 2.直流反馈和交流反馈 直流反馈——反馈回的信号为直流量的反馈。 交流反馈——反馈回的信号为交流量的反馈。 交、直流反馈——反馈回的信号既有直流量又有交流量的反馈。 例题1.分析下图电路是否存在反馈,是正反馈还是负反馈?直反馈还是交流反馈? 解:R E 介于输入输出回路,故存在反馈。根据瞬时极性法,反馈使u id 减小,为负反馈。因为经过反 馈元件R E 的反馈号既有直流量,也有交流量,故该反馈同时存在直流反馈和交流反馈。 二、负反馈放大电路的基本类型 (一)电压反馈和电流反馈 电压反馈——反馈信号取样于输出电压。 判别方法:将输出负载R L 短路(或u o = 0 ),若反馈消失则为电压反馈。 电流反馈——反馈信号取样于输出电流。 判别方法:将输出负载R L 短路(或u o = 0 ),若反馈信号仍然存在则为电流反馈。 (二)串联反馈和并联反馈 串联反馈——在输入端,反馈信号与输入信号以电压相加减的形式出现。u id =u i -u f

运算放大器详细的应用电路(很详细)

§8.1比 例运算电 路 8.1.1反相比例电路 1.基本电路 电压并联负反馈输入端虚短、虚断 特点: 反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低 输出电阻小,带负载能力强 要求放大倍数较大时,反馈电阻阻值高,稳定性差。 如果要求放大倍数100,R1=100K,Rf=10M 2. T型反馈网络(T型反馈网络的优点是什么?) 虚短、虚断

8.1.2同相比例电路 1.基本电路:电压串联负反馈 输入端虚短、虚断 特点: 输入电阻高,输出电阻小,带负载能力强 V-=V+=Vi,所以共模输入等于输入信号,对运放的共模抑制比要求高 2.电压跟随器 输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2加减运算电路 8.2.1求和电路 1.反相求和电路 2.

虚短、虚断 特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系 3.同相求和电路 4. 虚短、虚断 8.2.2单运放和差电路

8.2.3双运放和差电路 例1:设计一加减运算电路 设计一加减运算电路,使Vo=2Vi1+5Vi2-10Vi3 解:用双运放实现

如果选Rf1=Rf2=100K,且R4= 100K 则:R1=50K R2=20K R5=10K 平衡电阻R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K 例2:如图电路,求Avf,Ri 解: §8.3积分电路和微分电路 8.3.1积分电路 电容两端电压与电流的关系:

积分实验电路 积分电路的用途 将方波变为三角波(Vi:方波,频率500Hz,幅度1V)

介绍几种基本信号运算电路

几种基本信号运算电路 1、 反相比例运算器 注: RF ——反馈电阻 R1——输入回路电阻 RP ——补偿电阻 RP=R F∥R1 ——亦称直流平衡电阻 性质一:同相端,反 相端等电位。 性质二:同相端及反相端之间电流为0。 注:以上性质为理想运放。 由性质二:U +=0 i1=iF i1=U1/R1=iF=-Uo/RF Af=Uo/Ui=-RF/R1 Af——理想闭环放大倍数。 反相比例运算器 Uo i1 A R P R F R1 i F

2、 同相比例运算器 RP=R 1∥RF i1=-U-/R1=-U+/R1=-U1/R1 U-=U+=U1 iF=(U1-U0)/RF i1=iF Af=Uo/Ui=1+RF/R1 注:当R1为无穷大(即开路)或RF=0(即短路),则Af=1.此时成 为良好的电压跟随器。 1、同相输入时,输出电压与输入电压同相;反相输入时,输入电压 与输出电压反相; 2、同相输入时,闭环电压级放大倍数Af≥1;反相输入时,Af≤1; 3、同相输入时,输入电阻极高;反相输入时,输入电阻=输入回路 电阻; 4、同相输入时,同相端、反相端电压均等于输入电压;反相输入时, 同相端和反相端均为地单位,也称虚地。 i F Ui Uo i1 A R P R F R1同相比例运算器

Uo =Uo1+Uo2 Uo1=-(R2/R1)×Ui1 Uo2=(1+R2/R1)×[R4/(R3+R4)]×Ui2 Uo =(R2/R1)×(Ui1-Ui2) R4/R3=R2/R1时, Uo =R2/R1×(Ui2-Ui1) Af =Uo/(Ui2-Ui1) =R2/R1或Af =Uo/(Ui1-Ui2) =-R2/R1 注意:R ~R4为四只平衡电阻。 R 4 Ui2 Ui1差动运算器 Uo A R 3 R 2 R1

信号分析与处理实验一基本运算单元

+--=u u u A 0∞ 实验一 基本运算单元 一、实验目的 1、熟悉由运算放大器为核心元件组成的基本运算单元。 2、掌握基本运算单元特性的测试方法。 二、实验设备与仪器 1、信号与系统实验箱TKSS-A 型或TKSS-B 型或TKSS-C 型。 2、双踪示波器。 三、实验原理 1、运算放大器 运算放大器实际就是高增益直流放大器,当它与反馈网络连接后,就可实现对输入信号的求和、积分、微分、比例放大等多种数学运算,运算放大器因此而得名。运算放大器的电路符号如图1-1所示。由图可见, 它具有两个输入端和一个输出端:当信号从“-” 端输入时,输出信号与输入信号反相,故“-” 端称为反相输入端;而从“+”端输入时,输出 信号与输入信号同相,故称“+”端为同相输 入端。运算放大器有以下的特点: (1)高增益 运算放大器的电压放大倍数用下式表示: ( 1-1) 式中,u 0为运放的输出电压;u +为“+”输入端对地电压;u -为“-”输入 端对地电压。不加反馈(开环)时,直流电压放大倍数高达104~106。 (2)高输入阻抗 运算放大器的输入阻抗一般在106Ω~1011Ω范围内。 (3)低输出阻抗 运算放大器的输出阻抗一般为几十到一、二百欧姆。当它工作于深度负反馈状态,则其闭环输出阻抗将更小。

为使电路的分析简化起见,人们常把上述的特性理想化,即认为运算放大器的电压放大倍数和输入阻抗均为无穷大,输出阻抗为零。据此得出下面两个结论: 1)由于输入阻抗为无穷大,因而运放的输入电流等于零。 2)基于运放的电压放大倍数为无穷大,输出电压为一有限值,由式(1-1)可知,差动输入电压(u +-u -)趋于零值,即_u u =+ 2、基本运算单元 在对系统模拟中,常用的基本运算单元有加法器、比例运算器、积分器和微分器四种,现简述如下: (1) 加法器 图1-2为加法器的电路原理图。基于运算放大器的输入电流为零,则由图1-2得 (1 -2) 同理得: 由上式求得: (1-3) 因为 所以 u o =u 1+u 2+u 3 (1-4) 即运算放大器的输出电压等于输入电压的代数和。 (2)比例运算器 ①反相运算器 图1-3为反相运算器的电路图。由于放大器的“+”端和“-”端均无输入电流,所以u +=u -=0,图中的A 点为“虚地”,于是得 i F =i r 即 (1-5) R 33- -=-=u R u i p -o u u 41=-- -=-=u R i u u F p 40R u u R u u R u u R u + +++-+- +-=32143 21u u u u ++=++ -=u u ?=-r i F R u R u 0K R R u u r F i o ==-

相关文档
最新文档