ASTER遥感影像水体信息提取方法研究

ASTER遥感影像水体信息提取方法研究
ASTER遥感影像水体信息提取方法研究

收稿日期:2008206204;修订日期:2008208225

基金项目:安徽省教育厅自然科学基金资助项目(K J 2007B219);安徽省教育厅教学研究项目(2007J YXM208)。

作者简介:黄海波(1982-)男,硕士研究生,主要从事遥感图像处理、土地利用/覆盖变化研究。E 2mail :hhb1001@https://www.360docs.net/doc/8910134218.html, 。

ASTER 遥感影像水体信息提取方法研究

黄海波1,2,赵 萍1,2,陈志英1,郭 伟1,2

(1.安徽师范大学国土资源与旅游学院,安徽芜湖 241000;

2.安徽师范大学GIS 重点实验室,安徽芜湖 241000)

摘要:以安徽省芜湖市为试验区,首先对试验区水体和其它各类地物的光谱特征进行分析,探讨水体在ASTER 遥感影像各个波段与其它地物之间的可分性,然后经过反复实验和分析,构建了基于波段阈值和谱间关系的水体提取模型:B2>B3,B1+B6<127,B3+B4<54和B3<24,最后将该方法提取结果与非监督分类、监督分类和植被指数法提取结果进行评价和比较。实验结果表明该方法可较好地提取研究区各类水体,分类精度明显优于传统提取方法,且简单实用,但在对光谱特征分析过程中样本点选取要求较高。

关 键 词:ASTER ;水体信息提取;谱间关系

中图分类号:TP 79 文献标志码:A 文章编号:100420323(2008)0520525204

1 引 言

水资源分布的调查与监测是控制水污染和生态

保护的前提,而卫星数据具有监测范围广、获取周期

短、地物信息丰富的特点,对调查与监测水资源分布

起着重要的作用。国内外众多学者对水体遥感专题

信息的提取进行了研究,如Bartolucci [1]等通过对

Landsat MSS 数据的研究,指出MSS 波段中近红外

波段为提取水体的最佳波段;秦其明[2]等通过像素

的重组,在区域分割和边界跟踪的基础上,对卫星图

像进行水体形状特征的抽取与描述,实现不同水体

类型的识别;陈华芳[3]等对Landsat ETM +影像,分

别采用了阈值法、差值法和阈值法的结合运用、多

波段谱间关系法和阈值法的结合这3种方法对湿

地进行识别;王志辉,易善祯[4]通过对5种不同水体提取模型(RV I ,NDV I ,NDWI ,MNDWI ,NDSI )原理分析,结合具体实例(洞庭湖水域)进行水体遥感提取来说明5种方法提取水体的差异,从而确定在不同时期和不同用途时所采用最佳的水体提取模型。本文从水体的遥感信息光谱特征入手,分析各地物类型在ASTER 数据各个波段所记录的波谱信息情况差异,探讨水体与其它地物的区分方法。ASTER 是搭载在Terra 卫星上的星载热量散发和反辐射仪,于1999年12月18日发射升空,由日本国际贸易和工业部制造。ASTER 通过从可见光到热红外14个频道获取整个地表的高分辨解析图像数据-黑白立体照片,为多个相关的地球环境资源研究领域提供科学、实用的卫星数据。其主要参数如表1[5]。

表1 ASTER 卫星主要参数表

T able 1 Main parameters table of ASTER satellite

波段

B1B2B3N B4B5B6B7B8B9B10B11B12B13B14波长(um )0.52

0.630.76 1.6 2.145 2.185 2.235 2.295 2.368.1258.4758.92510.2510.950.630.69

0.86 1.7 2.185 2.225 2.285 2.365 2.438.4758.8259.27510.9511.65分辨率(m )15

15153030303030309090909090第23卷 第5期2008年10月遥 感 技 术 与 应 用REMOTE SENSIN G TECHNOLOGY AND APPLICATION V ol.23 N o.5

Oct.2008

2 试验区及其数据

芜湖市位于安徽省东南部,地处长江下游南岸,中心地理坐标为119°21′E、31°20′N。辖区水资源分布广泛、丰富,长江自城西南向东北缓缓流过,青弋江自东南向西北,穿城而过,汇入长江。本文使用2003年4月11日过境的ASTER数据,景号为031/006,选择分辨率较好的前9个波段数据,并重采样为15m×15m像元大小,图像经过几何校正和辐射校正后,选取以800×1000像元的子影像作为研究区。通过目视判定,将试验区地物类型分为5大类:水体、林地、耕地、居民点、道路及工矿用地(道路及工矿用地在ASTER遥感影像上所反映的光谱特征相似难以区分故归为一类)。

3 水体信息提取

3.1 水体的影像特征分析

卫星传感器主要通过接收和记录地球表面反射、发射的电磁波来获得地表各类地物的信息。由于各类地物结构、组成及物理、化学性质的差异导致太阳光的吸收和反射的程度不同,它们在卫星传感器上所记录的电磁波谱信息也各有不同[6~10]。水体在可见光范围内,其反射率总体上比较低,并随着波长的增大逐渐降低,到波长为0.8um时其反射率约为2%左右,到了波长为1.6um时水体几乎成为全吸收体,其相应的灰度值也非常低。而且不同水体的水面性质、水体中悬浮物的性质和含量、水深和水底特性等不同,也会形成传感器上接收到的反射光谱特征存在差异[11]。本试验区的水域主要包括长江水、湖泊水和一些水库、水塘等小块水域,且本区是城市环境下的水域,由于城市污染、悬浮泥沙和水生植物等的缘故,其在遥感影像上所记录的波谱信息也不同。其中长江水成带状分布,纹理较为均匀,色调较浅,由于泥沙含量较其它类水体较高,故长江水对光谱的反射率较高些;市域范围内的湖泊和河流成线状或面状分布,色调较深,纹理相对复杂,由于环境污染水体呈富营养化,4月份水生植物较多,其光谱反射率应仅次于长江水。而城郊结合部包括部分郊区范围内的水体较清澈,其光谱反射率应最小。所以我们在对水体光谱特征进行分析时注意了不同水体的差异,样本的选取也包含了各类水体。

3.2 水体与背景地物的光谱特征分析

在ASTER遥感影像上就每种地物类型取若干具有典型性的样本点加以统计的结果如表2。根据各类地物类型的亮度平均值作出试验区各类地物波谱响应曲线如图1,图中折线表示各地物类型随波长增大其灰度变化的趋势

图1 地物类型在各波段的平均灰度值折线图

Fig.1 Average gray broken line of type of the

earth’s surface in every b and

表2 典型地物样本的灰度统计值

T able2 G ray statistics of typical features samples

水体(211)①MAX MIN AV E

林地(170)

MAX MIN AV E

居民点(542)

MAX MIN AV E

道路及工矿(103)

MAX MIN AV E

耕地(323)

MAX MIN AV E

B1966375775460113657825590142906571 B268344553303683425422268110643844 B33318225434456127371334473704457 B417810402331432431763454402631 B516912322024402631653448312024 B617911371926442634703755362126 B715810301823412431623346311823 B814810321822472633693251311923 B9171113331823482834723250321823

注:①代表水体采样点的个数。

625 遥 感 技 术 与 应 用 第23卷 

由表2和图1可见:总体上水体在ASTER影像上所记录的灰度值比较低,并随着波长的增大逐渐降低,是个递减的过程,到了第4波段以后水体几乎成为全吸收体,灰度值变化范围很小;林地和耕地变化趋势很相似,在前4个波段的变化率较水体要大,从1波段开始到4波段经历了一个极小值和一个极大值,从表2中可以看到林地和耕地3波段和4波段灰度值最小值的和比3、4波段中水体的灰度值最大值的和都要大,并且从4波段到9波段,林地和耕地灰度值的最小值都比水体灰度值的最大值都要大,由此说明可利用2波段和3波段之间的波谱关系B2>B3或B1-B3的大小将水体与其区别开来;居民点的灰度变化趋势和水体变化趋势很相似,从1波段到4波段是个递减的过程,但从表2中发现4波段到9波段居民点灰度值的最小值高于水体灰度值的最大值,由此说明水体和居民点易区分,利用B3+B4的大小或4-9波段的阈值即可;道路及工矿用地具有高反射率的特点,故在遥感影像上所记录的灰度值相对要比其它地物明显,特别是在前3个波段表现尤为突出,可利用限制B1+B6、B2+ B6或者B3+B6的大小将其与水体区分开来。综上所述,水体与其它地物区分性比较好,但本试验区地物类型只分为5大类,故利用了3波段阈值防止其它没有细分的类和水体产生混淆。

3.3 水体自动提取

通过以上分析可知,利用各地物类型波段阈值和谱间关系可将水体与其它地类区分开来。反复实验最终确定最佳提取水体表达式为:B2>B3, B1+B6<127,B3+B4<54和B3<24,利用此模型即可实现对研究区水体的自动提取,结果如图2(见图版Ⅰ)所示。

4 结 语

为了便于比较,利用传统的地物提取方法———监督分类、非监督分类和基于植被指数进行水体提取,结果见图3~图5(见图版Ⅰ)。由图可见提取效果都不如利用谱间关系和谱间阈值相结合的方法精度高,从表3中可以看出基于谱间关系和阈值法提

表3 水体分类试验的精度评价

T able3 Accuracy assessment of category test in w ater body

谱间关系和阈值法非监督分类监督分类植被指数生产者精度(%)94.0086.0088.0090.53用户精度(%)93.3781.3185.8086.11总体精度(%)92.0783.5283.1484.22 Kappa系数0.9150.8120.8350.867

取的水体精度明显要高于其它分类方法,生产者精度、用户精度和总体精度达90%以上,其中Kappa 系数分别比非监督分类、监督分类和植被指数法高0.103、0.08和0.048。但图2中右下角有一片旧工厂中部分被当作水体误提出来,主要是因为这块工厂由于固体物体废弃物的堆积,地面潮湿,其灰度和被污染的水体各波段灰度值很接近,笔者也将对此问题作出进一步的研究和探讨。

参考文献:

[1] Bartolucci L A.Field Measurement s of t he Spectral Response

of Nature Waters[J].Photgrammeric Engineering and Re2

mote Sensing,1977,XL III(5):5952598.

[2] Qin Q M,Yuan Y H,Lu R J,et al.The Recognition of Various

T ypes of Water Bodies on Satellite Image[J].G eographical Re2

search,2001,20(1):62267.[秦其明,袁吟欢,陆荣健.卫星图像

中不同水体类型识别研究[J].地理研究,2001,20(1):62267.] [3]Chen F https://www.360docs.net/doc/8910134218.html,parison of Water Extraction Met hods in

Mountainous Plateau Region from TM Image[J].Remote Sensing Technology and Application,2004,19(6):4792483.

[陈华芳.山地高原地区TM影像水体信息提取方法比较[J].

遥感技术与应用,2004,19(6):4792483.]

[4] Wang Z H,Y i S https://www.360docs.net/doc/8910134218.html,parison and Research on t he Different

Index Models Used in Water Extraction by Remote Sensing [J].Science Technology and Engineering,2007,4(4):5342 537.[王志辉,易善祯.不同指数模型法在水体遥感提取中的比较研究[J].科学技术与工程,2007,4(4):5342537.]

[5] Xu H Q.Fast Information Extraction of Urban Built2up Land

Based on t he Analysis of Spectral Signature and Normalized Difference Index[J].Geographical Research,2005,24(2): 3112320.[徐涵秋.基于谱间特征和归一化指数分析的城市建筑用地信息提取[J].地理研究,2005,24(2):3112320.] [6] Li H T,Tian Q J.An Introduction to ASTER Data and AS2

TER Mission[J].Remote Sensing Information,2004,47(3): 53255.[李海涛,田庆久.ASTER数据产品的及其计划介绍[J].遥感信息,2004,47(3):53255.]

[7] Liu Y J,Yang Z D.The Principle and Arit hmetic of MODIS

[M].Beijing:Science Press,2001.[刘玉洁,杨忠东.MODIS

725

第5期 黄海波等:ASTER遥感影像水体信息提取方法研究

遥感信息处理原理与算法[M].北京:科学出版社.2001.] [8] Peng D Z,Guo S L,Huang Y F,et al.Flood Disaster Monito2

ring and Assessing System Based on MODIS and GIS[J].

Journal of Wuhan University of Hydraulic and Electric Engi2 neering,2004,37(4):7210,31.[彭定志,郭生练,黄玉芳,等.

基于MODIS和GIS的洪灾监测评估系统[J].武汉大学学报:工学版,2004,37(4):07210,31.]

[9] Wu S,Zhang Q W.Met hod and Model of Water Body Extrac2

tion Based on Remote Sensing Data of MODIS[J].Computer &Digital Engineering,2005,33(7):01204.[吴赛,张秋文.基于MODIS遥感数据的水体提取方法及模型研究[J].计算机

与数字高程,2005,33(7):01204.]

[10] Ding L D,Wu H,Wang C J,et al.Study of t he Water Body

Extracting from MODIS Images Based on Spectrum2photo2

metric Met hod[J].Geomatics&Spatial Information Technol2 ogy,2006,29(6):25227.[丁莉东,吴昊,王长健,等.基于谱间

关系的MODIS遥感影像水体提取研究[J].测绘与空间地理

信息,2006,29(6):25227.]

[11] Mei A X,Qin Q M,Liu H P,et al.An Introduction Remote

Sensing[M].BeiJing:Higher Education Press,2001.[梅安

新,秦其明,刘慧平,等.遥感导论[M].北京:高等教育出版

社,2001.]

R esearch on the Method of Extracting W ater Body Inform ation

from ASTER R emote Sensing Im age

HU AN G Hai2bo1,2,ZHAO Ping1,2,C H EN Zhi2ying1,GUO Wei1,2

(1.Territori al Resources and Tourism,A nhui N orm al Uni versit y,W u H u241000,Chi na;

2.Key L aboratory of GI S,A nhui N orm al U ni versit y,W u H u241000,Chi na)

Abstract:To take Wuhu in Anhui p rovince for example.Firstly,t he aut hor analysed t he water body in Wu2 hu and t he spect ral characters of t he eart h’s surface,t hen,summarized every class separability of t he water information and t he eart h’s surface in every band of ASTER Remote Sensing Image,after repeated experi2 ment s and analysis const ructed t he ext racting model of water body which based on t hreshold of bands and relation of spect rum:B2>B3,B1+B6<127,B3+B4<54and B3<24.In t he end,t he aut hor compared and evaluated t he conclusion of ext racting model of water body wit h t he conclusion of unsupervised classifica2 tion,supervised classification and NDV I.The result of experiment indicated t hat t his met hod is feasible and more simple,but higher demands were needed in t he selected samples of t he analysing process of spect ral characters.

K ey w ords:ASTER;Water body information ext racting;Spect ral characters

825 遥 感 技 术 与 应 用 第23卷 

erdas遥感专题信息提取与专题图制作

遥感专题信息提取与专题图制作设计报告 1.课程设计的目的和意义 本次课程设计的目的主要是为了加深理解和巩固遥感原理与应用的有关理论知识;熟悉遥感图像处理的方法和步骤,学习运用ERDAS软件对遥感图像进行几何纠正、图像镶嵌、图像融合、自动分类以及专题图制作等处理。锻炼独立分析问题和解决问题的能力,培养良好的工作习惯和科学素养,为今后工作打下良好的基础。 2.课程设计的原理和方法 2.1课程设计原理 2.1.1 图像预处理 ERDAS软件默认的文件格式是img格式,因此首先需要将实习数据由TIFF 格式转换为img格式图像。 多波段影像包含的信息量较大,实习中将6个单波段影像合成多波段影像进行处理。 Spot影像需具有地理信息,要将影像头文件信息添加进去。 2.1.2几何纠正 遥感所获取的数据,均存在几何畸变。因此需要对图像进行几何纠正。几何纠正的原理是将图像数据投影到平面上,使其符合地图投影系统。而将地图投影系统赋予图像数据的过程,称为地理参考。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何纠正的过程包含了地理参考过程。在实习过程中,采用了一次多项式法进行几何纠正。 2.1.3图像镶嵌 因研究范围的要求,需要在几何上将左右两幅图像连接在一起,并且保证拼接后的图像反差一致,色调相近,没有明显的接缝。遥感影像在镶嵌之前,必

须包含投影信息、地理坐标信息,还要有相同的波段数。当然,在挑选遥感数据时,要尽可能选择成像时间和成像条件相近的遥感图像,要求相邻影像的色调一致。 2.1.4图像裁剪 在实际工作中,经常需要根据研究工作范围对图像进行裁剪,按照ERDAS 实际图像分幅裁剪的过程,可以将图像分幅裁剪分为两种类型:规则分幅裁剪和不规则分幅裁剪。 规则分幅裁剪是指裁剪图像的边界范围是一个矩形,通过左上角和右下角两点的坐标,就可以确定图像的裁剪位置,整个裁剪过程比较简单。 不规则分幅裁剪是指裁剪图像的边界范围是任意多边形,无法通过左上角和右下角两点的坐标确定裁减位置,而必须事先生成一个完整的闭合多边形区域,可以是一个AOI多边形,也可以是ArcInfo的一个Polygon Coverage,针对不同的情况采用不同的裁剪过程。 2.1.5图像融合 图像融合是指将多源信道所采集到的关于同一目标的图像数据经过图像处理和计算机技术等,最大限度的提取各自信道中的有利信息,最后综合成高质量的图像,以提高图像信息的利用率、改善计算机解译精度和可靠性、提升原始图像的空间分辨率和光谱分辨率,利于监测。 2.1.6图像分类 图像分类就是基于图像像元的数据文件值,将像元归并成有限的几种类型、等级或数据集的过程。常规图像分类主要有两种方法:监督分类与非监督分类。 2.2课程设计方案

遥感信息智能化提取方法

遥感信息智能化提取方法 目前,大部分遥感信息的分类和提取,主要是利用数理统计与人工解译相结合的方法。这种方法不仅精度相对较低,效率不高,劳动强度大,而且依赖参与解译分析的人,在很大程度上不具备重复性。尤其对多时相、多传感器、多平台、多光谱波段遥感数据的复合处理,问题更为突出。在遥感影像相互校正方面,一些商业化的遥感图像处理软件,虽然提供了简单的影像相互校正和融合功能,但均是基于纯交互式的人工识别选取同名点,不仅效率非常低,而且精度也难于达到实用要求。因此,研究遥感信息的智能化提取方法对于提高遥感信息的提取精度和效率具有重要意义。 1.遥感图像分类 遥感图像分类是遥感图像处理系统的核心功能之一,它实现了基于遥感数据的地理信息提取,主要包括监督分类,非监督分类,以及分类后的处理功能。非监督分类包括等混合距离法分类(Isodata)等。监督分类包括最小距离(Minimum Distance)分类、最大似然(Maximum Likehood)分类、贝叶斯(Bayesian)分类、以及波谱角分类、二进制编码分类、AIRSAR散射机理分类等。 自动分类是计算机图像处理的初期便涉及的问题。但作为专题信息提取的一种方法,则有其完全不同的意义,是从应用的角度赋予其新的内容和方法。传统的遥感自动分类,主要依赖地物的光谱特性,采用数理统计的方法,基于单个像元进行,如监督分类和非监督分类方法,对于早期的MSS这样较低分辨率的遥感图像在分类中较为有效。后来人们在信息提取中引入了空间信息,直接从图像上提取各种空间特征,如纹理、形状特征等。其次是各种数学方法的引进,典型的有模糊聚类方法、神经网络方法及小波和分形。 近年来对于神经网络分类方法的研究相当活跃。它区别于传统的分类方法在于:在处理模式分类问题时,并不基于某个假定的概率分布,在无监督分类中,从特征空间到模式空间的映射是通过网络自组织完成的,在监督分类中,网络通过对训练样本的学习,获得权值,形成分类器,且具备容错性。人工神经网络 (ANN) 分类方法一般可获得更高精度的分类结果,因此 ANN方法在遥感分类中被广泛应用,特别是对于复杂类型的地物类型分类,ANN 方法显示了其优越性。如 Howald(1989)、McClellad(1989)、 Hepner(1990)、T.Yosh ida(1994)、K.S.Chen(1995)、J.D.Paola(1997) 等利用 ANN 分类方法对 TM 图像进行土地覆盖分类,在不同程度上提高了分类精度;Kanellopoulos(1992) 利用 ANN方法对 SPOT 影像进行了多达20类的分类,取得比统计方法更精确的结果;G.M.Foody(1996)用ANN对混合像元现象进行了分解;L.Bruzzone 等 (1997) 在 TM-5 遥感数据、空间结构信息数据、辅助数据(包括高程、坡度等)等空间数据基础下,用 ANN 方法对复杂土地利用进行了分类,比最大似然分类法提高了 9% 的精度。与统计分类方法相比较,ANN 方法具有更强的非线性映射能力,因此,能处理和分析复杂空间分布的遥感信息。2.基于知识发现的遥感信息提取

遥感影像中水面及水体信息提取方法的研究

遥感影像中水面及水体信息提取方法的研究 胡启中1,祁建勇2 (1.上海佳文比特信息科技有限公司,上海,200135;2.河北建设勘察研究院有限公司,石家庄,050031) 摘要:根据遥感影像中不同光谱波段对不同地物的反射率特征,以西洋河流域2000年春秋两期Landsat7 ETM+遥感数据为研究对象,结合实地调查数据,利用地理信息系统及遥感数据处理系统软件平台,建立植被覆盖度对不同季节、不同程度的植被覆盖、岩土裸露及水面水体相关的特征关系、对该流域内分布的各类中小型水库塘坝的水面和水体信息的分析和提取方法进行系统的研究和验证。通过结果分析表明:根据不同时相遥感影像的光谱波段组合建立不同的处理方法可以提高季节性变化的水面及水体信息识别和提取的精度和效率。 关键词 :遥感影像;光谱分析;水体信息;提取方法 水面及水体信息的分析和提取,一直是遥感影像分析处理及解译分类的基础性工作,在水资源调查、水环境监测、水灾害评估等许多方面得到了广泛应用。国内外很多专家学者在大规模区域尺度、高精度空间分辨率及多时相时间分辨率的遥感数据基础上对水体的提取方法做了深入研究,并提出了许多行之有效的方法。 在中小流域尺度范围上,基于中低空间分辨率的卫星遥感影像,对各类中小型水库塘坝的水面及水体信息的分析和提取是困难的,即使单一的借助专业的遥感数据处理系统软件平台进行分类解译,不仅技术性强,步骤繁多,模型构造复杂,也是费工费时费力的。水域范围精度控制和水面水体提取效率的提高一直是遥感解译水面及水体信息方法改进的驱动力。 1 Landsat7 ETM+遥感波段光谱特征及归一化植被指数应用 遥感数据是在预定的光谱波段(波长)上获得的。美国陆地卫星7号(Landsat-7)携带的增强型专题制图仪(ETM+),包含三个可见光波段兰绿红、一个近红外波段、二个中红外波段,空间分辨率为30米;一个热红外波段,空间分辨率为60米;另加一个空间分辨率为15米的全色波段。尽管空间分辨率不是较高,重采样覆盖周期16天,但其波段设置比较合理,并采集传输回大量的遥感数据,成为陆地资源调查及生态环境监测等诸多领域应用重要的遥感数据源之一。各种地物,尤其是岩石土壤、绿色植被和水面水体在可见光和红外波段附近具有明显的反射率特征。在光谱中,波段3可见光红光主要被植物吸收,同土壤和岩石相比,绿色植物的反射系数相当弱;而在波段4近红外线部分的反射却比多数其它地表覆盖物的反射要强得多[ 1 ]。水面或水体几乎吸收了近红外波段4和中红外波段5或7的全部能量使之反射率很低,同时土壤和植被在这三个波段内的吸收能量较小,而有较高的反射率,这就使得水体在这三个波段上与植被和土壤具有明显的光谱特征差异。因此在假自然色彩波段合成影像(RGB543波段组合)中,水体呈现出深蓝色及蓝色的暗色调,而土壤因其岩类基质特征呈不同浅色调,植被则呈现出相对较亮的深绿色、绿色或浅绿色色调。但由于不规则山体阴影的影响,使得近红外、中红外在阴坡面的反射能量特别低,它们在影像上也呈现出明显的暗色调;规则的铁路线、公路线等基础设施在遥感影像上也同时呈现出明显的暗色调。水面水体与山体阴影、铁路线、公路线等基础设施的光谱特征混淆使得遥感解译的普通分类方法难以准确提取水面水体信息。 归一化植被指数(NDVI),是植被指数的一种通用化指标形式,正是利用了遥感数据中近红外线和红光之间植被、水体及岩石土壤等其它地物的光谱特征,计算两波段之间的差异或比值,使之反映植被覆盖状况。因此,通过遥感数据直接计算的植被指数近一步估算植被覆盖度,在全球植被变化、作物生长状况、

遥感专题讲座——影像信息提取(四、面向对象特征提取)

面向对象的影像分类技术 “同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。 本小节以ENVI中的面向对象的特征提取FX模块为例,对这种技术和处理流程做一个简单的介绍。 本专题包括以下内容: ??●面向对象分类技术概述 ??●ENVI FX简介 ??●ENVI FX操作说明 1、面向对象分类技术概述 面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。它主要分成两部分过程:影像对象构建和对象的分类。

影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。比较常用的就是多尺度分割算法,这种方法综合遥感图像的光谱特征和形状特征,计算图像中每个波段的光谱异质性与形状异质性的综合特征值,然后根据各个波段所占的权重,计算图像所有波段的加权值,当分割出对象或基元的光谱和形状综合加权值小于某个指定的阈值时,进行重复迭代运算,直到所有分割对象的综合加权值大于指定阈值即完成图像的多尺度分割操作。 影像对象的分类,目前常用的方法是“监督分类”和“基于知识分类”。这里的监督分类和我们常说的监督分类是有区别的,它分类时和样本的对比参数更多,不仅仅是光谱信息,还包括空间、纹理等信息。基于知识分类也是根据影像对象的熟悉来设定规则进行分类。 目前很多遥感软件都具有这个功能,如ENVI的FX扩展模块、易康(现在叫Definiens)、ERDAS的Objective模块、PCI的FeatureObjeX(新收购)等。 表1为三大类分类方法的一个大概的对比。 类型基本原理影像的最小单元适用数据源缺陷 传统基于光谱的分类方 法地物的光谱信息 特征 单个的影像像元 中低分辨率多光谱 和高光谱影像 丰富的空间信息利 用率几乎为零 基于专家知识决策树根据光谱特征、空 间关系和其他上 下文关系归类像 元 单个的影像像元多源数据知识获取比较复杂 面向对象的分类方法几何信息、结构信 息以及光谱信息 一个个影像对象 中高分辨率多光谱 和全色影像 速度比较慢

基于遥感数据的城市绿地信息提取研究进展

基于遥感数据的城市绿地信息提取研究进展1 吕杰,刘湘南 中国地质大学(北京)信息工程学院,北京 (100083) E-mail:jasonlu168@https://www.360docs.net/doc/8910134218.html, 摘要:本文对目前城市绿地信息提取研究现状进行了总结,对其中的利用航空遥感数据提取植被信息、卫星遥感提取植被信息、高分辨率遥感植被信息以及高光谱遥感植被信息研究进展进行了介绍,并从中分析提出遥感数据提取城市绿地信息存在的问题,对于存在的混合像元的问题,本文指出混合像元分解是解决存在问题的关键。 关键词:遥感,城市绿地,信息提取,混合像元 中图分类号:TP 7 1.引言 随着城市规模的不断扩大,自然环境正受到越来越严重的破坏,特别是大量的植被被高楼大厦取代,导致原有的生态系统严重失衡。而植被是环境的天然调节器,因此,无论在新城区还是老城区,绿化都显得尤其重要。对于土地资源极为珍贵的特大城市来说,良好的绿地规划方案可以有效地提高绿化生态环境效益。 另一方面,随着社会和经济的发展,城市化步伐在不断加快,城市规模日渐扩大,因此,城市正面临着一系列的生态和环境问题,例如城市热岛效应,沙尘暴等。为了解决这些问题,人们逐渐发现城市绿地对城市生态环境的改善有着不可替代的功效,为此,许多国家将城市绿化制定为城市可持续发展战略的一个重要内容,并将城市绿地作为衡量城市综合质量的重要指标之一。 利用遥感技术获取绿地信息成为快速、客观、准确的城市生态监测、评价、规划和管理的重要手段。目前可以利用的高分辨率遥感数据资料越来越多,高于lm 分辨率航天遥感影像和航空遥感影像己开始应用到资源调查和测图中。 2.城市绿地信息提取研究现状及存在问题 城市绿地是在人类较强干扰下生成的绿地景观,其生态效益不仅与绿地斑块的面积、空间分布有关,而且与构成绿地的植被类型密切相关(王伯荪,1987 )。90 年代后期,景观生态学理论和方法逐渐应用到对城市绿化的研究中,这些研究为城市植被研究提供了新的研究思路和方法(高峻等,2002 :李贞等,2000 )。城市植被遥感信息提取为城市植被景观生态分析提供基础数据,是遥感信息提取的重要研究方向,也是城市植被学研究的重要内容(王伯荪等,1998 )。 2.1 航空遥感影像用于植被信息提取 随着遥感技术的发展,航空影像图的信息提取比例尺已经达到了1:1000 ,由遥感图提取城市绿地率和绿化覆盖率,是一条比较成熟和现实的途径。2001 年5 月上海市已完成三次航空遥感城市绿地精细调查。2000 年山东省建设处委托中国国土资源航空物探遥感中心对山东省济南市、淄博、文登、荣成等地市进行了航空遥感城市绿化调查。大比例尺彩红外航空遥感图像具有信息量大、植物标志清楚等优点,它不仅被广泛用于植被调查,而且对植 1本课题得到国家863项目(2007AA12Z174)资助。

SPOT5遥感影像土地利用信息提取方法研究

第39卷 第6期2011年6月 西北农林科技大学学报(自然科学版) Jo ur nal of N o rthwest A&F U niver sity(N at.Sci.Ed.) Vo l.39N o.6 Jun.2011 SPOT5遥感影像土地利用信息提取方法研究 张伐伐a,李卫忠a,卢柳叶b,康 乐a (西北农林科技大学a林学院,b资源环境学院,陕西杨凌712100) [摘 要] 目的 探讨高分辨率遥感影像土地利用信息提取方法的优劣,为研究土地利用/覆盖动态变化提供参考。 方法 以结合纹理特征的支持向量机(Support vector machine,SV M)分类和多尺度分割的面向对象分类为主要技术,对陕西佛坪长角坝乡遥感影像的土地利用信息进行提取,并将分类结果与基于传统像元的最大似然法分类结果进行比较分析。 结果 面向对象分类法的总精度达到90.67%,较结合纹理特征的SV M法提高了8.34%,而与最大似然分类法相比提高了近20.32%,克服了其他分类方法存在的同谱异物现象及分类结果中地物破碎等缺点,取得了较好的分类结果。 结论 利用面向对象分类法不仅达到了提取土地利用信息的目的,而且精度高、速度快。 [关键词] 遥感影像;土地利用信息;支持向量机;纹理特征;多尺度分割;精度评价 [中图分类号] S127[文献标识码] A[文章编号] 1671 9387(2011)06 0143 05 Study on extraction methods of land utilization information based on SPOT5 ZHAN G Fa fa a,LI Wei zhong a,LU Liu ye b,KANG Le a (a College of F or estry,b Colleg e of Resourc es and Env ironment,N or th w est A&F Univ ersity,Yang ling,S haanx i712100,China) Abstract: Objective T he study explored the effect of ex tracting approach for info rmatio n o f land uti lization based on high resolution remo te sensing im ag e to provide evidence for studying land utilization and cov er dynam ic variatio n. M ethod T his paper ex tracted the info rmation o f land utilizatio n focused on Changjiaoba to w n,using SVM classification o f tex ture feature and object or iented classification o f multi resolution seg mentatio n.The classification result w as compared w ith m ax imum likelihood classification. Then the classification result w as analyzed. Result T he ov erall classification accuracy o f object o riented w as90.67%,w hich incr eased by8.34%compared w ith SVM classification of tex ture feature and increased by20.32%com pared w ith m ax imum likelihoo d classificatio n.T his kind of classification not o nly can g et o v er the disadvantages of other classificatio ns,e.g.Spectral Similar and Ground object Fragm entations,etc. but also acquire good effectiveness. Conclusion Using the classification of object oriented can realize the purpose o f ex tracting the land utilization information,and this m ethod is accurate and fast. Key words:rem ote sensing im ag e;inform ation o f land uatilization;support v ector m achine;tex tur e fea ture;multiresolution segm entation;accuracy assessment 土地利用信息的获取,是研究士地利用和土地覆盖动态变化的基础,将遥感、地理信息系统和全球定位系统相结合,开展国土资源和环境综合调查,具有现势性强、分类周期短、资源信息更新快等优势,从而可以以最快的速度动态监测土地资源利用及环境的变化情况,及时为社会经济发展决策和制定相关规 *[收稿日期] 2010 11 29 [基金项目] 国家林业局 948 项目(2009 4 45) [作者简介] 张伐伐(1985-),男,安徽怀远人,在读硕士,主要从事 3S 技术在资源与环境中的应用研究。 E mail:zhangfafa520@https://www.360docs.net/doc/8910134218.html, [通信作者] 李卫忠(1963-),男,陕西蒲城人,副教授,硕士生导师,主要从事森林经理学研究。E m ail:w eizhong_li@https://www.360docs.net/doc/8910134218.html,

遥感矿物蚀变信息提取方法及ENVI下实现

遥感矿物蚀变信息提取方法及ENVI下实现

蚀变岩石是在热液作用影响下,使矿物成分、化学成分、结构、构造等发生变化的岩石。由于它们经常见于热液矿床的周围,因此被称为蚀变围岩,蚀变围岩是一种重要的找矿标志。利用围岩蚀变现象作为找矿标志已有数百年历史,发现的大型金属、非金属矿床更是不胜枚举:北美、俄罗斯的大部分斑岩铜矿、我国的铜官山铜矿、犹他州的大铝矿、西澳大利亚的大型金矿、墨西哥的大铂矿、美国许多白钨矿、世界大多数锡矿、哈萨克斯坦的刚玉矿等,都属于以围岩蚀变作为找矿标志发现的矿床。 国内外遥感工作者,都在不断地设计、研制和总结对这种遥感信息的提取和识别技术。矿化蚀变信息是找矿的一个重要标志,而这些对找矿有指导意义的矿化蚀变信息常常受其它地物信息的干扰,和受遥感图像的波谱分辨率和空间分辨率的制约,往往表现的很微弱。因此,国内外学者也在不断尝试各种技术方法提取这种矿化蚀变弱信息。 本文总结了遥感蚀变信息提取的各类方法,及其在ENVI软件中的实现。 ?原理 遥感技术主要是建立在物体反射和发射电磁波的原理之上。而地物波谱特性通常都是用地物反射辐射电磁波来描述。由于地物反射发射电磁波的特性不同,其反射波谱曲线形态也有千差万别。如植物的反射波谱曲线上,在绿光波段表现由于其叶绿素的存在表现为有一强反射峰,而在短波红外波段由于叶冠组织的相互作用表现为强反射峰,在红光波段则表现为强吸收谷。 遥感地质应用中,近矿围岩蚀变形成的蚀变岩石与其周围的正常岩石在矿物种类、结构、颜色等方面都有差异,这些差异导致了岩石反射光谱特征的差异,并且在某些特定的光谱波段形成了特定蚀变岩石的光谱异常。光谱异常为用遥感图像的异常信息提取提供了理论依据。 ?方法及实现 依据矿化蚀变岩与围岩的波谱特征的差异,可采用图像增强处理方法获取矿化蚀变信息增强的图像变量,从而最终实现提取矿化蚀变信息的目的。一般图像增强突出蚀变信息有以下几种方法。 (1)蚀变干扰信息剔除 遥感数据包含地表的信息,遥感在地质方面的应用就是提取用户需要的信息,提取矿化蚀变信息的过程是计算影像中所有像素信息统计归类分析的过程,蚀变异常信息的提取对遥感图像的质量要求较高,因此首先要对遥感数据进行严格的筛选,干扰噪声小的数据,一般要求遥感数据的时相是植被发育较弱、冰雪覆盖少的季节,同时该时相的云覆盖量较少。由于受地形地貌的影响,有些因素靠数据的时相选择却难以克服,例如阴影、河流水体、高山上的冰雪、白泥地等,可以采用相应的数学方法来解决,以使阴影、水体等干扰像素的数据不参与统计分析。一方面是选择较好的数据;另一方面是对数据进行数据预处理,包括大气校正、掩膜等。 利用ENVI软件的大气校正模块flassh能快速的消除大气影响,还原地物的真实面目。有利于蚀变信息的提取。

遥感影像水体提取实验

基于高分一号卫星多时相数据的洪水监测 摘要:本文利用两幅高分一号多光谱影像数据,通过ENVI4.8软件,采用NDVI对黑龙江地区水体进行了提取,并在图像上展示了水体变化区域,计算了水体变化面积。结果表明:9月9日黑龙江水域面积比8月27日增加了226.6822 km。最后又采用了假彩色合成法展示了水体增加区域。结果表明:两种方法对水体变化信息的提取具有一致性。 1 数据介绍 本作业获得了两幅高分一号TIF数据,分别是8月27日,9月9日。每幅影像有4个波段,查阅资料得知:1波段波长为0.45-0.52um,属于蓝、青光,2波段波长为0.52-0.59um,属于黄、绿光,3波段波长为0.63-0.69um,属于红光,4波段为0.77-0.89,属于近红外。 图1 0827影像信息图2 0909影像信息 2 研究区域 由所给数据的经纬度坐标可知,研究区域为抚远县,其地处黑龙江、乌苏里江交汇的三角地带。地理方位是东经133° 40′ 08″至

135° 5′20″,北纬47° 25′30″至48° 27′40″。 图3 研究区域的百度卫星地图 2 水体提取方法选择 单波段:水体在近红外波段的反射率很低,所以可以设置阈值进行提取。 归一化水体指数 )/()(NIR Green NIR Green NDWI ρρρρ+-= 归一化植被指数 )/()(NDVI Re Re d NIR d NIR ρρρρ+-= 但单波段方法中阈值的设置需要反复调整,而高分一号数据的1、2波段不完全是蓝、绿光,而3、4波段完全是红、近红外。所以选择归一化植被指数提取水体。-1=

遥感卫星影像数据信息提取.

北京揽宇方圆信息技术有限公司 、 遥感卫星影像数据信息提取 北京揽宇方圆信息技术有限公司中科院企业,卫星影像数据服务全国领先。业务包括遥感数据获取与分发、遥感数据产品深加工与处理。按照遥感卫星数据一星多用、多星组网、多网协同的发展思路,根据观测任务的技术特征和用户需求特征,重点发展光学卫星影像、雷达卫星影像、历史卫星影像三个系列,构建由 26个星座及三类专题卫星组成的遥感卫星系统,逐步形成高、中、低空间分辨率合理配置、多种观测技术优化组合的综合高效全球观测和数据获取能力形成卫星遥感数据全球接收与全球服务能力。 (1光学卫星影像系列。 面向国土资源、环境保护、防灾减灾、水利、农业、林业、统计、地震、测绘、交通、住房城乡建设、卫生等行业以及市场应用对中、高空间分辨率遥感数据的需求,提供 worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、 ikonos、pleiades、spot1、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm、 landsat(etm、 rapideye、alos、Kompsat 卫星、北京二号、资源三 号、高分一号、高分二号等高分辨率光学观测星座。围绕行业及市场应用对基础地理信息、土地利用、植被覆盖、矿产开发、精细农业、城镇建设、交通运输、水利设施、生态建设、环境保护、水土保持、灾害评估以及热点区域应急等高精度、高重访观测业务需求,发展极轨高分辨率光学卫星星座,实现全球范围内精细化观测的数据获取能力。像国产的中分辨率光学观测星座。围绕资源调查、环境监测、防灾减灾、碳源碳汇调查、地质调查、水资源管理、农情监测等对大幅宽、快速覆盖和综合观测需求,建设高、低轨道合理配置的中分辨率光学卫星星座,实现全球范围天级快速动态观测以及全国范围小时级观测。

海面油膜高光谱遥感信息提取_陆应诚

收稿日期: 2008-03-10; 修订日期: 2008-09-30 基金项目:中国石油天然气股份有限公司科技预研项目“海域遥感油气勘探技术研究”(编号: 06-01C-01-08)和国家科技支撑计划(编号: 2006BAK30B01)。 第一作者简介: 陆应诚(1979— ), 男, 南京大学博士研究生, 主要从事高光谱遥感应用研究。E-mail: lycheng2003@https://www.360docs.net/doc/8910134218.html, 。 海面油膜高光谱遥感信息提取 陆应诚, 田庆久, 宋鹏飞, 李姗姗 南京大学 国际地球系统科学研究所, 江苏 南京 210093 摘 要: 针对辽东湾海域的Hyperion 高光谱遥感数据特点, 结合海面油膜光谱与Hyperion 影像特征, 对该数据进行水陆分离与最小噪声分离(minimum noise fraction, MNF)变换处理, 在辽东湾海域MNF 波段影像的2D 散点图中, 海面油膜的出现会在其边缘形成一个异常散点区域, 可区分油膜与干扰信息,结合提取的海面油膜端元的MNF 波谱, 通过混合调制匹配滤波(mixture tuned matched filtering, MTMF)技术, 成功地提取研究区海面油膜信息, 有效监测海面油膜信息, 为海洋环境监测提供新的技术手段。 关键词: 油膜, 高光谱, 遥感, Hyperion, 辽东湾 中图分类号: X55 文献标识码: A 1 引 言 在海洋石油的遥感监测与评估中, 海面油膜是遥感探测的一个重要对象, 多光谱、热红外、雷达等诸多遥感领域均对此有一定研究(Gonzalez 等, 2006; Fingas & Brown, 1997; Labelle & Danenberger, 1997; O’Briena 等, 2005), 由于海洋背景复杂, 海面大气影响、水体对电磁波的散射与吸收作用, 海面油膜遥感信息表现为弱信息;又由于海面油膜随来源、构成种类、油膜厚度、风化程度的不同表现为不确定的遥感影像特征;这些因素对海面油膜遥感信息提取存在一定的制约。随着高光谱遥感技术的发展(童庆禧, 2003), 针对海面油膜信息的高光谱遥感探测方法技术不断得到发展(Foudan, 2003)。Palme(1994)利用小型机载成像光谱仪(CASI)数据研究1993年Shetlands 群岛溢油事件中产生的油膜和其他油污信息, 指出440—900 nm 是可以用来进行溢油油膜信息提取的有效谱段;Foudan(2003)利用机载AVRIS 高光谱数据对Santa Barbara 海岸带的油污与海面油膜进行研究, 表明分散的石油在580nm 、700nm 具有反射峰, 厚油膜在近红外波段反射率要高于薄油膜, 600—900nm 具有最大的油膜遥感探测的可能性。比较分析混合光谱分解技术(spectral unmixing)、纯净像元指数(pixel purity index, PPI)、 光谱角度制图法(spectral angle mapper, SAM)、混合调制匹配滤波(mixture tuned matched filtering, MTMF)技术等方法在海面油膜信息提取上的特点。近年来, 国内学者也不断开展海面油膜遥感研究, 赵冬至等(2000)总结了柴油、润滑油和原油等3种油膜随厚度变化的光谱特征, 指出736nm 和774nm 对不同的油类具有相同的吸收特征;张永宁等(1999, 2000)测试了几种类型油的海面波谱, 认为在海洋溢油波谱特征中0.5—0.58μm 是不同油膜最高反射率的所在位置, 并利用A VHRR 和TM 数据识别海洋溢油;陆应诚(2008, 2009)的海面油膜实验表明随油膜厚度不同, 油膜光谱特征与响应原理表现不同。 本文以辽东湾双台子河口外海域为研究区, 结合海面油膜光谱特点与海面油膜Hyperion 遥感影像特征, 通过高光谱遥感MTMF 技术方法, 提取研究区海面油膜信息。 2 Hyperion 数据预处理 研究区在辽东湾双台子河口外海域, 该区是中国重要原油生产基地——辽河油田所在地, 近年来, 辽东湾海域油田的开采与运输为海洋环境带来一定的影响。 2007-05-06获取了研究区的一景美国EO-1卫

遥感信息提取资料

遥感图像信息提取方法综述 0、遥感图像分析 遥感实际上是通过接收(包括主动接收和被动接收方式)探测目标物电磁辐射信息的强弱来表征的,它可以转化为图像的形式以相片或数字图像表现。多波段影像是用多波段遥感器对同一目标(或地区)一次同步摄影或扫描获得的若干幅波段不同的影像。 在遥感影像处理分析过程中,可供利用的影像特征包括:光谱特征、空间特征、极化特征和时间特性。在影像要素中,除色调/彩色与物体的波谱特征有直接的关系外,其余大多与物体的空间特征有关。像元的色调/彩色或波谱特征是最基本的影像要素,如果物体之间或物体与背景之间没有色调/彩色上的差异的话,他们的鉴别就无从说起。其次的影像要素有大小、形状和纹理,它们是构成某种物体或现象的元色调/彩色在空间(即影像)上分布的产物。物体的大小与影像比例尺密切相关;物体影像的形状是物体固有的属性;而纹理则是一组影像中的色调/彩色变化重复出现的产物,一般会给人以影像粗糙或平滑的视觉印象,在区分不同物体和现象时起重要作用。第三级影像要素包括图形、高度和阴影三者,图形往往是一些人工和自然现象所特有的影像特征。 1、遥感信息提取方法分类 常用的遥感信息提取的方法有两大类:一是目视解译,二是计算机信息提取。 1.1目视解译 目视解译是指利用图像的影像特征(色调或色彩,即波谱特征)和空间特征(形状、大小、阴影、纹理、图形、位置和布局),与多种非

遥感信息资料(如地形图、各种专题图)组合,运用其相关规律,进行由此及彼、由表及里、去伪存真的综合分析和逻辑推理的思维过程。早期的目视解译多是纯人工在相片上解译,后来发展为人机交互方式,并应用一系列图像处理方法进行影像的增强,提高影像的视觉效果后在计算机屏幕上解译。 1)遥感影像目视解译原则 遥感影像目视解译的原则是先“宏观”后“微观”;先“整体”后“局部”;先“已知”后“未知”;先“易”后“难”等。一般判读顺序为,在中小比例尺像片上通常首先判读水系,确定水系的位置和流向,再根据水系确定分水岭的位置,区分流域范围,然后再判读大片农田的位置、居民点的分布和交通道路。在此基础上,再进行地质、地貌等专门要素的判读。 2)遥感影像目视解译方法 (1)总体观察 观察图像特征,分析图像对判读目的任务的可判读性和各判读目标间的内在联系。观察各种直接判读标志在图像上的反映,从而可以把图像分成大类别以及其他易于识别的地面特征。 (2)对比分析 对比分析包括多波段、多时域图像、多类型图像的对比分析和各判读标志的对比分析。多波段图像对比有利于识别在某一波段图像上灰度相近但在其它波段图像上灰度差别较大的物体;多时域图像对比分析主要用于物体的变化繁衍情况监测;而多各个类型图像对比分析则包括不同成像方式、不同光源成像、不同比例尺图像等之间的对比。

ERDAS-遥感专题信息提取与专题图制作

遥感专题信息提取与专题图制作设计报告 1、课程设计的目的与意义 本次课程设计的目的主要就是为了加深理解与巩固遥感原理与应用的有关理论知识;熟悉遥感图像处理的方法与步骤,学习运用ERDAS软件对遥感图像进行几何纠正、图像镶嵌、图像融合、自动分类以及专题图制作等处理。锻炼独立分析问题与解决问题的能力,培养良好的工作习惯与科学素养,为今后工作打下良好的基础。 2、课程设计的原理与方法 2、1课程设计原理 2、1、1 图像预处理 ERDAS软件默认的文件格式就是img格式,因此首先需要将实习数据由TIFF 格式转换为img格式图像。 多波段影像包含的信息量较大,实习中将6个单波段影像合成多波段影像进行处理。 Spot影像需具有地理信息,要将影像头文件信息添加进去。 2、1、2几何纠正 遥感所获取的数据,均存在几何畸变。因此需要对图像进行几何纠正。几何纠正的原理就是将图像数据投影到平面上,使其符合地图投影系统。而将地图投影系统赋予图像数据的过程,称为地理参考。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何纠正的过程包含了地理参考过程。在实习过程中,采用了一次多项式法进行几何纠正。 2、1、3图像镶嵌 因研究范围的要求,需要在几何上将左右两幅图像连接在一起,并且保证拼接后的图像反差一致,色调相近,没有明显的接缝。遥感影像在镶嵌之前,必须包含投影信息、地理坐标信息,还要有相同的波段数。当然,在挑选遥感数据时,要尽可能选择成像时间与成像条件相近的遥感图像,要求相邻影像的色调一致。 2、1、4图像裁剪 在实际工作中,经常需要根据研究工作范围对图像进行裁剪,按照ERDAS实际图像分幅裁剪的过程,可以将图像分幅裁剪分为两种类型:规则分幅裁剪与不规则分幅裁剪。 规则分幅裁剪就是指裁剪图像的边界范围就是一个矩形,通过左上角与右下角两点的坐标,就可以确定图像的裁剪位置,整个裁剪过程比较简单。 不规则分幅裁剪就是指裁剪图像的边界范围就是任意多边形,无法通过左上角与右下角两点的坐标确定裁减位置,而必须事先生成一个完整的闭合多边形区域,可以就是一个AOI多边形,也可以就是ArcInfo的一个Polygon Coverage,针对不同的情况采用不同的裁剪过程。

遥感ENVI水体信息提取实验

遥感ENVI水体信息提取实验

实习一:水体信息提取姓名:XXxx 学号:!!!!!!!!!!!!!!!!!!! 专业:地理信息科学 教师:XXXXX 成绩:

环境与规划学院 二〇一六年四月 实验报告 一实验目的 学习水体光谱的征曲线,掌握应用遥感图像处理软件进行水体波普的差异性分析。 掌握水体提取的常用方法;能够使用ENVI 软件进行水体信息提取。 二实验内容 遥感探测的水体波谱信息:水可以吸收也可以散射通过水汽界面的波谱辐射能量(Ed),但水的散射会增加天空辐射能量(Eu),而水的吸

收则会同时减少Ed和Eu。 遥感影像记录了地表物体的反射信息及其自身向外的辐射信息。相对于其他地物而言,水体在整个光谱范围内都呈现出较弱的反射率。 在近红外、中红外及短波红外部分,水体几乎吸收了去不得入射能量,因此水体在这些的反射率特别低,而土壤、植被、建筑物等在这些波段吸收能量较小,具有较高的反射率,是的水体与他们具有明显的区别。 水体信息提取有助于确定水体边界、了解水域面积变化、水文水资源要素,提取结果可用于水资源信息统计及相关的辅助决策 三实验方案 单波段法(阈值); 多波段法(谱间关系法、比值法、归一化差异水体指数(NDWI)、改进的归一化差异水体指数(MNDWI) 1.图像预处理 (1)辐射定标:将DN值转成辐亮度

File--->open image file--->。。。。MTL.txt--->spectral--->Preprocessing--->C alibration Utilities--->Landsat Calibration--->(选择文件),OK--Radiance,File,choose(选择保存地址并命名),Ok (2)BSQ转成BIL Basic Tools-->Convert data (BSQ、BIL、BIP)-->-BIL,choose(选择保存地址并命名),Ok (3)Flaash大气校正 Spectral--->Preprocessing--->Calibr ation Utilities--->Flaash —>

遥感ENVI水体信息提取实验

实习一:水体信息提取姓名:XXxx 学号:!!!!!!!!!!!!!!!!!!! 专业:地理信息科学 教师:XXXXX 成绩: 环境与规划学院 二〇一六年四月

实验报告 一实验目的 学习水体光谱的征曲线,掌握应用遥感图像处理软件进行水体波普的差异性分析。 掌握水体提取的常用方法;能够使用ENVI软件进行水体信息提取。 二实验内容 遥感探测的水体波谱信息:水可以吸收也可以散射通过水汽界面的波谱辐射能量(Ed),但水的散射会增加天空辐射能量(Eu),而水的吸收则会同时减少Ed和Eu。 遥感影像记录了地表物体的反射信息及其自身向外的辐射信息。相对于其他地物而言,水体在整个光谱范围内都呈现出较弱的反射率。 在近红外、中红外及短波红外部分,水体几乎吸收了去不得入射能量,因此水体在这些的反射率特别低,而土壤、植被、建筑物等在这些波段吸收能量较小,具有较高的反射率,是的水体与他们具有明显的区别。 水体信息提取有助于确定水体边界、了解水域面积变化、水文水资源要素,提取结果可用于水资源信息统计及相关的辅助决策 三实验方案 单波段法(阈值); 多波段法(谱间关系法、比值法、归一化差异水体指数(NDWI)、改进的归一化差异水体指数(MNDWI) 1.图像预处理 (1)辐射定标:将DN值转成辐亮度 File--->open image file--->。。。。MTL.txt--->spectral--->Preprocessing--->Calibration Utilities--->Landsat Calibration--->(选择文件),OK--Radiance,File,choose(选择保存地址并命名),Ok (2)BSQ转成BIL Basic Tools-->Convert data (BSQ、BIL、BIP)-->-BIL,choose(选择保存地址并命名),Ok (3)Flaash大气校正 Spectral--->Preprocessing--->Calibration Utilities--->Flaash—>

遥感水体提取

遥感应用 ENVI水体提取 目录 一、设计目的 (3) 二、设计资料 (3) 三、设计内容 (3) 1.辐射定标 (3) 2.数据转换 (4) 3.大气校正 (6) 4.图像融合 (9) 5.图像裁剪 (10) 6.几何校正 (12) 7.水体提取 (15) 8.水体提取结果转换 (20) 四、水体提取成果 (23) 五、设计心得 (24)

一、设计目的 1.掌握遥感应用中数据处理到信息提取的完整流程。 2.掌握遥感图像辐射处理基本原理与操作流程,掌握图像融合基本原理与操作流程。 3.掌握遥感图像几何纠正基本原理,掌握ENVI相关操作基本过程、控制点选取的原则,要求纠正后图像误差要小于半个像素。 4.掌握基于水体指数提取水体的基本原理,掌握ENVI软件中水体计算、阈值计算、后处理、矢量化等相关操作。分别用水体指数和改进水体指数完成水体提取结果并进行比较分析。 二、设计资料 武汉地区Landset8的原始影像LC81230392017303LGN00;武汉地区基准图像wuhan_base_image;ENVI遥感图像处理软件。 三、设计内容 1.辐射定标 (1)打开ENVI,选择File→0pen,选中LC08_L1TP_123039_20171030_20171109 01_T1_MTL.txt文件,加载影像。 (2)在工具箱中选择【Radiometric Correction】→【Radiometric Calibration】,选择所有波段,点击确定。 (3)设置辐射定标参数:参数如下图。

(4)设置文件保存路径,点击确定,完成辐射定标,结果如图: 2.数据格式转换 (1)由于定标好的影像的数据排列格式为BSQ,而大气校正默认的数据排列格式为BIL或BIP,因此需要转换数据存储格式。打开工具箱,选择【Raster Management】→【Convert Interleave】,打开【Convert File Input File】对话框,选择辐射定标完成的文件。

相关文档
最新文档